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ABSTRACT 

Climate data measured by weather stations are crucially important and 

regularly used in hydrologic modeling. However, they are not always 

available due to the low spatial density and short record history of many 

station networks. To overcome these limitations, gridded datasets have 

become increasingly available. They have excellent continuous spatial 

coverage and no missing data. However, these datasets are usually 

interpolated using station data, with little new information besides 

elevation. Furthermore, minimal validation has been done on most of 

these datasets. This study compares three such datasets covering the 

continental United States to evaluate their differences and their impact 

on lumped hydrological modeling. Three daily time step gridded datasets 

with resolutions varying between 0.25° and 1km were used in this study 

- Santa-Clara, Daymet and CPC. The hydrological modeling evaluation of 

these datasets was performed over 424 basins from the MOPEX 

database. Results show that there are significant differences between the 

datasets, even though they were essentially all interpolated from almost 

the same climate databases. 

Despite those differences, the hydrological model used in this study was 

able to perform equally well after a specific calibration to each dataset. 

While there were a few exceptions, by and large, Nash-Sutcliffe efficiency 

metrics obtained in validation were not statistically different from one 

database to the other for most basins. It appears that there are no 
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reasons to favor one dataset versus another for lumped hydrological 

modeling, and that these datasets perform just as well as using the 

original station data.   

 

Keywords: Interpolated data, bias, hydrological modeling, calibration, 

performance comparison. 

 

1. Introduction 

Climate data obtained from ground weather stations are the main inputs 

to hydrological models.  However, spatial coverage of weather stations is 

often limited in mountain areas and low-population areas. In addition, 

short temporal coverage and missing data are typical of many station 

records.  

To overcome these problems, many water management agencies have 

been using gridded datasets obtained by interpolating station data onto a 

regular grid. Such datasets have continuous spatial and temporal 

coverage and are much simpler to use than their station dataset 

counterparts. Several competing interpolation methods have been 

proposed. The simplest interpolate between stations (i.e. Thiessen 

polygons, simple kriging) (Hartkamp et al. 1999; Skaugen and Andersen 

2010), whereas the more complex use additional information from other 

sources or integrate physical properties such as the  atmospheric lapse 
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rate. This is the case for local (Daly et al. 1994; Hasenauer et al. 2003; 

Taylor et al. 1997; Thornton et al. 1997) and regional regression methods 

(Chen et al. 2007; Mahdian et al. 2009; Perry and Hollis 2005). On the 

other hand, even though gridded datasets offer good spatial coverage, 

their reliability may be questionable in areas with a sparse weather 

station network (Mizukami and Smith 2012). Gridded datasets also 

contain uncertainties linked to each specific interpolation scheme (Tozer 

et al. 2012). 

In the United-States (as in many other countries throughout the world) 

there has been a widespread effort to produce robust interpolated 

datasets. Several such datasets have been made freely available to the 

scientific community by several groups such as the University of Santa-

Clara (Maurer et al. 2002), the Climate Prediction Center  (CPC) (Higgins 

et al. 2000), and Daymet (Thornton et al. 2012; Thornton et al. 1997). 

These databases have been used in various recent hydrological studies 

(Ali et al. 2014; Elsner et al. 2014; Gallo and Xian 2014; McEvoy et al. 

2014; Neiman et al. 2014; Singh et al. 2014; Ye et al. 2014; Zurita-Milla 

et al. 2014). However, to date, there exists little validation work as to the 

ability of these datasets for hydrological studies.  Accordingly, the 

present study aims at comparing various precipitation and temperature 

gridded datasets at the basin scale, and to evaluate the differences for 

lumped hydrological modeling. 
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2. Study area and datasets 

2.1. Study area  

The study area is a group of 424 catchments in the continental United-

States, within boundaries reaching from 67°W to 125°W longitude and 

25°N to 50°N, as shown in Fig. 1.  

 
FIG. 1.  Location and climate classification of the 424 catchments used 

in this study. 

 

The catchments are dispersed in 5 climatic zones according to the 

Köppen-Geiger classification system (Kottek et al. 2006). There are 236 

basins classified as humid continental, 107 as humid subtropical, 13 in 

the marine west-coast region, 24 as Mediterranean and 44 as semi-arid. 

The catchments range between 66 km2 and 10325 km2 in size. 
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2.2. Datasets 

All the comparisons and simulations were performed with daily climate 

data as well as daily discharge time series. The four databases used in 

this study are as follow: 

2.2.1. MOPEX area averaged data 

The MOdel Parameter Estimation eXperiment (MOPEX) database contains 

precipitation, temperature (minimum and maximum) and streamflows on 

a daily time step. The database covers the years 1949-2003. Its 

conception stems from the National Climatic Data Center (NCDC) 

weather station observations (about 16,139 stations) (Duan et al. 2006). 

In fact, the MOPEX climate data are averaged observation values on the 

different catchments. An inverse distance weighting method was 

implemented to estimate the final MOPEX climate data. A detailed 

description of this data source is available in Schaake et al. (2006). It is 

important to note that each catchment in the database requires a 

minimal density of weather stations, which is determined by the size of 

the catchment as explained in Schaake et al. (2000). Furthermore, only 

time series of length greater than 10 years were admitted in the 

database. The reference streamflow data is also taken from this 

database. The MOPEX dataset is available online: 

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data   

 

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data
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2.2.2. Santa-Clara gridded data 

The University of Santa-Clara gridded dataset were initially developed in 

Washington, but they were formatted into their current form at the 

University of Santa-Clara. The daily precipitation and temperatures 

(minimum and maximum) are available for the years 1949-2003. They 

were interpolated on a 0.125° x 0.125° grid using the weather 

measurement data provided by the National Oceanic and Atmospheric 

Administration (NOAA) cooperative network, averaging 1 station per 700 

km2 (Maurer et al. 2002). The interpolation algorithm is based on the 

Synergraphic Mapping System (SYMAP) by Shepard (1984) and 

implemented as proposed by Widmann and Bretherton (2000). 

Particularly, the precipitations were downscaled to correspond to the 

long-term means of the precipitations from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) (Daly et al. 1994; Daly 

et al. 1997). More precisely, it relies on 12 monthly means for the 1961-

1990 period, which are statistically adjusted to capture the local 

variations on complex terrain. The Santa-Clara dataset is available 

online: http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010   

2.2.3. Climate Prediction Center gridded data  

The Climate Prediction Center (CPC) data contains precipitation data only 

for the years 1949-2003 with a spatial resolution of 0.25° x 0.25°. The 

interpolation uses three main sources of observation data (Higgins et al. 

http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010
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2000). The first is the CPC cooperative network stations for the 1996-

1999 period (15622 stations). The second is daily observations from the 

NCDC for the years 1948-1998 (approximately 16139 stations). The third 

is from the Hourly Precipitation Dataset (HPD) (approximately 5933 

stations) (Higgins et al. 1996). The interpolation uses the Cressman 

method (Cressman 1959). Information on the location of weather stations 

used to build the CPC data can be found at: 

http://www.cpc.ncep.noaa.gov/products/Precip_Monitoring/Figures/NA

MS/NAMS_curr.p.gnum.gif. The CPC dataset is available online: 

http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.ht

ml  

2.2.4. Daymet gridded data 

The Daymet dataset includes maximum and minimum temperatures and 

precipitation on a daily scale for the period 1980-2003. They were 

produced using the Daymet suite, an ensemble of algorithms and 

software designed to interpolate and extrapolate values at grid points 

with a 1km x 1km resolution (Thornton et al. 2012). Daymet uses 

observation network data to perform the interpolation with a Gaussian 

weighting scheme. A detailed description of Daymet is available in 

(Thornton et al. 1997). Information on the location of weather stations 

used to build the Daymet data can be found at: 

http://www.cpc.ncep.noaa.gov/products/Precip_Monitoring/Figures/NAMS/NAMS_curr.p.gnum.gif
http://www.cpc.ncep.noaa.gov/products/Precip_Monitoring/Figures/NAMS/NAMS_curr.p.gnum.gif
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
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https://daymet.ornl.gov/overview.html. The Daymet dataset is available 

online:  http://daymet.ornl.gov/. 

 

A summary of the dataset characteristics is presented in Table 1. 

TABLE 1. Characteristics of datasets used in this study 

Dataset 
Spatial 

resolution 

Temporal 

domain 
Variables 

Interpolati

on 

algorithm/

technique 

Source Reference 

MOPEX --- 
1949-

2003 

P, Tmin, 

Tmax, 

PE, Q 

Inverse 

distance 

ftp://hydrology.n

ws.noaa.gov/pub

/gcip/mopex/US_

Data 

(Duan et al. 

2006) 

Santa-Clara 
0.125° x 

0.125° 

1949-

2010 

P, Tmin, 

Tmax, 

W 

synergrap

hic 

mapping 

system 

(SYMAP) 

http://hydro.engr

.scu.edu/files/gri

dded_obs/daily/n

cfiles_2010 

(Maurer et al. 

2002) 

CPC 
0.25° x 

0.25° 

1949-

2013 
P 

Optimal 

interpolat

ion (OI)  

http://www.esrl.n

oaa.gov/psd/data

/gridded/data.uni

fied.daily.conus.h

tml 

(Higgins et al. 

2000) 

Daymet 1km x 1km 
1980-

2013 

P, Tmin, 

Tmax, 

Srad, 

Vp, Swe 

--- 
http://daymet.or

nl.gov/ 

(Thornton et 

al. 2012; 

Thornton et 

al. 1997) 

 

P=Precipitation, Tmin=minimum temperature; Tmax=maximum 
temperature; PE=potential evaporation, Q=streamflow; W=wind speed; 

Srad=shortwave radiation; Vp=vapor pressure; Swe=snow-water 
equivalent. 

 

http://daymet.ornl.gov/
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://daymet.ornl.gov/
http://daymet.ornl.gov/
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3. Methodology 

3.1. Dataset comparison 

The interpolated data grid points inside each of the catchments were 

averaged using the inverse distance weighting method calculated with 

respect to the catchment centroid (Dirks et al. 1998). This method was 

shown to be amongst the best interpolation methods for such uses 

(Baillargeon et al. 2004; Ruelland et al. 2008). The comparison was 

performed on the daily, seasonal and extreme data. Moreover, the daily 

data was compared by climatic zone.  

The first comparison criterion used in this study is the well-known Root 

Mean Squared Error (RMSE), which is defined as: 

 

                                                                                                            (Eq. 1) 

 

where    and    represent data values for day i, from X and Y datasets, 

and N is the length of the time series. 

The RMSE gives an indication on the difference amplitude between two 

series. An RMSE value of 0 is a perfect fit, and larger values indicate 

larger errors. 

The second comparison criterion is the bias (B), defined as:   

                                                                                                    (Eq. 2) 
𝑩 =  

𝟏

𝑵
  𝑿𝒊 − 𝒀𝒊 

𝑵

𝒊=𝟏

  

𝑹𝑴𝑺𝑬 =    
𝟏

𝑵
  𝑿𝒊 − 𝒀𝒊 𝟐
𝑵

𝒊=𝟏

 



12 
 

The bias allows estimating how much one series underestimates or 

overestimates a second series. A bias of 0 indicates a perfect fit. A 

positive bias indicates an overestimation of the observations, while the 

opposite is true for negative biases.  

For temperature, biases were directly computed between each of the 

datasets.  For precipitation, since the number of datasets is higher, 

biases were computed against a reference value equal to the average 

value of the 4 datasets in the studies.  This was done to simplify the 

interpretation of results. 

The third criterion is the correlation between the daily time series.  It is 

simply defined by the linear correlation coefficient.  

The fourth criteria for the comparative analyses are intended to gain 

insight in comparing extreme values. They are the 99th percentile of daily 

precipitation (mm/day), the 99th percentile of daily maximum 

temperature (°C) and 5th percentile of daily minimum temperature (°C).  

 

3.2. Hydrological model 

The hydrological model used in this study is the HSAMI model (Fortin 

2000; Minville et al. 2008). It is a lumped conceptual rainfall-runoff 

model developed and used operationally by Hydro-Québec for over 30 

years. It is used to predict streamflow values on over 100 catchments in 

the province of Québec on an hourly and daily time scale. The HSAMI 
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model has also been used extensively in streamflow prediction 

applications, climate change impact studies and rainfall-runoff modeling 

research projects (Arsenault and Brissette 2014b; Arsenault et al. 2013; 

Chen et al. 2011a, 2012; Chen et al. 2011b; Minville et al. 2008, 2009; 

Poulin et al. 2011). It simulates the main hydrological cycle processes 

such as vertical and horizontal water transfer, evapotranspiration, 

snowmelt and soil freezing. It has up to 23 parameters that must be 

calibrated: 10 for the various production function processes, 5 for the 

horizontal transfer through reservoir-type soil layers, 2 for 

evapotranspiration and 6 for snow-related processes. There are four 

interconnected reservoirs that contribute to the vertical water transfer 

balance: Snow on ground, surface runoff, saturated soil layer and 

unsaturated soil layer. The horizontal water transfer is based on two 

unit-hydrographs (one for surface runoff and one for underground 

runoff) and a linear reservoir. HSAMI requires spatially averaged 

minimum and maximum temperatures as well as rainfall and snowfall 

depths. The cloud cover fraction and snow on ground may also be used if 

they are available. 

Because of the large number of catchments, an automatic optimization 

algorithm was chosen to perform the model calibrations. Arsenault et al. 

(2014) showed that the CMAES (Covariance Matrix Adaptation Evolution 

Strategy) (Hansen and Ostermeier 1996, 2001) algorithm was the optimal 

choice for calibrating the HSAMI model on 10 catchments, 8 of which 
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were from the MOPEX database. Thus the CMAES optimization algorithm 

was used to perform the many calibrations in this project.  

The calibration metric was computed on the odd years and cross-

validated on the even years, and vice-versa. This allowed taking into 

account any climatic trends (such as decadal or multi-decadal natural 

variability) or modifications in underlying data from the addition or 

removal of weather stations. However there is a drawback to this method: 

the model must be run for the entire period in order to select the odd 

years for calibration, thus doubling the computation requirements 

compared to traditional block-type calibration. Also, 10 calibrations were 

performed in the odd/even approach, as well as 10 other calibrations in 

the even/odd approach, for a total of 20 calibrations. Only the best 

parameter set was taken for each case. This reduces the likelihood of 

having the calibration algorithm not converge during the optimization 

process. 

The Nash-Sutcliffe Efficiency (NSE) metric (Nash and Sutcliffe 1970) was 

used to compare hydrologic simulation performance levels. Other metrics 

could have been used, but the NSE is the most widely used metric and 

was the obvious choice for this study. 

The NSE values were compared and the non-parametric Wilcoxon test 

was used to identify statistically significant differences in between results  

(Rakotomalala 2008). 
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Furthermore, the precipitation and temperature datasets were then 

mixed and recombined to produce a total of 12 distinct datasets, and the 

calibration, validation and comparison aspects were also performed on 

the newly created datasets. Table 2 shows all of the resulting datasets 

used in this study.  

TABLE 2. List of datasets used in this study and coverage periods. 

Components 
Period 

Temperatures Precipitation 

MOPEX MOPEX 1949 – 2003 

Santa-Clara Santa-Clara 1949 – 2003 

MOPEX Santa-Clara 1949 – 2003 

Santa-Clara MOPEX 1949 – 2003 

MOPEX CPC 1949 – 2003 

Santa-Clara CPC 1949 – 2003 

Daymet Daymet 1980 - 2003 

Daymet MOPEX 1980 - 2003 

Daymet Santa-Clara 1980 - 2003 

Daymet CPC 1980 - 2003 

MOPEX Daymet 1980 - 2003 

Santa-Clara Daymet 1980 - 2003 

 

From Table 2, it is clear that the common period to all groups is 1980-

2003. For this reason the entire study will be performed with these years 

to avoid any biases that could be caused by using different periods 

between the datasets. 
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4. Results 

4.1. Temperature comparison 

4.1.2. Mean daily temperature 

The results of the RMSE, bias and correlation coefficients between the 

mean daily temperature values of the MOPEX, Daymet and Santa Clara 

datasets are presented in Fig. 2. From Fig. 2A, it can be seen that 

comparatively to Daymet, the Santa-Clara mean daily temperatures 

deviate more from the MOPEX daily temperatures as approximately 71% 

of the catchments reflect a higher RMSE for the Santa-Clara dataset. 

However, the Santa-Clara and Daymet values are closer to one another 

than with MOPEX in the sense that RMSE values are smaller on 83% of 

the watersheds.  

 

With respect to mean daily temperature, when compared to MOPEX, the 

Santa-Clara dataset has a median bias of -0.2°C, whereas Daymet shows 

a median bias equal to -0.1°C (Fig. 2B). However, both datasets have a 

cold bias relatively to the MOPEX dataset on the majority of catchments 

(75% and 65% of catchments respectively).   As a general rule, Santa-

Clara and Daymet temperatures are colder than MOPEX, but Daymet is 

globally warmer than Santa-Clara.  
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FIG. 2. RMSE (A), bias (B) and correlation coefficients (C) between the 
mean daily temperatures of the Santa-Clara, Daymet and MOPEX 

datasets. The lower and upper limits of each boxplot represent the 25th 
and 75th percentiles, respectively. The middle line represents the median 

(50th percentile). The limit values of the whiskers correspond to (u+2.7σ) 
and (u-2.7σ) where u=average of the plotted points and σ=standard 
deviation. The outliers are points higher or smaller than the whiskers 

limits 
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The three datasets are strongly correlated to one another with correlation 

coefficients between 0.93 and 1 for all basins (Fig. 2C).  

There are, however, some statistically significant differences between the 

temperature datasets. The Wilcoxon test (95% confidence interval) 

showed that the MOPEX dataset is different from its Santa-Clara and 

Daymet counterparts on 38% of the basins. Daymet and Santa-Clara are 

statistically different from one another in 36% of basins.  

 

4.1.3. Mean daily temperature by climatic zone 

The results of the RMSE between the mean daily temperature values of 

the MOPEX, Daymet and Santa-Clara datasets for each of the climatic 

zones are presented in Figs. 3A-3E. Results clearly show that RMSE 

values between Santa-Clara and MOPEX are larger than the ones 

between Daymet and MOPEX for all climatic zones with the exception of 

the Mediterranean catchments. Moreover, for the Santa-Clara dataset, 

the RMSE in semi-arid climate are relatively higher (median = 2.2°C) but 

the RMSE in humid subtropical climate are lower (median = 1.1°C).  
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FIG. 3. Mean daily temperature RMSE and bias for the Santa-Clara, 
Daymet and MOPEX datasets for the 5 climate zones.  
 

As for Daymet, the largest RMSE values were found in the Mediterranean 

region (median = 1.7°C), and the lowest, in the humid subtropical climate 

(median = 1.0°C). In all climatic zones, with the exception of the oceanic 

and semi-arid zones, Daymet and Santa-Clara temperatures are more 

similar to one another than to the MOPEX dataset. In the oceanic and 

semi-arid zones, Daymet values are closer to MOPEX than Santa-Clara.   
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The results for the bias are presented in Figs. 3F-3J. The results show 

that in all the climatic zones, the Santa-Clara temperature biases relative 

to the MOPEX temperature are mainly cold (median bias <0°C). However, 

these biases are colder in the marine/west-coast climate region (median 

= -1.4°C) and approximately nil in the subtropical humid climate (median 

= -0.01°C). The Daymet biases (when compared to MOPEX) are mainly 

cold as well in all climate zones except for the humid subtropical climate 

where the median bias is also approximately nil (median = 0.02°C). The 

Mediterranean climate is relatively colder with a median bias of -0.6°C. 

In all climate zones, the Daymet biases are mostly warmer than Santa-

Clara, and particularly so in the oceanic climatic zone (mean bias = 

1.03°C).  

Generally, the differences between the three datasets are smaller in the 

humid continental and subtropical humid climatic zones.  The Wilcoxon 

test indicates that in those two climatic zones, the MOPEX dataset differs 

from the other two datasets in only 30% of the basins, compared to 66-

100% in the other climatic zones. 

 

4.1.4. Mean seasonal temperatures 

Results are similar for seasonal temperatures and are not shown. RMSE 

values between mean seasonal temperatures are relatively small for both 

Santa-Clara and Daymet when compared to MOPEX.  However, for all 

seasons, Santa-Clara displays larger RMSE values than Daymet when 
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compared to MOPEX. Also, in both cases, the temperature RMSE values 

are generally higher in winter (median RMSE = 0.3°C) and lower in 

summer (median RMSE = 0.1°C).  

As expected, mean seasonal biases follow the cold biases of the daily 

mean temperature for both Daymet and Santa-Clara, and for all seasons. 

The coldest biases are experienced in winter (median = -0.4°C for Santa-

Clara and -0.2°C for Daymet) and the least cold biases in the summer 

(median = -0.06°C for Santa-Clara and -0.01°C for Daymet). In all cases, 

biases related to the MOPEX seasonal temperatures are colder for the 

Santa-Clara dataset than for Daymet.  

 

4.1.5. Extreme temperatures: 99th percentile of daily 

maximum temperatures and 1st percentile of daily minimum 

temperatures 

The relative differences of temperature extremes for all three datasets are 

presented in Figure 4. For the daily maximum temperature (Fig. 4A) the 

median biases are relatively small in all cases. When compared to 

MOPEX, the 99th percentiles of daily maximum temperatures of Santa-

Clara have a warm bias on 57% of basins (median bias of 0.1°C) whereas 

those of Daymet have a cold bias on 65% of basins (median of -0.1°C). 

This implies a cold bias for the 99th percentiles of daily maximum 
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temperatures of Daymet compared to their Santa-Clara counterparts on 

74% of the basins (median of -0.2°C).  

 

FIG. 4. Differences between extremes temperatures of the Santa-Clara, 
Daymet and MOPEX datasets.  

 

Globally, the Santa-Clara dataset has the highest maximum 

temperatures, followed by MOPEX, with Daymet having the lowest 

maximum temperatures. 

For the daily minimum temperatures (represented with the 1st quantile), 

when compared to MOPEX, Santa-Clara and Daymet show differences 

between -13.0°C and 4.0°C. These biases are cold on respectively 91% 

and 88% of basins, with median biases of -3.1°C and -2.7°C. In other 

words, MOPEX minimum extreme temperatures are much warmer 

whereas the Santa-Clara and Daymet datasets tend to produce lower 

minimum temperatures.  Compared to Santa-Clara, Daymet minimum 

temperatures show biases between -1°C and 1°C on 80% of the basins. 
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4.2. Precipitation comparison 

4.2.1. Daily precipitation 

The results of the daily precipitation RMSE, bias and correlation 

coefficients between the MOPEX, Santa-Clara, Daymet and CPC datasets 

are presented in Fig. 5. Results in Fig 5A show that the, Santa Clara 

precipitation is most similar to the MOPEX reference.. On 97% of the 

catchments, the daily precipitation RMSE of the Santa-Clara dataset is 

lower than that of the CPC dataset. In turn, the CPC daily precipitation 

RMSE is lower than for Daymet in 75% of the catchments.  

With respect to the mean of all four datasets (used as a reference), mean 

daily precipitation of the MOPEX, Santa-Clara and CPC show dry biases 

on respectively 75%, 66% and 70% of basins with median values of -

1.3%, -0.7% and -1.2% (Fig 5B). At the other end of the spectrum, 

Daymet values have a wet bias on 86% of catchments with a median bias 

of 3.1%. Overall, The CPC, Santa-Clara and Daymet datasets are wetter 

than the MOPEX dataset.  

Correlation coefficients of daily precipitation between MOPEX and the 

other datasets display varying levels of correlation. Fig. 5C shows that 

the daily precipitation values are the most correlated to the MOPEX 

reference dataset. Furthermore, Daymet and CPC show very strong 

correlation, indicating that the precipitation is treated similarly in both 

interpolation methods.  
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FIG. 5. RMSE (A), bias (B) and correlation coefficients (C) of the daily 
precipitation of the MOPEX, Santa-Clara, Daymet and CPC datasets. 
 

4.2.2. Daily precipitation by climatic zone 

The RMSE between daily precipitation datasets are presented by climatic 

zones in Figs. 6A-6E. In general the tendencies discussed in the 

preceding section mostly apply to all climate zones. In particular, in the 
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humid continental and subtropical zones, Santa-Clara and MOPEX are 

closer to one another. All four datasets are in best agreement in the 

semi-arid climatic zone (median RMSE of 2.5mm). 

 

FIG. 6.  Daily precipitation correlation coefficient (A-E), RMSE (F-J) and 

bias  (K-O) for all the datasets for the 5 climate zones. (MOP = MOPEX; 
SAN = Santa-Clara; DYT = Daymet; Ref=Reference (mean of all four 
datasets)). 

 

The biases of daily precipitation are presented in Figs. 6F-6J. As 

mentioned earlier, biases are compared against reference values 

computed as the mean of all four datasets.  Biases are smaller in the 
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humid continental and subtropical zones.  In both of those zones, biases 

are mostly dry for MOPEX (median bias = -1.8% and -1.1%), Santa-Clara 

(-0.9% and -0.5%) and CPC (-1.1% and -0.8%).  Conversely, Daymet has 

mostly humid biases for the same two climatic zones (3.8% and 2.5%). 

For all other climatic zones, MOPEX is the most humid dataset and CPC 

is the driest.  

Correlation coefficients of daily precipitation between all four datasets 

are presented in Figs 6K-6O. An analysis of the results reveals very 

similar conclusions to those of RMSE. This can easily be seen as Figs. 

6K-6O are practically mirror images of Figs. 6A-6E. All four datasets are 

in best agreement in the Oceanic and Mediterranean climatic zones 

(median correlation coefficient of 0.67). The correlation coefficients are 

lower than 0.5, especially between CPC and Santa-Clara, and between 

Daymet and Santa-Clara, in the humid continental and subtropical 

zones. In these two regions, Daymet and CPC correlate well, possibly 

because both use the NCDC weather stations network which is quite 

dense in the eastern United States. The Santa Clara database is built 

from a different weather stations network, and that may explain why it 

weakly correlates with Daymet and CPC. In the humid Continental and 

Subtropical regions, precipitation is unevenly distributed over the year 

and most rainfall occurs as convective storms in the summer because of 

the tropical atmospheric flow from the Gulf of Mexico. These local events 

may be differently represented in Santa Clara and Daymet (or CPC) 



27 
 

because of the use of different weather stations networks, and lead to low 

correlation. Although in general Santa Clara is not well correlated with 

Daymet and CPC, the correlation coefficients in CPC and Santa-Clara, 

and in Daymet and Santa-Clara, are overall higher in the Oceanic and 

Mediterranean regions, where precipitation has a low spatial variability 

because it is influenced by the proximity to the Pacific Ocean. 

4.2.3. Total seasonal precipitation 

Trends for seasonal precipitation are similar to annual ones (results not 

shown). When compared to MOPEX, for all seasons, the smallest RMSE 

belongs to the Santa-Clara dataset followed by CPC and Daymet.  CPC 

and Daymet are closest to one another.  RMSE values for all databases 

are larger in the summer and lower in the winter. The median biases of 

total seasonal precipitation compared against reference values (the mean 

of all four datasets) are shown in Table 3.  

TABLE 3. Median biases of total seasonal precipitation compared against 

the mean of all four datasets (%) 

 MOPEX Santa Clara CPC Daymet 

Winter -0.7%, -1.1% -2.1% 4.1% 

Spring -1.6% -0.7% -2.6% 5.1% 

Summer -1.9% -0.6% 0.1% 2.3% 

Fall -1.6%, -1.0% -2.4% 4.6% 
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Results indicate that biases are mostly dry in winter, spring and fall for 

MOPEX, Santa-Clara and CPC. In the summer, CPC biases are small and 

mostly humid whereas MOPEX and Santa-Clara datasets are dry. 

Daymet is the wettest dataset with wet biases for all seasons. 

 

4.2.4. Extreme precipitations: 99th percentile of daily 

precipitation distribution  

The distributions of extreme precipitation biases between the four 

datasets are presented in Fig. 7.  

 
FIG. 7. Differences between the 99th percentile of daily precipitation 
distribution of the MOPEX, Santa-Clara, CPC and Daymet datasets. 

 

Results show that when compared to MOPEX, the biases of extreme 

precipitation for the Santa-Clara, CPC and Daymet datasets have median 

values respectively equal to 0.7%, -3.4% and 2.6%. These biases are 

humid on respectively 55%, 28% and 64% of basins. This implies that 
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extreme precipitations from the Santa-Clara and Daymet datasets are 

larger overall than those of the MOPEX dataset.   

 

4.3. Hydrological performance 

The performance of the HSAMI hydrological model is first assessed using 

the MOPEX database.  Results are shown in Fig. 8 and indicate that the 

hydrology model performs reasonably well, with a NSE median value of 

0.783.  

 

FIG. 8. Validation results (NSE) of the HSAMI hydrological model using 
the MOPEX database (Flow discharge, precipitation and temperature). 
 

The model performs well over most of the United States with the 

exception of the semi-arid climate (see Fig. 1) where several catchments 

have a NSE value inferior to 0.6. This is not surprising considering that 
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the hydrology model used in this study was developed for temperate 

climates and is not well adapted to the specific conditions of more arid 

landscapes.  However, since the goal of this study is an inter-comparison 

of datasets, this relative lack of performance in semi-arid regions is of 

minimal concern.   

The distribution of hydrological model performances using the various 

datasets is presented in Fig. 9.  

 
FIG. 9. Validation NSE distributions for the 12 climate datasets. 

 

It is clear from that figure that the performance level is similar overall. 

Median validation NSE values from the MOPEX, Santa-Clara and Daymet 

datasets were found to be respectively equal to 0.783, 0.762 and 0.780. 

For all hybrid combinations of precipitation and temperature data, the 

median NSE values were between 0.763 and 0.783. A comparison was 

made catchment-by-catchment to determine the frequency with which 

each climate combination shows superior performance. The results are 

shown in Table 4. 
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TABLE 4. Frequency with which each climate combination shows 

superior performance. 

 PRECIPITATION (P)  

TEMPERATURE 
(T) 

MOPEX 
(%) 

Santa-Clara 
(%) 

CPC 
(%) 

Daymet 
(%) 

Total (%) 

MOPEX 14.07 4.77 6.03 10.30 35.17 

Santa-Clara 7.79 7.79 8.04 11.81 35.43 

Daymet 5.28 8.04 6.53 9.55 29.40 

Total (%) 27.14 20.60 20.60 31.66 100 

 

Table 4 indicates that all datasets perform at a very similar level. Still, it 

indicates that the T(MOPEX)-P(MOPEX) dataset performs better on average, 

followed by T(S.Clara)-P(Daymet).  

A Wilcoxon test was performed between each of the groups in Fig. 9 to 

determine which ones were statistically different. Results reveal 

statistically significant differences between some combinations of 

temperature and precipitation datasets:  

1- The combinations T(MOPEX)-P(MOPEX) and T(Daymet)-P(MOPEX) are 

statistically different from all combinations using Santa-Clara’s 

precipitation (T(MOPEX)-P(S.Clara), T(S.Clara)-P(S.Clara) and T(Daymet)-P(S.Clara)).  

2- The Santa-Clara dataset (T(S.Clara)-P(S.Clara)) differs from any 

combination dataset obtained by substituting P(S.Clara) with either 

P(MOPEX), P(CPC) or P(Daymet).  
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3- The combination T(S.Clara)-P(S.Clara) is different from any dataset 

containing Daymet precipitation.   

These results unsurprisingly indicate that precipitation datasets are 

more critical than temperature datasets for hydrological modeling. 

The performance of all 12 combination datasets was also analyzed with 

respect to seasonal discharge and annual maximum discharge.   The 

results for seasonal values (not shown) are similar to those presented in 

Fig. 9. All datasets perform better in winter (median NSE values between 

0.626 and 0.737) and spring (median NSE values between 0.716 and 

0.759), but not as well in summer (median NSE values between 0.631 

and 0.705) and fall (median NSE values between 0.546 and 0.694). The 

different seasonal performances may partly be due to the different 

seasonal biases of precipitation (as shown in Table 3). Furthermore, they 

may be caused by the different hydrological regimes that prevail and that 

vary from a season to another. For example, in spring, the streamflows 

are mainly influenced by snowmelt and are more easily simulated 

because they vary gradually. In summer, the streamflows are mainly 

influenced by rainfall which has high spatial and temporal variability, 

thus making modeling more challenging.   

Further analyses based on catchment size and climate zone 

classifications were also performed. Following these tests, it was shown 

that basin size had no impact on the relative performances of the groups, 
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while the climate dataset only played a role only on the Mediterranean 

climate basins. The NSE distributions for the 12 climate datasets on the 

Mediterranean climate catchments are presented in Fig. 10.  

 

FIG. 10. Validation NSE distributions on the Mediterranean catchments 

for the 12 climate datasets. There are 24 catchments under a 
Mediterranean climate. 

 

It can be seen in Fig. 10A that for the 24 Mediterranean climate 

catchments, using Daymet precipitation results in much better 

simulations, independently of the temperature datasets used. The spread 

is also smaller. The MOPEX precipitation is the least adequate for this 

climate zone resulting in a lower median performance value and a larger 
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spread. It is not clear as to why this is the case. These catchments are 

located in mountainous regions, but so are the catchments from the west 

coast climate zone which do not exhibit a similar pattern. 

At the seasonal scale, the only noticeable differences between the 12 

datasets were all observed in the Mediterranean climatic zone, and only 

in winter and spring. In this climatic zone, the best spring and winter 

modeling results always used the CPC precipitation, independently of 

which temperature dataset was used (Figs. 10B and 10C). 

5. Discussion 

While weather station networks remain the most important source of 

information for hydrological modeling, their often low spatial resolution 

can sometimes lead to unrepresentative and poor model performance 

(Arsenault and Brissette 2014a). The need to improve this resolution has 

been the driving force behind gridded and interpolated climate datasets. 

However, such datasets have limitations with respect to hydrological 

modeling (Mizukami and Smith 2012; Muñoz et al. 2011). 

Gridded datasets have the important advantage of having no missing 

data and the potential ability to generate valuable information in areas 

not densely covered by weather stations, especially when taking into 

account external variables such as elevation (Tapsoba et al. 2005). On 

the other hand, interpolating algorithms are limited in this potential 

ability, and «spreading» very sparse station data onto a fine grid may 
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results in artifacts not anchored in any real physics. The uncertainties 

resulting from the interpolation algorithm manifest themselves in the 

sometimes large differences between the datasets. The variability in the 

contributing observational networks also plays a role in generating 

variability in the gridded datasets. These differences sometimes remain 

large even at the basin scale as seen in this study.  

To shed light on these issues, fours interpolated datasets were compared 

in this study with an emphasis on hydrological modeling. By mixing the 

4 precipitation and 3 temperature datasets, flow discharge was simulated 

on the 424 catchments of the MOPEX database using the HSAMI 

hydrology model, resulting in 12 flow discharge time series for each 

catchment. A common 24-year period (1980-2003) was used for all 

datasets. 

Results indicate that there are differences, sometimes significant, 

between all four datasets.  They all display biases when compared 

amongst themselves.  There is a good agreement between datasets for 

mean daily temperatures, especially in the humid continental and 

subtropical climatic zones.  For mean daily temperatures, there are two 

distinct grouping with MOPEX-Santa-Clara and CPC-Daymet being close 

to one another. The sheer number of climate stations and their attributes 

makes it all but impossible to find correlations between underlying 

observation climate data and the final gridded product. Moreover, most 

publicly available weather stations are used by all datasets (some use a 
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subset of the entire set, while others used all available data). It is out of 

the scope of this paper to explain the differences between the gridded 

products; readers are encouraged to read (Duan et al. 2006; Higgins et 

al. 2000; Maurer et al. 2002; Thornton et al. 2012) for more details on 

each dataset. However, the differences between the gridded products may 

largely be attributable to the interpolation schemes which differ 

substantially from one dataset to another. 

Despite the observed differences, the use of each dataset as the driving 

meteorological input to a lumped hydrological model led to equally good 

modeling results. Consequently, within the limits of this study, all 

datasets appear to be similar and equally good for hydrological studies. 

The resolution of the gridded dataset and the complexity of the 

interpolation scheme do not appear to have any effect in the results.  

This is likely partly due to the fact that a lumped model was used in the 

assessment and that all grid points were averaged at the catchment 

scale, perhaps hiding some potential advantages of the higher-resolution 

dataset. It is possible that advantages of higher resolution grids could be 

uncovered using distributed models on the larger catchments. But this 

would be a time-consuming and computationally-intensive task, 

especially to set-up and calibrate distributed hydrological models on a 

large number of catchments. In this study 101760 (424 catchments x 12 

hybrid datasets x 20 odd/even year calibrations) individual model 

calibrations were performed. This would be a daunting task for a 
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complex distributed hydrological model, even on a subset of the 

catchments used in this study. 

In this work, precipitation and temperature datasets were mixed and 

matched to form 12 different combinations. No ill-effects were observed 

in doing so, presumably because precipitation and temperature datasets 

are usually interpolated independently. As such, there is likely little 

physical coherence between values of precipitation and temperature in 

interpolated datasets. This is an aspect that could be better investigated 

through a comparison against high-resolution climate model or 

reanalysis of data, where physical consistency between datasets should 

arguably be much better preserved. 

Using statistics averaged over the 424 catchments, this study showed 

that all gridded datasets behaved similarly for hydrological modeling.  

However, this study could not evaluate the impact of network density 

even though it is one of the most interesting scientific problems. The 

MOPEX database contains catchment-averaged temperature and 

precipitation data. Information about the number of stations used to 

generate the catchment-averaged data (which would be needed to 

estimate network density for each catchment) is not present in the 

database. Only a rough density estimate can be calculated from the 

MOPEX dataset requirements, which state “desired” minimums of 1, 2, 3 

6 and 12 stations for basins less than 1, 10 , 100, 1000 and 10000 

square miles respectively. Network density could also be estimated using 
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the existing NCDC stations. However, since watersheds in the MOPEX 

database were contributed by many different parties, such an estimation 

would be error-prone since stations from the CPC cooperative network 

could also have been used in some catchment and not in some others. 

Questions related to network density, such as whether or not gridded 

datasets offer benefits in areas with poor station coverage (as opposed to 

densely-covered regions where all datasets are expected to converge)  

would be better tackled using a small subset of carefully chosen 

watersheds for which precipitation and temperature data would be 

recalculated using NCDC stations for example.  

Also worth noting is that the results are mostly similar from one climate 

region to the next, except in the Mediterranean climate zone where some 

differences are visible. However we must take into account the number of 

catchments in each zone. There are 24 Mediterranean and 13 

Marine/West-coast catchments, whereas there are 343 catchments in 

the humid regions. The comparison between these groups is illustrative 

at best since there are an insufficient number of catchments for proper 

statistical significance testing in the small groups. 

An advantage of using gridded datasets is that they are much easier to 

use than station data.  They have uniform coverage and no missing data.  

Catchment-averaging can be done using a simple arithmetic mean 

instead of using weight-based averaging as is commonly done, with 

weights constantly changing depending on which stations are reporting 



39 
 

data on any given day.  However, gridded datasets are not available in 

real-time, or near real-time like station data. As such they cannot be 

used in forecasting mode unless the interpolation is also done in near 

real-time. This is a process that is now done in-house by many water 

resources managers, but not yet available to the general public. It is 

however foreseeable that such data will be available in the near future. 

For example, such a product is currently in development by Environment 

Canada (Choi et al. 2013). 

Finally this study opens the door to a more in-depth investigation of 

other gridded datasets. For example, more complex datasets such as 

PRISM (Daly et al. 1994; Daly et al. 1997) and even reanalysis datasets 

could be included in such a study. Reanalysis datasets offer the 

advantage of a much larger set of variables that could be useful for 

hydrological modeling.    

6. Conclusion 

This study compared four different interpolated precipitation and 

temperature datasets (MOPEX, Santa-Clara, Daymet and CPC), the last 

three being interpolated on a regular grid.  The comparison was based on 

basin-averaged data. Their performance in hydrological modeling over 

424 catchments in the continental US was analyzed. The spatial 

heterogeneity of the catchments allowed comparing the HSAMI model 

performance relative to catchment size and climate attributes.  
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The comparison was two-fold. First, the climate characteristics were 

compared to one another with various metrics, and the correlation 

coefficients, RMSE and bias were compared between the groups. It was 

shown that there are non-negligible biases between the interpolated 

datasets for many catchments. Second, each interpolated dataset was 

used as direct input to a specifically calibrated hydrological model. 

Although there are important differences between the various 

precipitation and temperature datasets, their hydrological performances 

in validation was not statistically different for most of the watersheds. It 

appears that there is no reason to favor one dataset versus another for 

lumped hydrological modeling, and that these datasets perform just as 

well as using the basin-averaged original station data.  
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