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Abstract—The latest video coding standards, H.264 and H.265,
are highly vulnerable in error-prone networks. Reconstructed
packets may exhibit significant degradation in terms of PSNR
and visual quality. This paper presents a novel list decoding
approach exploiting the receiver side user datagram protocol
(UDP) checksum. The proposed method identifies the possible
locations of errors by analyzing the pattern of the calculated UDP
checksum. This permits to considerably reduce the number of
candidate bitstreams in comparison to conventional list decoding
approaches. When a packet composed of N bits contains a
single-bit error, instead of considering N candidate bitstreams,
as is the case in conventional list decoding approaches, the
proposed approach considers N/32 candidate bitstreams, leading
to a reduction of 97% of the number of candidates. For a
two-bit error, the reduction increases to 99.6%. The method’s
performance is evaluated using H.264 and H.265 test model
software. Our simulation results reveal that, on average, the
error was corrected perfectly 80 to 90% of the time (the original
bitstream was recovered). In addition, the proposed approach
provides, on average, a 2.79 dB gain over frame copy (FC) error
concealment using the Joint Model (JM) and a 3.57 dB gain over
our implementation of FC error concealment in the HEVC Test
Model (HM).

Index Terms—Video Transmission, Video Error Correction,
H.264, High Efficiency Video Coding (HEVC), H.265, List De-
coding, Checksum.

I. INTRODUCTION

IN recent years, digital video communication, especially in
the form of high quality content delivery, has attracted

considerable attention in a wide variety of application envi-
ronments, such as mobile video streaming, video conferencing,
telepresence, etc. Restrictions related to data storage, process-
ing power, transmission cost, and communication speed make
compression a mandatory step in the efficient processing of
video streams. However, the high compression performance
of current video coding standards (e.g., H.264 [1], H.265 also
known as high efficiency video coding (HEVC) [2]) makes
the compressed video streams extremely vulnerable to channel
impairments. Even a single-bit error in variable-length code
(VLC) may cause the decoder to lose its synchronization
with the corresponding encoder due to an incorrect parsing of
codewords. Even worse, because of the motion compensated
prediction technique employed in compression, an error can
propagate from one frame to consecutive ones, and lead to
severe visual artifacts [3].
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Various error control mechanisms have been proposed to
combat visual quality degradation caused by transmission
errors [4]. Among them, retransmission is one of the basic
mechanisms for providing reliable communication. However,
it is rarely used in real-time conversational or broadcast-
ing/multicasting applications due to the added delay or lack of
feedback channel involved [1]. Error resilience injects redun-
dancies during source coding to make the streams more robust
against transmission errors, and as a result, the decoder can
better deal with loss of information. It should be noted thought
that all error resilience methods reduce coding efficiency or
sacrifice bit-rate, and are inefficient, especially when there
is no transmission error [5], [6]. Compared to the other
mentioned approaches, error concealment (EC), as a post-
processing mechanism at the decoder side, will not require any
additional bandwidth, and will not introduce retransmission
delays. EC methods estimate lost areas by exploiting the
inherent correlation between adjacent pixels (spatial EC) [7],
[8], [9] or neighboring frames (temporal EC) [10], [11], [12].
Spatiotemporal EC combines both approaches [13], [14], [15].
A state-of-the-art embodiment of this technique is proposed
in [13]. Lost motion vectors (MVs) are recovered by a
modified classic boundary matching algorithm referred to as
the spatiotemporal boundary matching algorithm (STBMA),
which minimizes a distortion function by considering both
spatial and temporal smoothness properties of the neighboring
macroblocks (MBs). Clearly, EC performance is reduced when
lost areas have less correlation (spatial or temporal) with the
surrounding areas, especially when the lost areas are large.

Most EC approaches treat a corrupted packet the same as
a lost one, with corrupted packets ignored and the missing
information concealed. In practice, network congestion results
in packet loss, while wireless signal attenuation, fading, etc.,
result in corrupted packets. However, corrupted and lost pack-
ets must be handled differently. Partially damaged packets may
contain valuable information that can be used to enhance the
visual quality of the reconstructed video [16], [17]. This is the
case when the error occurs at the end of the packet or when
the residual bit error rate (after channel decoding) is low. The
novel user datagram protocol (UDP) such as UDP-Lite has
been developed to deliver partially damaged packets to the
application layer [18].

Corrupted packet has been exploited using two distinct
approaches: joint source channel decoding (JSCD) [19], [20],
[21], [22] and list decoding [23], [24], [25]. In [19], sequen-
tial decoding and soft information provided by the channel
decoder is used for the prediction of residual coefficients
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coded with context-adaptive variable-length coding (CAVLC)
in the H.264 Extended profile. The additional information
from data partitioning, such as packet length in bits and
number of MBs in the slice, is applied as the constraint to
define a valid packet. A maximum a posteriori (MAP)-based
JSCD approach is employed for the decoding of the MVs and
CAVLC of H.264 in [20] and [21], respectively. In [22], JSCD
combined with soft estimation techniques was adopted for
correcting context-adaptive binary arithmetic coding (CABAC)
bitstreams of H.264 sequences under the assumption that each
packet carries an entire picture.

Generally, in list decoding approaches, multiple candidates
of the damaged bitstream are generated by flipping bits in the
corrupted received packet. Then, the candidates are ranked
from the most likely to the least likely bitstream, based on
the soft information or reliability parameters of each bit.
Each candidate is then checked for semantic and syntactic
errors. Finally, the winning candidate is the first one that
passes the decoder semantic verification. In [23], [24], 300
likeliest candidates are generated based on the soft value
of flipped bits. The slice candidate with the smallest sum
of its soft values is identified as the most probable one.
Moreover, in [24], a virtual checking step is proposed to
accelerate the semantic verification process of each candidate
by considering the information of previous failed candidates.
Farrugia [25] adopted a list decoding strategy to derive the
M most probable paths with the smallest Hamming distance
during the decoding of each symbol, irrespective of their
length. The bitstream that meets three constraints related to
bitstream length, number of MBs in slice, and successful
syntactic/semantic verification is identified as the likeliest one.
However, all these approaches suffer from the major drawback
of having a fairly large solution space for candidate packets,
leading to a decoding process with extremely high computa-
tional complexity. Indeed, a packet containing N bits has 2N

possible candidates when any number of errors is considered
(or N candidates when a single-bit error is considered). This
issue alone restricts the use of these approaches in real-time
applications. Recently, a significantly less complex list decod-
ing approach has been proposed in [26], [27], [28], where
a soft/hard output maximum likelihood decoding (SO/HO-
MLD) method is applied at the syntax element level instead
of at the whole slice level. The solution space is therefore
limited to a set of valid codewords for each specific syntax
element. Although the method performs well overall, any
mistake in the decoding of a syntax element will propagate
and reduce the performance. An important issue with most
error correction methods is the access (or lack of access) to
the soft information. Propagating soft information, i.e. a fixed
or floating point log-likelihood ratio (LLR) value for each bit
of the packet, throughout the protocol stack (from the physical
up to the application layer), is complex to implement and
deploy in practice. In our previous work [29], we studied the
checksum bit pattern for the case of a single-bit error, and
showed that it could be exploited to eliminate 97% of the
candidate bitstreams considered by list decoding approaches.
The proposed method was tested on H.264 CAVLC coded
sequences. In this work, we extend our previous work to the

case of several bit errors and propose a novel list decoding
approach which exploits the receiver side UDP checksum to
alleviate the large solution space problem of list decoding ap-
proaches. We first show that the checksum of corrupted packets
exhibits specific bit patterns. We specifically categorize these
patterns for the case of one-bit and two-bit errors. We study
the probability of various bit error events (BEEs) based on
observed checksum pattern types (CPTs). Observing these
specific patterns allows the identification of the potential error
locations in the corrupted packets. This information is used to
remove non-valid candidate bitstreams in a novel checksum-
filtered list decoding (CFLD) system capable of handling
numerous bit errors. The proposed approach eliminates 97%
and 99.6% of the non-valid candidates for the case of one-bit
and two-bit errors, respectively, compared to traditional list
decoding approaches. This considerably reduces the compu-
tational complexity. The proposed method has been validated
on H.264 CAVLC and HEVC sequences. The experimental
results reveal the superiority of the proposed approach over
others in terms of PSNR [13], [28]. Furthermore, the proposed
method repaired nearly 80% of H.264 sequences and 90% of
HEVC sequences perfectly. The proposed method using hard
information (conventional bit values), unlike methods using
soft-information, is easy to deploy in existing communication
systems as it requires few changes to the protocol stack
enabling erroneous packets to be delivered to the application
layer (similar to UDP-Lite).

This paper is organized as follows. A detailed introduction
to the UDP checksum and its calculation is presented in sec-
tion II. In section III, we explain how the checksum can be
applied in error correction. We first define different bit error
events and calculate their corresponding checksum values.
Then, we show the most probable bit error event, considering
the observed checksum values. The proposed system for CFLD
is described in section IV. Simulation results are provided
in section V, and concluding remarks are drawn in section VI.

II. INTERNET CHECKSUM CALCULATION AND
PROPERTIES

Internet Checksum is used by different standard protocols
(Internet protocol (IP), transmission control protocol (TCP),
UDP) for error detection [30]. Internet checksum, which is a
fixed-length tag added to a message at the transmission side,
enables the receiver to verify the integrity of the delivered
message by recomputing the tag and comparing it with the
tag that was sent. In this section, we present how the Internet
checksum is computed, along with its mathematical properties,
which will be exploited in this paper. Although the following
principles are applicable to other checksums (e.g., TCP), we
will focus specifically on the UDP checksum.

A. Internet Checksum Definition and Mathematical Properties
The Internet checksum is a 16-bit field within the protocol

header, and is defined as one’s complement of the one’s
complement sum of all the 16-bit words in the computation
data [30]. More specifically, the Internet checksum is calcu-
lated at the transmission side as follows:
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• Divide the data into chunks of 16-bit words. If necessary,
pad the data with one byte zero at the end to make it a
multiple of 16 bits.

• Perform one’s complement sum over all the words. If an
overflow occurs during any sum, the ones’ complement
sum operation involves an “end-around carry”. The end-
around carry scheme routes the carry-out signal of the
most significant bit (MSB) position cn to the least sig-
nificant bit (LSB) position, where it is used as a carry-in
signal c0 [31].

• Flip all the bits of the final sum (one’s complement).
Note that during the calculation of the checksum at the
transmission side, the checksum value in the checksum field
is set to zero, and after the calculation of the checksum,
it is replaced by the computed one for transmission. The
validation process at the receiver side is performed using the
same algorithm, except that the received checksum field value
is used in the computation of the checksum, rather than zeros.
Received data is valid if the recomputed checksum at the
receiver side is zero, otherwise the data is corrupted.

Mathematically, the set of 16-bit values, represented
here in hexadecimal for the sake of convenience1, V =
{0000, 0001, . . . , FFFF} and the one’s complement sum oper-
ation (denoted as +), together form an Abelian group (commu-
tative group) which has the closure, associative, commutative,
identity and inverse element properties [32]. Interestingly, in
this Abelian Group, there are two identity elements, 0000
and FFFF, which correspond to the same zero (+0 and -0)
value. In several references, it is mentioned that the identity
element is unique. This is rather a consequence than a rule
and since these identity elements correspond to the same
value, the Abelian group’s properties are still met. It is worth
mentioning another property that can be deduced from the
Abelian group and which we will use in the following sections:∑

i ai=
∑

i ai ; ∀ai∈V.

B. UDP Checksum Definition and Calculation
The UDP checksum is a 16-bit field in the UDP header,

and is the one’s complement of the one’s complement sum of
the pseudo UDP header, the UDP header and the application
data message [33]. Fig. 1 shows the UDP datagram and its
12-byte prefix as a pseudo UDP header. The pseudo UDP
header contains the source and destination IP addresses, the
protocol, and the UDP length. This information initially comes
from the IP header. The UDP checksum is calculated over all
the segments shown in Fig. 1. Like the Internet checksum, the
checksum field of the UDP header should also be initialized to
zero before the calculation, and then set to the calculated value
prior to transmission. Since the UDP checksum is optional, a
zero transmitted checksum value means that it was disabled.
If the computed checksum is zero, it should be transmitted as
all ones (FFFF) [33]. Note that the calculated checksum for a
real packet can never be FFFF (i.e., the sum prior to the final
ones’ complement can never be zero) unless all the words in
the packet are zeros [31]. Let us assume that the UDP packet
has a length of N bits (including padding), which is made

1Four-digit numbers in this paper represent hexadecimal numbers
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Fig. 1: UDP datagram and pseudo header.

up of m=N/16 16-bit words as {W0,W1, ...,Wcs, ...,Wm−1}
and Wcs is the checksum value in the checksum field. The
i-th word and its inverse are respectively defined as:

Wi=

15∑
c=0

(wi,c×2c), W i=

15∑
c=0

(wi,c×2c); wi,c, wi,c∈{0, 1}

where wi,c represents the inverse of wi,c, i.e., wi,c = 1
when wi,c=0, and wi,c=0 otherwise. The transmission side’s
checksum (CT ) can be expressed as shown in Eq. (1):

CT =

m−1∑
i=0

Wi =

m−1∑
i=0
i6=cs

Wi =

m−1∑
i=0
i 6=cs

15∑
c=0

(wi,c × 2c) (1)

The same process is performed at the receiver side to calculate
the receiver side’s checksum (CR), except that instead of
Wcs=0000, the value of the received checksum (Ŵcs=ĈT ) is
used during the calculation of CR, as shown in Eq. (2):

CR =

m−1∑
i=0
i 6=cs

Ŵi + ĈT =

m−1∑
i=0
i 6=cs

Ŵi + CT

=

m−1∑
i=0
i 6=cs

Ŵi +

m−1∑
i=0
i 6=cs

Wi =

m−1∑
i=0
i6=cs

(Ŵi +W i)

(2)

where the received versions of W and CT are denoted as Ŵ
and ĈT , respectively, and assuming that the 16-bit checksum
word is intact (ĈT =CT ). The receiver verifies the packet by
re-calculating the checksum. It is obvious from Eq. (2) that if
there is no error, which means Ŵi=Wi, the CR value will be
zero:

CR =

m−1∑
i=0
i 6=cs

(Ŵi +W i) =

m−1∑
i=0
i 6=cs

(Wi +W i) = FFFF = 0000

This is because the value of CT , which is the inverse of the
one’s complement sum of all transmitted words, is included in
the computation of CR. Therefore, upon reception, when it is
added to the one’s complement sum of all words, the identity
element FFFF is obtained.
CR from Eq. (2) can be expanded to:

CR =

m−1∑
i=0
i6=cs

(Ŵi +W i) =

m−1∑
i=0
i6=cs

15∑
c=0

(ŵi,c + wi,c)× 2c (3)
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An important property of the above one’s complement sum
with an end around carry expression is as follows (where
“mod” means modulo):

(ŵi,c+wi,c)×2c

=

{
2c, if no error in bit c of word i
wi,c×2(c+1)mod(16), if error in bit c of word i

(4)

TABLE I: Values of ŵi,c+wi,c for various error scenarios.
0→1 represents a 0 flipped to 1 (and 1→0 the opposite).

wi,c ŵi,c Condition ŵi,c + wi,c Carry
0 0 no error 1 0
0 1 error (0→1) 0 1
1 0 error (1→0) 0 0
1 1 no error 1 0

From the Table I, it follows that when there is no error in
bit c of word i (wi,c= ŵi,c), then ŵi,c+wi,c=1; in the case of
an error though, ŵi,c+wi,c=0, and a carry will be generated
only if wi,c=0.

Fig. 2 contains an example of the checksum calculation
at the transmission side and its validation procedure at the
receiver side. In this example, the entire packet content is
considered as three words (48-bit length) represented in hex-
adecimal. The checksum calculation steps were performed to
establish the CT . As can be seen, upon reception, the value
of CT is used in calculating the CR. The zero value of the
CR in the first example validates the received packet. In the
second example, a single bit 1 was flipped to 0 in column 24
of the packet, which corresponds to column 8 of the second
word (24 modulo 16 is equal to 8), changing it from D1CB to
D0CB (the column positions in the word are numbered from
right to left). As can be seen, the CR has a bit 1 in column
8 and 0 in the others. In other words, the CR value provides
important information related to the position of the error in
the packet (i.e., that a bit in column 8 of a word was flipped).
This simple example demonstrates our motivation to use the
UDP checksum in an error correction approach.

 

Bit Position 47  …  32 31  …  16 15  …  0

Packet 1 990F D1CB 6572

TRANSMISSION

Bit Position 47  …  32 31  …  16 15  …  0

Packet 1 990F D1CB 6572

RECEPTION

CR :

Example1:

Bit Position 47  …  32 31  …  16 15  …  0

Packet 1 990F D0 CB 6572

RECEPTIONExample2:

CR :
990F+D0 CB+6572+2FB2=1FE FE (FE FF) = 01 00FE FE + 1 = FE FF

990F+D1CB+6572+2FB2=1FFFE (FFFF) = 0000FFFE + 1 = FFFF

CT :

990F+D1CB+6572+0000=1D04C D04C + 1 = D04D (D04D) = 2FB2

Fig. 2: UDP checksum calculation example.

III. EXPLOITING CHECKSUM FOR ERROR CORRECTION

As was shown in the example of Fig. 2 the CR value can
indicate the position of the flipped bits in modulo 16. The
goal of this section is to study the CR values in different error
situations in order to show how they will change. This will
help determine the potential error locations based on observed
CR values. In section III-A, we go through different BEEs and

calculate their corresponding CR values. The values are then
grouped into different CPTs based on their similarity patterns.
Finally, in section III-B, we examine the probability of each
observed CPT to find the most probable BEE causing it.

A. Relationship Between CR and Error Location
Different BEEs will create different bit patterns of CR and

now, we will study five different BEEs by considering one
or two bits in error. This is reasonable since, in practice, the
residual error after channel decoding should be low. Table II
shows the definition of each BEE under study.

TABLE II: BEEs definitions for one and two bits in error.

BEEs Definition
BEE=1 1 bit in error
BEE=2 2 bits in error; same bit value, different columns
BEE=3 2 bits in error; same bit value, same column
BEE=4 2 bits in error; different bit values, different columns
BEE=5 2 bits in error; different bit values, same column

In each BEE, two different bit modification cases are
considered:
• 1j→0j , which means a bit 1 was flipped to 0 in column
j of a word.

• 0j→1j , which means a bit 0 was flipped to 1 in column
j of a word.

1) BEE=1: In this type of event, there is only one erroneous
bit in the packet. If 1j→0j , where wi,j =1 and ŵi,j =0, as
shown in Table I, ŵi,j+wi,j = 0 for column j, and for the
other columns c 6= j, ŵi,c+wi,c=1. Then CR will have a bit
0 in column j and 1 for the others. By considering the final
one’s complement operation in Eq. (3), which flips all the bits,
CR will have a bit 1 in column j and 0 for the others. This
is illustrated in the top part of Fig. 3.

For the case of 0j→1j (wi,j=0 and ŵi,j=1), ŵi,j+wi,j=0
for column j with an extra carry and ŵi,c+wi,c=1 for the other
columns (c 6= j). The extra carry generated in column j will
affect the value of column (j+1)mod(16) and change its value
from 1 to 0 and also generate a carry which should be added
to the next column (j+2)mod(16). This carry propagation
will continue and change all the bits 1 to 0, all the way, up to
a column with a zero value. Since column j has a zero value,
the carry propagation will finally stop there, and change its
value from 0 to 1. That means there will be a 1 in column j
of CR, while the other columns will have a 0. Therefore, CR

will have a 0 in column j and a 1 for all the other columns.
This is illustrated in the bottom part of Fig. 3.

Fig. 3 summarizes all CR values for these two cases. As can
be seen, CR values for these two cases are the inverse of each
other. Depending on the error column, which can be one of
the 16 columns in a word, CR can have different patterns. All
the 16 patterns of CR for a 1j→0j flip, as well as the 16-bit
patterns of CR for a 0j→1j flip are grouped as CPT=1. CPT=1
is defined as the set of all CR patterns that have fifteen bits 0
and a single bit 1, or vice versa. The error column in CPT=1
is indicated by the location of the bit, which is different from
the others in the CR value.

Let us revisit the second example of Fig. 2. The non-zero
value of CR there demonstrates that the received packet is
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BEE=1 CPT=1

16 bits

1000000000000000
0100000000000000

0000000000000001

111...101...111

000...010...000

CR

.

..

0111111111111111
1011111111111111

1111111111111110

.

..

1j

16 

patterns 

16 

patterns 0j

0j 1j

Column :15        j       0

Fig. 3: BEE=1 and its corresponding 32 patterns of CR

forming CPT=1. Bold bits in CPT=1 indicate the error column.

corrupted. In addition, the location of bit 1 in the CR pattern,
column 8, signals that the potential error locations are the 8th
bit of each word in the packet. So, in this example, the 8th,
24th and 40th bits of the packet are the three potential error
locations. Moreover, the observed pattern of CR (fifteen bit 0
and one bit 1 in CPT=1) indicates that a bit 1 was flipped to
0. Then, all the potential error locations having a bit value of
0 constitute the final set of potential error locations. In this
case, only the 24th bit of the packet (8th bit of the second
word, D0CB), has a value of 0, and is the final error location
(in large packets, the list of candidates usually contains more
elements).

In the case of two-bit error, four different BEEs are possible.
Two erroneous bits can be in the same column or in different
columns; as well, the two flipped bits can be the same (both
0 or both 1) or different (one 0 and the other, 1). All these
BEEs and their corresponding generated CRs and CPTs are
calculated and defined next:

2) BEE=2: In this type, two same bits in different columns
are flipped. If 1j→0j and 1k→0k, with j 6=k, ŵi,c+wi,c=0
for c∈ {j, k}, and for the other columns, ŵi,c+wi,c=1. So,
the corresponding CR will have bits 1 in column j and k and
bits 0 in other columns. For the case of 0j→1j and 0k→1k,
with j 6=k, ŵi,c+wi,c=0 for c∈{j, k} plus two extra carries
in columns k and j. As explained for BEE=1, an extra carry
in column k will propagate and generate zeros all the way
(from column (k+1)mod(16) up to column (j−1)mod(16)),
and will stop at column j by changing its value from 0 to
1. The extra carry in column j also propagates, and will stop
in column k and change its value to 1. Finally, for CR, there
should be two 1s in columns j and k and zeros for the others.
In this case, CR will have bits 0 in column j and k, and 1 in
the other columns. Depending on which two columns of the
words are hit by errors (2 out of 16 columns), the positions
of the two bits 1 in the CR pattern will change. We grouped
all CR patterns with fourteen bits 0 and two bits 1 (plus their
inverse) as CPT=2, as shown in Fig. 4. The CPT=2 is divided
into two sub-groups, CPT=2.1 and CPT=2.2, because CPT=2.1
is also observed in BEE=4.

3) BEE=3: In this type, two same bits in the same column
are flipped. As shown in Fig. 5, this BEE generates the same
pattern as BEE=1, which is CPT=1. As mentioned earlier,
when there is no error ŵi,c+wi,c=1 for all 16 columns. When
two 0j→1j , then two extra 1s are obtained in column j, and
this generates an additional carry. Then, column (j+1)mod(16)
will receive the extra carry, and its value will change to 0

 

CPT=2

1...101...101...1

1010000000000000
1001000000000000

0000000000000101

...

BEE=2 CR

16 bits

0...010...010...0

0101111111111111
0110111111111111

1111111111111010

...

104 
patterns 

104 
patterns 

1j 0j
1k 0k

0j 1j
0k 1k

Column :15     j       k      0j≠k

1100000000000000
0110000000000000

0000000000000011

...
16 

patterns 

1000000000000001

CPT=2.1

CPT=2.2

0011111111111111
1001111111111111

1111111111111100
..
.16 

patterns 

0111111111111110

CPT=2.1

CPT=2.2

Fig. 4: BEE=2 and its corresponding 240 patterns of CR

forming CPT=2. The CPT=2 is divided further into two sub-
groups as CPT=2.1 and CPT=2.2. All the patterns with two
successive bit 1 (or 0) are grouded as CPT=2.1 and the rest are
in CPT=2.2. Bold bits in CPT=2 indicate the error columns.

with an additional carry. In fact, such a carry will propagate
and change all 1s, al1 the way up to a column with a 0
value. Since the value of column (j+1)mod(16) is now 0,
the carry propagation will stop there and change its value
to 1. Therefore, for CR, all columns should be 0, except
for column (j+1)mod(16). In this case, CR will have a 0
in column (j+1)mod(16) and 1 in the other columns. In
the other case, when two 1j→ 0j , we are missing a carry
which should have been generated by column j, and therefore,
column (j+1)mod(16) will contain a 0 instead of a 1. The
CR value will have a bit 1 in column (j+1)mod(16) and 0
in the other columns. Like the other BEEs, the calculated CR

of the two cases are the inverse of each other (see Fig. 5). It
is interesting to note that although this type leads to the same
CPT as BEE=1, the location and type of errors in each case
are quite different.

 

BEE=3 CPT=1

16 bits

1000000000000000
0100000000000000

0000000000000001

111...101...111

000...010...000

CR

.

..

0111111111111111
1011111111111111

1111111111111110

.

..

16 

patterns 

16 

patterns 

1j 0j

0j 1j

Column :15         j       0

1j 0j

0j 1j

Fig. 5: BEE=3 and its corresponding 32 patterns of CR

forming CPT=1. Bold bits in CPT=1 indicate the error column.

4) BEE=4: In this type, two different bits in different
columns are flipped. If 1j→0j and 0k→1k, then ŵi,j+wi,j=0
and ŵi,k+wi,k = 0, with a carry in column k, while for the
other columns (c /∈{j, k}), ŵi,c+wi,c=1. The generated carry
in column k will propagate and change all 1s to 0s, all the
way up to the next 0 value, which is in column j, where it
will stop by changing column j’s value into 1. So, for CR,
all the bits between columns k and j (moving circularly from
right to left from k to j), excluding j, become 0, while the
others remain 1. In this case, the CR will have |j−k|mod(16)
bits 1 between column k and j (including k, but excluding j)
and bits 0 in the others.
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Depending on which two columns are hit, CR can have
different patterns. If the two columns are next to each other
in modulo 16, i.e., |j−k|mod(16)=1, CR has a single 1 and
fifteen 0s (the same as CPT=1). But when |j−k|mod(16)=2,
the generated pattern of CR, which has two bits 1, is the same
as CPT=2.1. In the other cases, when 36 |j−k|mod(16)613,
where there are between three and thirteen bits 1 between
column k and j, the CRs are grouped as CPT=3 (see Fig. 6).

 

000...011110...0

000...0111110...0

000...01111110...0

0011 1111 1111 1100

.

.

.

000...010...0
16 patterns

000...0110...0

000...01110...0

0111 1111 1111 1100
0111 1111 1111 1110
0111 1111 1111 1111

1 one

2 consecutive ones

3 consecutive ones

13 consecutive ones

14 consecutive ones

15 consecutive ones

BEE=4

16 patterns

16 patterns

16 patterns

16 patterns

16 patterns

16 patterns

16 patterns

16 patterns

16 patterns

Column    :  15 j k 0
CPT=3

CPT=2.1
CPT=1

CPT=2.1
CPT=1

j≠k

1j 0j
0k 1k

Fig. 6: BEE=4 and its corresponding 240 patterns of CR

forming CPT=1, CPT=2.1 and CPT=3. The column of bold
bits 0 and 1 indicate the columns of bit 1→0 and 0→1,
respectively.

5) BEE=5: In this type, two different bits in the same
column are flipped. When 0j → 1j and 1j → 0j , the first
modification will add an extra 1 in column j, while the
second one will remove a 1 in the same column. They will
therefore cancel each other’s effect and column j’s value
will not change. Therefore, ŵi,j +wi,j =1 for all columns,
and consequently, CR will be zero, which is grouped as
CPT=4 in Fig. 7. In this case, the observed pattern of CR

is exactly the same as the intact one. If information from
the other layers shows that the received packet is corrupted,
observing such a pattern indicates that BEE=5 has occurred.
Only general information about the possible locations of the
errors is available. We know that the two erroneous bits are
in the same column, and that they are different bits.

 

BEE=5 CPT=4

00000000000000000000000000000000

CR

1 pattern 

1j 0j
0j 1j

Fig. 7: BEE=5 and its only CR pattern forming CPT=4.

The same process can be followed to describe the behavior
of three bits in error. Some of the defined BEEs for three
bits in error will map to existing CPTs, and additional CPTs
will be observed. We ignore this case in the remainder of the
paper because, as will be seen later in Eq. (6), the probability
of having more than two bits in error is dramatically less than
that of having a single-bit error in the applications of interest.

Table III summarizes the definition of each CPT for one
and two bits in error. The computation of CR for a received
corrupted packet leads to one of the CPTs defined in Table III.
Based on the CPT value, it is possible to determine the
corresponding BEEs, as shown in Fig. 8. For each BEE, the
CR pattern will indicate the error columns and the type of
modified bits (1→0 or 0→1). For instance, if the calculated
CR is “0000 0000 0010 0000”, which has one bit 1 in column

5, it belongs to CPT=1, as defined in table III. This pattern
can be generated by BEE=1, BEE=3 or BEE=4, as shown in
Fig. 8. Based on each BEE, the CR pattern will have different
meanings. In the case of BEE=1, the CR pattern indicates that
there is a single-bit error, and it is 15→05. Then, all the bits
0 in column 5 are the potential error positions in this case.
In the case of BEE=3, the pattern indicates that there are two
bits in error, and both are 14→04, as presented in Fig. 5. In
this case, the number of candidates is a 2-combination of the
number of zeros in column 4. In the case of the BEE=4, the
pattern indicates that there are two bits in error and 16→06;
05 → 15, as presented in Fig. 6. Therefore, it is possible to
have more than one BEE for an observed CPT. The questions
we must now answer are what the probability of occurrence
of each of these possible BEEs is, and whether one is much
more likely than the others to have occurred. We answer these
questions in the following section.

TABLE III: Summary of CPT definitions.
CPTs Definition
CPT=1 one bit 1 and fifteen bits 0 or vice versa
CPT=2.1 two successive bits 1 and fourteen bits 0 or vice versa
CPT=2.2 two non-successive bits 1 and fourteen bits 0 or vice versa
CPT=3 three to thirteen consecutive bits 1 between zeros
CPT=4 sixteen bits 0

 

CPT=1
BET=
1

CPT=2 CPT=3 CPT=4

BEE=3

BEE=2 BEE=4 BEE=5
BEE=1

BEE=4

BEE=4
BEE=2

CPT=2.1 CPT=2.2

Fig. 8: Summary of observed CPTs and their corresponding
BEEs for one and two bits in error.

B. Probability of BEEs Given Observed CPTs
As can be seen from Fig. 8, several BEEs can cause the

same observed CPT. For instance, if the observed CR value
belongs to the patterns in CPT=1, then it could possibly be
due to one of the three BEEs (BEE=1, 3 or 4). In this section,
we show mathematically which one of these possible BEEs is
more likely. The goal here is to find the probability associated
to each BEE based on the observed CPT, which is defined
as Pr(BEE= i|CPT=j). To compute this, we use the conditional
probability and the law of total probability [34], as shown in
Eq. (5).

Pr(BEE= i|CPT=j)=
Pr(BEE= i, CPT=j)

Pr(CPT=j)
=

1

Pr(CPT=j)

×
{ N∑

k=0

[Pr(BEE= i,CPT=j|nbErr=k)×Pr(nbErr=k)
} (5)

The probability of having k bits error in a packet of N bits
with a channel residual bit error rate (ρ) can be expressed as:

Pk = Pr(nbErr=k)=ρk×(1−ρ)N−k (6)

Assuming that ρ is very small (e.g. ρ ≤10−5), then the
probability of having more than two bits in error (Pk for k>2),
even for large packet sizes, will be so small that the terms of
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the summation for k > 2 can be ignored. That is the reason
we ignore considering more than two bits in error in the rest
of the paper. Accordingly, Eq. (5) can be approximated with
Eq. (7):

Pr(BEE= i|CPT=j)≈ 1

Pr(CPT=j)

×
2∑

k=0

[Pr(BEE= i, CPT=j|nbErr=k)×ρk×(1−ρ)N−k]
(7)

By using the chain rule [34], the first probability in the
previous equation can be expressed as:

Pr(BEE= i, CPT=j|nbErr=k)
=Pr(BEE= i|nbErr=k)×Pr(CPT=j|BEE= i ∩ nbErr=k)

(8)

The above two probabilities will be calculated as follows:
1) Probability of each BEE given the number of bits in

error, Pr(BEE= i|nbErr=k): Assuming a packet with length
of N bits, the packet is divided into words of sixteen bits, as
shown in Fig. 9. For simplicity, the packet size is considered
a multiple of 16 bits. Let nzc and noc represent the number
of bits 0 and 1 in column c, respectively. In the following
expressions, the probability value of Pr(BEE= i|nbErr=k) is
calculated for the case of one and two bits in error (k=1, 2).
By definition of BEE=1:

Pr(BEE=1|nbErr=1)=1 and Pr(BEE=1|nbErr = 2)=0

By definition, all the BEEs from 2 to 5 are for two-bit error,
and therefore, these BEEs cannot occur when the number of
bits in error is one. However, they have values for a two-
bit error. The probability value of each one can be calculated
by the definition of each BEEs in Table II and considering
the number of bits 0 and 1 in each column. The following
equations reflect the number of possible combinations of
taking two bits, same or different type, in the same or different
columns. Assuming nzc = noc, which means the number of
bits 0 and 1 in each column are the same, the expression can,
however, be simplified as follows:

Pr(BEE= i|nbErr=1)=0; i∈{2, 3, 4, 5}

Pr(BEE=2|nbErr=2)

=
1

2
×
∑15

c=0

(nzc
1

)(TZ−nzc
1

)
+
∑15

c=0

(noc
1

)(TO−noc
1

)(
N
2

) ≈ 15N

32(N−1)

Pr(BEE=3|nbErr=2)=

∑15
c=0

(nzc
2

)
+
∑15

c=0

(noc
2

)(
N
2

) ≈ N−32
32(N−1)

Pr(BEE=4|nbErr=2)

=
1

2
×
∑15

c=0

(nzc
1

)(TO−noc
1

)
+
∑15

c=0

(noc
1

)(TZ−nzc
1

)(
N
2

) ≈ 15N

32(N−1)

Pr(BEE=5|nbErr=2)=

∑15
c=0

(nzc
1

)(noc
1

)(
N
2

) ≈ N

32(N−1)
2) Probability of each CPT given the BEE and the number

of bits in error, Pr(CPT=j|BEE= i ∩ nbErr=k): Here, the
second probability of Eq. (8) will be examined. From the
definition of BEE and CPT, it is clear that when there is a
single-bit error, the following is obtained:

Pr(CPT=j|BEE=1 ∩ nbErr=1)=

{
1 j=1

0 j∈{2.1, 2.2, 3, 4}

 

: number of 0 in column cnzc
: number of 1 in column cnoc

1101 1001 0100 0011
1011 0110 1001 0001
0001 1010 1101 0000
.
..

0111 0100 0111 1000

Col.15 Col.c Col.0

Packet with size N:

Assumption:

;
2

nz no
32c c

NTZ TON ≈ ≈≈ ≈ : total number of 0 in packetTZ
: total number of 1 in packetTO

11011001010000111011011010010001000110101…0111010001111000

15 15

0 0

; TZ TOnz no
16

nz TZ ; no TO

c c

c c
c c

NN

= =

++ = =

= = 

Fig. 9: Example of packet division into 16 bits.

and for the case of two bits in error, the following are obtained:

Pr(CPT=j|BEE=2 ∩ nbErr=2)=


16
120

j=2.1
104
120

j=2.2

0 j∈{1, 3, 4}

Pr(CPT=j|BEE=3 ∩ nbErr=2)=

{
1 j=1

0 j∈{2.1, 2.2, 3, 4}

Pr(CPT=j|BEE=5 ∩ nbErr=2)=

{
1 j=4

0 j∈{1, 2.1, 2.2, 3}

Pr(CPT=j|BEE=4 ∩ nbErr=2)=


32
240

j=1
32
240

j=2.1
176
240

j=3

0 j∈{2.2, 4}

BEE=4 comprises 240 different patterns, as shown in Fig. 6,
32 of which belong to CPT=1. Hence, the probability of
having CPT=1 given BEE=4 is 32/240. Similarly, the prob-
ability values for the other cases can be computed. By
substituting the probability values of the two previous sec-
tion III-B1 and section III-B2 into Eq. (8), we obtain the
desired Pr(BEE= i, CPT=j|nbErr=k), as shown in Table IV.
Note that P1 and P2 are computed from Eq. (6).

As shown in the table, when the first row (BEE=1) is
multiplied by the probability value of P1, and the other rows
(BEE=2 to 5) by probability value of P2, the probability
value of Pr(BEE= i|CPT=j)Pr(CPT=j) is obtained. It should
be straightforward to normalize the latter probabilities within
each CPT = j to obtain Pr(BEE= i|CPT=j), but this is not
required since in an error correction scheme, it is the relative
probabilities among the various BEEs which are of interest.

When comparing the two probability values P1 and P2, with
the values in Table IV, one can deduce that the probability of
having more than two bits in error is dramatically less than
that of having a single-bit error for a small ρ. The table also
illustrates that when a CPT=1 is observed, BEE=1 is much
more likely, and BEE=4 or BEE=3 are possible albeit at a
very low probability (about 10/ρ times smaller).

To verify the probability values, we conducted a simulation
on different sequences with different packet sizes. In each
bitstream, one or two bits were randomly flipped, and the
simulation was repeated 10,000 times to estimate the empirical
probability value of Pr(BEE= i, CPT=j|nbErr=k). Table V
presents an example of the simulation results for the crew
sequence. As can be observed, the simulation results are
similar to the values in Table IV. These results demonstrate
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TABLE IV: Array of Pr(BEE= i, CPT=j|nbErr=k) and its
approximate value for large packet size. Multiplying each cell
by P1 or P2 gives Pr(BEE= i|CPT=j)× Pr(CPT=j).

BEE CPT=1 CPT=2.1 CPT=2.2 CPT=3 CPT=4

1 1 - - - - ×P1

2 0
N

16(N−1)
13N

32(N−1) 0 0

×P2

≈0.063 ≈0.406

3
N−32

32(N−1) 0 0 0 0
≈0.031

4
N

16(N−1)
N

16(N−1)
0 11N

32(N−1) 0
≈0.063 ≈0.063 ≈0.344

5 0 0 0 0
N

32(N−1)

≈0.031

that the assumption of having an equal number of bits 0 and
1 in each column is a reasonable assumption and, if they are
the same on average, then the results will perfectly match the
theoretical results. Similar results have been obtained on other
sequences with different quantization parameters (QPs).

TABLE V: Empirical probability value of
Pr(BEE= i, CPT=j|nbErr=k) for the “crew” sequence,
QP=27, packet size=1432 bits. ρ=10−6, so P1≈10

−6 and
P2≈10

−12.

BEE CPT=1 CPT=2.1 CPT=2.2 CPT=3 CPT=4

1 1 - - - - ×P1

2 0 0.062 0.400 0 0

×P2
3 0.028 0 0 0 0
4 0.060 0.064 0 0.349 0
5 0 0 0 0 0.036

IV. PROPOSED CFLD VIDEO ERROR CORRECTION
APPROACH

In this work, we propose to use the UDP header checksum
value to decrease the number of possible candidates for list
decoding approaches. The checksum value allows us to find
the possible locations of the erroneous bits in the bitstream,
based on the possible column(s) where they occurred and on
the erroneous value at issue (a 0 or a 1). Fig. 10 shows the
general schematic of the proposed method. When a packet
is received, if it is intact (depending on the UDP checksum
value), it will go directly to the video decoder, otherwise it
will go through the error correction process. Since the UDP
checksum is calculated over the pseudo header, the header and
the payload, it is helpful to identify whether an error indicated
by CR, is from the headers or from video data. Therefore, the
first step of the correction process is to fix the headers. Some
fields of the UDP/real-time transport protocol (RTP) headers
are static during the transmission (e.g., Source/Destination
Port Num in UDP header), and some other parts are easily
predictable (e.g., Sequence Number in RTP header) because
of the redundant information in the headers [33], [35].

The next step after fixing all the headers is to decode the
bitstream. Here, we consider two conditions which must be

satisfied: 1) the sequence should be decodable, and 2) the
number of blocks in the corrupted slices should be correct.
This step helps save the sequences which had errors some-
where in the headers, but not in the video payload. Thus, they
are not put through the correction process. It is assumed that
the number of blocks in the packet is known. That is the case
in several systems where the number of MBs or coding tree
units (CTUs) in a packet is constant or can be deduced from
the information within other packets (for instance, the first MB
in slice syntax element in H.264). During the simulations, it
was observed that because of the high compression properties
of the encoding process, the coded bitstreams were very
sensitive to errors and, in many cases, even a single-bit error
can desynchronize the whole packet. This desynchronization
creates non-valid syntax or semantic errors in the decoding
process. This property is used to differentiate between de-
codable and non-decodable bitstreams. A decodable bitstream
has syntactically/semantically valid codewords. Since it has
been observed that decodable bitstreams can nevertheless still
be fairly damaged, the constraint on the number of MBs, in
the case of H.264 sequences, or CTUs, in the case of HEVC
sequences, further eliminates corrupted candidates.

If the sequence does not satisfy the two above-mentioned
conditions, that means there are errors somewhere in the video
payload. Consequently, the packet should therefore be further
processed by the following method:

• Based on the observed CPT value of CR, all the possible
BEEs are determined and ordered from most likely to
least likely, according to the results of Table IV.

• Starting with the most probable BEE, a candidate list is
generated. This list includes the potential error locations,
based on the observed CPT, which provides the potential
error column(s) and the type of flipped bits at issue (1→0
or 0→1). For each potential error location, a candidate
bitstream is generated.

• Each candidate bitstream passes through the video de-
coder until one is found that satisfies the two conditions
(the sequence is decodable; and the number of MBs, in
the case of H.264 sequences, or the number of CTUs,
in the case of HEVC, is correct), and from that the best
candidate bitstream is determined.

• If none of the candidate bitstreams meets these two condi-
tions, we restart the process of generating a candidate list
of potential error locations with the next most probable
BEE.

In summary, the method finds the first candidate bitstream
that satisfies the two conditions, starting with the most prob-
able BEEs. When there is no probable BEEs, or none of the
candidate bitstreams meet two conditions of the decoder, the
approach falls back to EC. Note that any EC approach can be
employed. There could be a case where, at the end, more than
one candidate bitstream would satisfy the decoder’s conditions.
The system could thus possibly be modified to have an extra
step for ranking the bitstreams that satisfies these conditions
by likeliness. For instance, a pixel domain approach, such
as boundary matching or border checking, could help in
selecting a best candidate between those candidates that meet
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the decoder’s conditions.
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Fig. 10: Proposed CFLD system.

Using the checksum value in the error correction process
provides a notable reduction in the number of candidates to
be considered in list decoding approaches. The receiver side’s
checksum value allows the determination of the potential error
column in the words and in the type of the flipped bits (a bit
0 changed to 1 or a bit 1 changed to 0). The total number
of candidates depends on the packet size (or the number of
words in the packet) and on the number of errors. Generally,
in list decoding approaches, for a packet of containing N bits,
there are N possible candidate bitstreams for the case of a
single-bit error, whereas our CFLD approach will reduce it to
only N/32 candidates. This is because the CR value provides
extra information about the error column in the words and the
type of the flipped bit. Since the packet is divided into 16-
bit words, there are N/16 bits in each column and, assuming
that half of the bits in each column are zeros and half of
them are ones, the total number of candidates will therefore
be N/32. This means that in the case of a single-bit error, there
is a 97% reduction in the number of candidate bitstreams, and
only about 3% should be considered, as compared to other list
decoding approaches. This reduction can be even higher when
the number of bits in error is increased. For instance, in the
case of a two-bit error, about 99.6% of non-valid candidates
can be eliminated by considering the CR validation process in
the proposed CFLD approach. Table VI presents the average
number of candidates for different packet lengths in the cases
of one and two bits in error by using the checksum verification.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results for
the proposed approach. We only consider a single-bit error

TABLE VI: Average number of candidates for different ob-
served packet lengths.

Packet
length

One-Bit Error Two-Bit Errors
Average number of candidates by

List decoding CFLD List decoding CFLD
272 272 9 36856 142
880 880 28 386,760 1526
1112 1112 35 617,716 2549
2240 2240 70 2,507,680 9,531
5272 5272 165 13,894,356 56,991

Eliminated
candidates(%) 97% 99.6%

since for small values of ρ (e.g., 10−6), the probability of
having two or more bits in error is extremely low. We will
show the performance of the proposed approach in comparison
with other state-of-the-art approaches. In the simulations, we
assume that the checksum is intact and the error is in the video
payload. This is reasonable for 10,000-bit video packets since
we will have 1 chance out of 625 (i.e., 10000/16) that the
checksum is hit instead of the video payload. Furthermore,
we first attempt to decode the packet (after making sure the
headers are correct). Therefore, if the error is really in the
checksum, it will not cause a problem in our algorithm.

A. Simulation Setup
We carry out the simulations using the H.264 Baseline

profile, which is typically used in conversational services
and mobile applications, and the HEVC Low Delay P Main
profile. We use the Joint Model (JM) software, version 18.5
[36] for H.264 and the HEVC Test Model (HM) software,
version 15 [37], for HEVC. The first 60 frames of NTSC
(720×480) sequences (Driving, Opening-ceremony, Whale-
show), 4CIF (704×576) sequences (City, Crew, Ice), CIF
(352×288) sequence (Foreman) and PAL (720×576) sequence
(Walk) are coded with JM18.5. The sequences are coded in
IPPP. . . format (Intra refresh rate of 30 frames) at a 30 Hz
frame rate. Each slice contains a single row of MBs, and is
encapsulated into RTP packets.

We also carry out the simulation on HEVC sequences. The
first 50 frames of five class B (1920×1080) sequences (Bas-
ketballDrive, BQTerrace, Cactus, Kimono and ParkScene) and
four class C (832×480) sequences (BasketballDrill, BQMall,
PartyScene and RaceHorses) are coded by HM. The slicing
mode is chosen to fix number of CTUs in a slice. One row
of 64×64 CTUs is considered per slice. All the sequences are
encoded with different QP values, namely, 22, 27, 32, and 37.

For each QP, a single frame is randomly selected for error.
Then, we apply a uniform error distribution on the bits of
each packet with a ρ value varying between approximately
10−7 for small QPs to 10−6 for large QPs to obtain one bit
in error. These residual bit error rates are much higher than
those observed in some broadcasting systems, such as DVB-H
and DVB-SH-A, in recommended operational conditions [38].
To simplify the simulations, we just consider the errors in the
payload part. Also, the UDP checksum is only calculated on
the UDP payload, which is an RTP packet. In our transmis-
sion simulations, the corrupted slices are identified prior to
their decoding by verifying the checksum. The simulation is
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repeated 100 times at each QP, to ensure that the location of
the erroneous bits did not bias our conclusions.

In H.264 cases, four different approaches are then used to
handle the corrupted sequences: (i) frame copy (FC) conceal-
ment by JM, (ii) state-of-the-art STBMA [13], error correction
using HO-MLD [28], and the proposed CFLD approach. The
first 30 frames are kept intact to allow the HO-MLD approach
to gather video statistics. When CFLD approach falls back to
EC, here we consider STBMA to be fair with other approaches
(STBMA itself and HO-MLD which uses STBMA). However,
our method never reached the point of calling EC during the
simulations. In the case of HEVC sequences, the corrupted
packets are handled by (i) implemented FC-EC in HM and
(ii) the CFLD approach.

B. Simulation Results
Table VII shows the candidate reduction at each step of

the proposed approach, for H.264 and HEVC sequences. As
can be observed, with the CFLD method, the checksum helps
eliminate about 97% of the candidates. Then, as a comple-
mentary step, the two conditions are successively applied on
candidate bitstreams. The last two columns in the table present
the extent to which the two conditions are in excluding non-
valid candidates. There are some cases where, at the end of the
process, more than one candidate is present. We observed that
this happens less frequently in HEVC, where sequences are
coded using CABAC, versus with H.264 CAVLC sequences.
We conjecture that the use of CABAC is the reason why HEVC
is much more sensitive to errors (easier to desynchronize) than
the H.264 Baseline. We expect that the H.264 Main profile,
using CABAC, would be more sensitive to errors than the
Baseline profile, and therefore, lead to the elimination of more
candidates.

TABLE VII: Candidate reduction at each step of the CFLD
method for H.264 City sequence, and HEVC BasketballDrive
sequence. The letters F, S, B in the first column showing the
frame, slice and bit that are hit by an error.

Error location Packet
size

Number of candidates with valid...
1 =

checksum
2 = 1 +

syntax/
semantic

2 +

number of
MBs/CTUs

(bits)

H.264, City, QP=27 and 44 MBs per slice
F35_S7_B2872 2952 87 4 1
F53_S16_B4312 4384 134 54 52
F35_S34_B2784 2856 96 1 1
F52_S22_B3925 4000 126 3 1
F51_S32_B3475 3544 110 2 1
F48_S13_B4675 4712 138 61 44
F42_S23_B304 2160 66 1 1
F52_S22_B3925 4000 126 3 1
F41_S1_B1251 1360 51 19 3

HEVC, BasketballDrive, QP=22 and 30 CTUs per slice
F25_S8_B11190 18016 564 3 1
F46_S10_B57355 58232 1815 51 2
F40_S7_B33218 55328 1758 21 2
F45_S2_B5339 9520 294 2 1
F4_S3_B13211 28304 891 10 1
F38_S12_B19672 25496 820 13 1
F14_S11_B428 26152 815 365 1
F38_S4_B4266 6680 221 1 1
F13_S8_B10614 16192 517 7 1

For performance evaluation, we calculated the peak signal-
to-noise ratio (PSNR) and structural similarity index measure-
ment (SSIM) [39] of the corrupted frames after reconstruction,
using various approaches in order to compare their visual
quality. Table VIII and Table IX show the average PSNR
values for different error handling approaches on H.264,
HEVC class B and C sequences. The last column in the tables
showing the percentage of times CFLD was able to correct the
error such that the PSNR of the reconstructed bitstream would
be exactly the same as the intact one. The simulation was
repeated 100 times for each sequence for different QP values.
The results for the H.264 sequences indicate that the proposed
approach outperforms JM-FC, STBMA and HO-MLD in all
cases.

Fig. 11 shows the average PSNR gains of each approach at
different QP values. We observe that the proposed approach
provides significant PSNR gains over JM-FC for all four QP
values. For instance, it is more than 5 dB better than JM-
FC at QP=22. On average, over all QPs, the CFLD approach
was able to correct the bitstream 79% of the time compared
to HO-MLD with only 6% in our simulation. Also, it offers a
2.79 dB gain over JM-FC and 1.19 dB and 1.41 dB gains over
STBMA and HO-MLD, respectively. In the case of HEVC, the
CFLD approach corrects the corrupted bitstream 91% of the
time, and offers 2.35 dB and 4.97 dB gains over HM-FC in
class B and C sequences, respectively.
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Fig. 11: Average PSNR gains of HO-MLD, STBMA and
CFLD method over JM-FC for different QP values of H.264
sequences.

As mentioned earlier, in the proposed system, we select the
first candidate which satisfies the two conditions but it is not
always the best one, i.e., the one with a corrected bitstream.
Some of the first valid candidates have very low PSNR values,
which has a negative impacts on the average PSNR values
shown in Table VIII and Table IX.

The difficulties of accessing soft information at the appli-
cation layer in existing video communication systems make
the approaches using only hard information very appealing
to build robust video error correction systems. But ignoring
the soft information in traditional list decoding approaches
makes them highly inefficient (as the following simulations
will show). Indeed, since all the bits then have the same
probability of being flipped, as a result, all the candidate
bitstreams have the same probability of being the best one.
The best candidate would then be chosen through an exhaus-
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TABLE VIII: Comparison of the average PSNR of recon-
structed corrupted frames for different methods in H.264.
The differences between each method and the JM-FC method
appear in parentheses. The last column shows the percentage
of packets that were fully corrected by the proposed approach.

Sequence QP Average PSNR of reconstructed corrupted frame

Intact JM-
FC STBMA HO-

MLD CFLD

City
(704×576)

22 40.88 36.47 40.32 39.60 40.77 88%
(+3.58) (+3.12) (+4.3)

27 36.63 34.38 36.43 35.81 36.6 84%
(+2.05) (+1.43) (+2.21)

32 33.08 32.06 32.99 32.79 33.06 86%
(+0.93) (+0.73) (+1)

37 30.05 29.54 29.99 29.95 30.01 78%
(+0.45) (+0.41) (+0.46)

Crew
(704×576)

22 41.76 39.21 40.69 40.25 41.76 86%
(+1.48) (+1.04) (+2.55)

27 38.52 37.25 38.07 37.69 38.51 84%
(+0.82) (+0.72) (+1.27)

32 35.7 34.91 35.38 35.33 35.64 82%
(+0.47) (+0.42) (+0.73)

37 32.99 32.58 32.82 32.83 32.96 80%
(+0.25) (+0.25) (+0.39)

Ice
(704×576)

22 43.73 38.58 41.83 41.78 43.49 76%
(+3.26) (+3.2) (+4.91)

27 41.45 37.25 39.69 39.75 41.31 90%
(+2.43) (+2.5) (+4.06)

32 39 36.38 38.11 38.02 38.93 76%
(+1.72) (+1.63) (+2.55)

37 36.43 34.55 35.94 35.91 36.39 78%
(+1.39) (+1.36) (+1.84)

Foreman
(352×288)

22 41.34 37.41 39.31 39.21 41.06 64%
(+1.9) (+1.8) (+3.65)

27 37.83 35.65 36.8 36.59 37.66 52%
(+1.14) (+0.94) (+2.01)

32 34.68 33.61 34.14 34.14 34.57 74%
(+0.53) (+0.53) (+0.96)

37 31.96 31.47 31.61 31.73 31.94 90%
(+0.14) (+0.26) (+0.47)

Opening
ceremony
(720×480)

22 39.32 38.26 38.55 38.8 39.32 88%
(+0.29) (+0.54) (+1.06)

27 35.39 35.03 35.08 35.11 35.34 84%
(+0.05) (+0.09) (+0.31)

32 31.39 31.2 31.24 31.26 31.39 94%
(+0.04) (+0.06) (+0.18)

37 27.76 27.66 27.71 27.72 27.76 92%
(+0.04) (+0.06) (+0.1)

Whale
show
(720×480)

22 41 35.69 36.58 36.96 40.93 68%
(+0.89) (+1.28) (+5.24)

27 36.37 33.54 34.22 34.42 36.34 72%
(+0.68) (+0.88) (+2.8)

32 32.08 30.86 31.2 31.16 32.06 84%
(+0.34) (+0.31) (+1.2)

37 28.36 27.89 27.99 27.97 28.33 76%
(+0.1) (+0.08) (+0.44)

Driving
(720×480)

22 41 34 38.02 37.28 40.45 70%
(+4.02) (+3.28) (+6.45)

27 37.05 32.72 35.7 34.72 36.91 64%
(+2.98) (+2) (+4.19)

32 33.3 31.03 32.76 32.17 33.19 82%
(+1.72) (+1.14) (+2.16)

37 30.05 28.96 29.79 29.59 30 82%
(+0.84) (+0.63) (+1.04)

Walk
(720×576)

22 43.29 30.27 34.66 33.79 42.48 76%
(+4.39) (+3.51) (+12.21)

27 39.33 29.65 34.77 33.34 39.14 72%
(+5.12) (+4.7) (+9.5)

32 35.56 29.33 33.52 32.65 35.23 82%
(+4.19) (+3.32) (+5.9)

37 31.91 28.59 31.21 30.72 31.78 78%
(+2.61) (+2.12) (+3.19)

Average gain over JM-FC 0 +1.6 +1.39 +2.79 79%

TABLE IX: Comparison of the average PSNR of reconstructed
corrupted frames for different methods in HEVC class B and
C sequences. The differences between the CFLD and HM-FC
methods appear in parentheses. The last column shows the
percentage of packets that were fully corrected by the proposed
approach.

Sequence QP
Average PSNR of

reconstructed corrupted frame
Intact HM-FC CFLD

Class B Sequences

BQ Terrace
(1920×1080)

22 38.89 35.16 35.76 (+0.6) 58%
27 36.3 34.32 35.68 (+1.36) 82%
32 33.76 32.37 33.66 (+1.29) 92%
37 31.17 30.26 31.15 (+0.89) 89%

Basketball Drive
(1920×1080)

22 39.89 32.53 38.49 (+5.95) 84%
27 38.23 32.28 37.67 (+5.39) 90%
32 36.7 31.81 36.47 (+4.66) 96%
37 34.8 31.51 34.8 (3.29) 100%

Cactus
(1920×1080)

22 39.20 36.82 37.89 (+1.07) 76%
27 36.74 34.59 36.25 (+1.66) 88%
32 34.65 33.56 34.59 (+1.03) 98%
37 32.31 31.55 32.03 (+0.48) 96%

Kimono
(1920×1080)

22 42.15 36.69 41.62 (+4.93) 90%
27 40.04 36.10 39.81 (+3.71) 96%
32 38.20 34.78 38.07 (+3.29) 98%
37 35.30 33.40 35.30 (+1.9) 98%

Park Scene
(1920×1080)

22 40.11 37.39 39.63 (+2.24) 82%
27 37.33 35.42 37.19 (+1.77) 96%
32 34.83 33.86 34.74 (+0.88) 94%
37 32.17 31.58 32.17 (+0.59) 100%

Average gain over HM-FC 0 +2.35 91%
Class C Sequences

Basketball Drill
(832×480)

22 40.44 31.9 39.91 (+8.01) 94%
27 37.41 30.84 37.06 (+6.22) 94%
32 34.66 30.07 34.56 (+4.49) 98%
37 32.11 29.21 32 (+2.8) 98%

BQ Mall
(832×480)

22 39.84 31.04 39.16 (+8.12) 92%
27 36.91 30.03 36.23 (+6.2) 92%
32 33.86 29.69 33.48 (+3.79) 94%
37 30.68 27.83 30.5 (+2.67) 92%

Party Scene
(832×480)

22 38.14 32.57 35 (+2.43) 72%
27 34.66 31.32 33.52 (+2.2) 84%
32 31.07 29.38 30.98 (+1.6) 96%
37 27.76 26.94 27.47 (+0.53) 94%

Race Horses
(832×480)

22 39.29 26.01 35.94 (+9.93) 70%
27 36.21 25.48 35.16 (+9.68) 90%
32 32.6 25.8 32.18 (+6.38) 92%
37 29.44 24.98 29.32 (+4.34) 96%

Average gain over HM-FC 0 +4.97 91%

tive (brute force) search on all the candidates without any
order preference. In the following simulations, we used the
exhaustive search list decoding (ESLD) approach as another
benchmark for comparison against the proposed CFLD to
represent the performance of list decoding methods that would
not have access to soft information to order their candidates.
In this ESLD approach, all candidates will sequentially go
through the video decoder and the first candidate that satisfies
the decoder’s two conditions is chosen as the best candidate.
The candidates are generated by sequentially flipping the bits
of the received packet from the first to the last one. We use
this same order for CFLD but only considering the potential
bit error locations.

Fig. 12 presents the PSNR and SSIM distributions (box
plots) of two sequences having a low percentage of fully
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corrected slices in Table VIII. As shown in the figures, for
both sequences, the median value (red line in the middle of the
box) of PSNR and SSIM for CFLD is exactly the same as the
intact one and also the lower and higher bands of boxes (25-75
percentile of the data) confirm that in most cases the CFLD has
the same or closest value to the intact one which is obviously
higher than the other approaches. The detailed information of
this simulation is presented in Table X. It is obvious that the
CFLD search is much less complex than the ESLD search and
it significantly reduces the number of candidates from N (for
ESLD) to N/32. Thereby, it has more chances that the first
candidate is the fully corrected packet. The ESLD perfectly
corrects damaged H.264 packets 41% and 21% of the time
for Ice and Foreman sequences, respectively, while the value
for CFLD are 91% and 61%. In fact, if CFLD fails to fully
correct the packet, for sure ESLD will fail. This is because
ESLD will always retain a candidate that either comes before
that of CFLD or the same one. Therefore, it is not possible for
ESLD to select a fully corrected packet without CFLD also
selecting it.

This has a huge impact on the visual quality of the re-
constructed corrupted frame and, more importantly, prevents
the propagation of errors to subsequent frames due to the
predictive coding. In fact, a few decibels PSNR difference on
the reconstructed corrupted frame increases to several dBs on
subsequent frames due to this drift. Since in the simulations
we choose the first satisfied candidate as the best one, there
are some outliers (as shown with ‘+’ red symbol) in the CFLD
results. However, most cases which have very low PSNR,
can be eliminated by adding an additional pixel-domain step
(such as boundary matching or border checking) in our system.
Indeed, instead of selecting the first candidate which satisfies
the two conditions, we could rank all candidates satisfying
the two conditions using a yet-to-be-defined pixel-domain
likeliness measure or other likeliness measure based on the
decoded information (e.g., motion vectors). For instance, for
all the candidates satisfying the two conditions, we could
use a pixel-domain metric such as the one based on the
sum of distributed motion-compensated blockiness (SDMCB)
proposed in [17] to rank them. We thus could select the
candidate having the highest likeliness (e.g., lowest SDMCB
value).

TABLE X: Detailed information of the box plot of Fig. 12:
average PSNR and SSIM values, percentage of fully corrected
packets.

Seq. Intact JM-
FC STBMA HO-

MLD ESLD CFLD

Ice
QP=37

PSNR 36.49 35.07 35.96 35.91 35.91 36.48
SSIM 0.9681 0.9654 0.967 0.9669 0.9679 0.9681

fully corrected packets (%) 9% 41% 91%

Foreman
QP=27

PSNR 37.77 36.39 37.17 37.11 37.36 37.65
SSIM 0.9432 0.9383 0.9412 0.9414 0.9421 0.9428

fully corrected packets (%) 1% 21% 61%

The gain in subjective quality is illustrated in Fig. 13.
Comparing the reconstructed frame, it is clear that the CFLD
method outperforms the other approaches and further confirms
the robustness and superiority of the proposed method.
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Fig. 12: PSNR and SSIM distributions of 100 runs on frame 45
of H.264 Ice at QP=37 (top) and Foreman at QP=27 (bottom)
sequences.
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Fig. 13: Visual comparison of a reconstructed frame with
H.264 Ice sequence at QP=37 by different methods. One
bit was flipped in frame 45, slice 22 and bit 381. The
packet contains 472 bits. The proposed checksum provides
11 candidates. The first valid candidate which satisfied the
two mentioned conditions is picked as CFLD output and
the packet was perfectly corrected. The PSNR and SSIM
values of each approach are as follows, respectively: Intact
(36.49 dB, 0.9681), JM-FC (34.12 dB, 0.9649), STBMA
(34.37 dB,0.9659), HO-MLD (34.39 dB, 0.966) and CFLD
(36.49 dB, 0.9681).

From the results of all figures and tables, it can be inferred
that the proposed approach can effectively remove non-valid
candidates, and in nearly 80% of the cases in H.264, and
90% of the cases in HEVC, the sequence can be perfectly
corrected. In contrast, HO-MLD perfectly corrects damaged
H.264 packets only 6% of the time. So, as a result, the pro-
posed CFLD provides a significantly higher PSNR value and
better quality compared to other approaches. This is important
not only for the corrupted frame, but for the following ones,
as fewer visible drifting effects will result.

VI. CONCLUSION

In this paper, we proposed a new method that exploits
the receiver side UDP checksum information to dramatically
reduce the number of candidates that need to be considered
by list decoding. For one bit in error, the method allows the
removal of 97% of the candidates. For two bits in error, this
reduction reaches 99.6%. Such a filtering of the candidates
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as proposed, supplemented by checksum information dramati-
cally reduces the complexity of the list decoding approach.
Simulations results showed that the H.264 baseline, using
CAVLC, is more robust to desynchronization due to errors, as
compared to HEVC, using CABAC. This led to better error
correction performance for H.265 as corrupted packets are
more likely to cause desynchronization errors which invalidate
the erroneous packets. Our simulation results revealed that
79% of the H.264 could be corrected perfectly, compared to
91% for HEVC. The proposed approach provides, on average,
a 2.79 dB gain over FC-EC using JM, and a 3.57 dB gain
over our implementation of FC-EC in HM. Although, current
applications do not typically have access to soft information,
the proposed CFLD approach can also be applied to that
context, allowing it to perform even better by enabling it to
exploit the soft information to rank the candidate bitstreams in
each BEE. We also expect a further increase in performance
by exploiting pixel domain information to select the best
decodable candidate rather than selecting the first decodable
candidate. This will be the subject of future research.
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