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Abstract 

Ice shedding represents a threat to aircraft safety since ice blocks can strike rear 

components or can be ingested by engines. The accuracy of current numerical methods for 

predicting ice block paths in the design phase of an aircraft still need improvement. For the 

verification and validation of new trajectory calculation methods, shed blocks can be 

modelled for simplification as sphere or 6 Degree-Of-Freedom (6 DOF) plates. The 

objective of this paper is to propose a mathematical model for the dynamic moments of the 

plates and to use it to numerically simulate ice block paths. The results will be useful for 

verifying high-fidelity methods. Equations of motion in a Lagrangian frame are presented 

together with the correlations to be used for the aerodynamic coefficients of the ice blocks. 

The plate model involves the quaternions and a dynamic moment coefficient function of 

the angular velocity. After the model is validated with test cases obtained from the 

literature, the trajectories around the blended wing body will be plotted. The sensitivity of 

the trajectories and footprints to the chosen dynamic moment model will be highlighted. 
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Introduction  

Weather-related aircraft accidents due to icing between 1967 and 2004 were at the root of 

about 50% of recommendations published by safety authorities covering icing hazards 

(Skeen Jr and Reed 2004). Ice accretion on an aircraft can impact its aerodynamic 

performance and handling or obstruct its sensors. This can lead to catastrophes, such as the 

Rio-Paris Air France accident in 2009, which was caused by icing on the Pitot Tubes 

(Conversy et al 2014). According to the International Air Transport Association (I.A.T.A.) 

2015 Safety Report (I.A.T.A. 2016), recent statistics show that ice-related issues account 

for 17% of all in-flight loss of control. De-icing systems, including pneumatic boots for 

example, are mounted on aircrafts to remove accreted ice. Nevertheless, removed ice 

particles are shed, and can in turn strike the airplane or can be ingested by aft-mounted 

engines. Consequently, it is crucial to take icing hazards and the trajectories of these ice 

blocks shed into account in the design phase of an airplane.  

Shedding and trajectory simulations are challenges when studying the de-icing 

phenomenon in aeronautics and in wind engineering.  

In wind engineering, the simulation of flying debris trajectories in a flow field has been 

studied extensively. 2D models have been developed, for example, by Holmes (2004), but 

recent efforts have been concentrated on simulating a 3D phenomenon for more realistic 

predictions (Kordi and Kopp 2009). For the plate ice piece, Richards et al (2008) present a 

methodology coupling experimental data with numerical simulations. Baker (2007) 

classifies wind-borne debris under two main categories: compact debris and sheet debris. 

The aerodynamic forces and moments on sheet debris change with the orientation and 



rotation speed. The forces and moments can be modelled with static and dynamic 

coefficients. 

In aeronautics, ice fragments result from ice accumulation on unprotected surfaces or ice 

growth on aircraft surfaces due to delayed activation of ice protection systems. These 

fragments can take various shapes, but are all categorized as sheet debris. Accurate ice 

trajectory simulation methods are yet to be developed. Currently, two trajectory simulation 

methods are available for use, low fidelity methods and high-fidelity methods, with the 

latter being the more recent. 

Low fidelity methods assume that ice fragments do not affect the flow field. Papadakis et 

al (2007) simulate ice shedding by coupling numerical computerized simulations with 

experimental wind tunnel data. The aerodynamic coefficients of ice fragments are 

determined using experimental data, after which they are imported into the numerical 

model. High-fidelity methods take into account ice interaction with the flow, and require 

the use of emerging simulation tools to tightly combine flight mechanics and 

aerodynamics. 

To validate the new high-fidelity methods (Beaugendre et al 2018), databases and models 

are available for plates and spheres. Because ice fragments take various random shapes, 

with geometric databases often confidential, specific numerical or experimental databases 

are needed, but no such databases are available in the literature (Beaugendre et al 2018). 

The plate trajectory calculation assumes a major shape simplification of the ice fragment, 

but it allows sharing results between different research groups. Such 6 DOF trajectory 

calculations are akin to what is carried out for missile guidance. The common aspect 

between missiles and ice blocks is their motion only based on aerodynamic, inertia and 



gravitational forces. The aerodynamic coefficients for missiles are interpolated in a 

database to be evaluated at specific pitching, rolling and yawing angles (Sefastsson 2016). 

Databases are necessary for complex shapes that don’t have analytical aerodynamic 

correlations, such as missiles (Nichols 1977) or random ice blocks. Nevertheless, databases 

can be replaced by analytical solutions (Paramasivam et al 2015) for simple shapes like the 

plate or spherical debris studied in the present paper. It is then easier to compare results on 

basic shapes with other researches groups, since an analytical solution doesn’t rely on 

databases that can vary from a group to another. In addition, databases are often 

confidential and not published, making it difficult to compare the results.  

While the static aerodynamic coefficients of a plate are well established (Hoerner 1965), 

no consensus has emerged on the dynamic coefficients. Moreover, the latter are also 

difficult to measure in wind tunnel experiments. The dynamic moment is one of the most 

sensitive parameters for the rotating plate, and several moment’s models can be considered. 

Thus, several approaches have emerged in the literature:  

 a constant dynamic moment (Papadakis et al 2007); 

  a piecewise linear dynamic moment with respect to the angular velocity 

(Tachikawa 1983); 

  a hybrid model in which the dynamic moment depends on the relative flow 

velocity, and is pseudo-quadratic with respect to the angular velocity, i.e., each 

angular velocity component is multiplied by the magnitude of the angular velocity 

(see Eq. (6)) (Richards et al 2008).   

A study of the sensitivity of the numerical 3D trajectories of sphere and plate ice pieces to 

the dynamic model will help in validating high-fidelity methods. These methods are based 



on different models, and should generally give results falling within a given uncertainty 

range. In the present study, attention is paid to the footprints of the trajectories in a 

transverse plane, near the rear of an airplane. The innovation, and main objective of this 

paper, will be to propose a model for the dynamic moment acting on the rotating plate and 

implement it in a Lagrangian trajectory code. The dynamic moment model proposed herein 

is a 3D extension of a 2D model proposed in the 80s (Tachikawa 1983). This model is 

based on a limiting value for the angular velocity and a tri-linear dependence of the moment 

magnitude regarding the angular velocity, since it presents three linear intervals. One 

simplification of the present model is to neglect the influence of small ice particles on the 

flow field. The flow field around a clean aircraft without ice particles is kept during the 

entire process. For better fidelity and future improvements of the model, fluid-structure 

interaction may be needed to model the changes in the flow field induced by the moving 

particles (He et al 2018). Nevertheless, by neglecting the solid effects on the flow, we could 

expect a computational time reduced by a factor 150 as compared to a fully coupled fluid-

structure interaction simulation (Olivier and Dumas 2012), and shows less than an 8% 

difference with experimental results, as illustrated in the results section. By comparing the 

footprints obtained with the dynamic moment proposed by Richards et al (2008) and the 

new dynamic moment model, the impact of the dynamic moment model on the plate 

trajectory path and their footprints in a given cross-plane can be estimated.  

The equations of motion of ice pieces use aerodynamic correlations to determine the drag 

coefficient for the sphere, as well as the normal force coefficient for the plate. The 

numerical method solves the equations of motion with a third-order adaptive Runge-Kutta 

method.  



The methodology section focuses on the model and the modules needed to perform a 

trajectory simulation. The theory section gives more details about the equations and the 

mathematical concepts involved in the simulations. After a validation against the work of 

Richards et al (2008), for the plate, and of Holmes (2004), for the sphere, a discussion is 

carried out to compare the dynamic moment proposed by Richards et al (2008) to the 3D 

tri-linear model based on the work of Tachikawa (1983). The code will then be used to 

perform 3D simulations around a complete blended-wing-body (BWB) aircraft, and 3D 

plots and footprint distributions using both dynamic moment approaches will highlight the 

differences. 

Methodology 

This section presents the steps required to perform a trajectory simulation in a flow field. 

After an examination of the configuration layout used for the BWB studied in the present 

paper, the algorithm of the trajectory code will be detailed. 

 Geometry and set-up 

This sub-section describes the geometry and set-up used to conduct an ice particle 

trajectory simulation in a given flow field. The flow field is the one around the BWB 

obtained by Computational Fluid Dynamics (CFD) (Velázquez Salazar et al 2017). The 

BWB presents a length of 25 m and a half-span of 14 m. Its visual aspect is shown in Fig.1.  

 



 

Fig.1 Different views of the BWB geometry: a) top view, b) side view,  

c) rear view, d) location of the cross-flow plane 

where the footprints of trajectories will be investigated 

 

The CFD simulations were performed by Velázquez Salazar et al using the RANS solver 

of the SU2 software (Palacios et al 2015). The turbulence model used was the Spalart-

Allmaras model. The airplane configuration was a final approach at low speed, at 8 degrees 

of angle of attack. The following freestream variables were used:  

 Mach number: 0.19; 

 Temperature: 288 K; 

 Reynolds number: 73.7e6, based on freestream velocity and a reference length of 

15.9 m, corresponding to the mean chord length of the BWB. 

The domain used for the trajectory simulations was a 40 by 20 by 40 m box clipped inside 

the original semi-spherical CFD domain of 1 million cells. The discretized clipped 

computation domain was an unstructured mesh composed of 357,129 cells. It should be 

noted that a finer mesh with more cells is needed, especially near walls, for an effective 



aerodynamic performance prediction. Nevertheless, this coarse base was enough for the 

verification of the trajectory code, as ice trajectories are mostly located outside the 

boundary layer and wake areas. Fig.2 presents the mesh and the computed streamlines 

around the BWB model. Ice particles are inserted at several locations near the wing leading 

edge. 

 

 

Fig.2 Surface mesh of the CFD model and streamlines around the geometry 

The CFD data file was used as an input for the trajectory code. The BWB geometry was 

chosen to demonstrate the ability of the code to perform trajectory simulation. In practice, 

the trajectory code can perform simulations in every CFD flow field or uniform flow field.  

The following assumptions were made about the physics of the system:  

 The CFD simulation is performed around a half-aircraft; 

 The flow field is calculated around a clean aircraft, without any ice accretion; 

 Ice particles do not influence the flow field (one-way coupling); 

 Ice particles are represented either as spheres or as plates; 



 The rotation of the spherical ice particle is not taken into account; 

 Only the normal force is taken into account for the plate. 

 

Trajectory code 

A 2D trajectory code (Védie et al 2016) is used as the starting point for  the present work, 

which extends its capabilities to 3D simulations with 6 DOF. The trajectory code is divided 

into modules. A first module brings together all the physical constants, variables and initial 

conditions. The other modules are part of the main program. One module contains all the 

governing equations of motion, plus the quaternions and the moment equations, in the case 

of the plate. These equations are solved by a module using MATLAB Ode23 (Shampine 

and Reichelt 1997). At each time step, an interpolation module computes the local velocity 

components by linear interpolation in the CFD flow field (see next section). Finally, the 

last module performs the outputs and graphs. The outputs returned are 3D plots of ice block 

trajectories around the BWB, and a 2D footprint of trajectories in an X-normal plane 

located 20 m downstream from the front end of the geometry. The algorithm of the code is 

similar to the one used by Papadakis et al (2007). Fig.3 presents the structure of the 

trajectory code.  



 

Fig.3 Algorithm of the trajectory code 

Theory and calculation 

In this section, the mathematical models used in each module described in the methodology 

section are presented. Trajectory calculations are centred on the Newton’s laws of motion. 

The challenges in the present case lay in modelling the aerodynamic forces and moments 

on the ice particle. Two different aerodynamic models were used, one for the plate and one 

for the sphere.  

 

Interpolation module 

This module is common for the plate and the sphere codes. Its aim is to calculate the 

velocity components in all three directions at every location (Xq, Yq, Zq) in the domain, 



using a linear interpolation. To perform the interpolation, the scatteredInterpolant 

MATLAB function is used (Amidror 2002). No errors due to the interpolation method were 

seen during the sensitivity tests carried out. With the velocity computed at position (Xq, Yq, 

Zq), the aerodynamic forces and moment can be computed using empirical correlations. A 

description of the interpolation module for 2D applications was presented in a previous 

paper (Ignatowicz and Morency 2017). 

Plate 

The plate is in a translational movement in all three directions, X, Y and Z, in the global 

reference axis and in rotation about its three local rotating axes, Xp, Yp and Zp. Its orientation 

at a given time is described by the three Euler angles, Ψ, θ and Φ, corresponding to the Zp, 

Yp and Xp rotations (see Fig.4). The plate has a dimension L in the Xp direction, l in the Yp 

direction, and a thickness e. The surface ratio is SR = L/l.  

 

Fig.4 Representation of the plate motion 



To describe the plate orientation, Min Fu et al (2013) propose using the quaternions instead 

of the raw Euler angles in order to avoid some situations with singular values, called 

Gimbal locks. The quaternions are four scalars, q1, q2, q3 and q4, determined from the Euler 

angles.   

These quaternions will also determine the matrix Rq(q) that can change a vector from the 

global to the local reference axis formulation. The expression of Rq(q) is detailed by Min 

Fu et al (2013).  

The motion and rotation of the plate are mainly a function of the aerodynamic forces acting 

on it. At each query point Pq, the flow field has a velocity V= [Uq; Vq; Wq] in the global 

reference axis and the plate itself has a velocity u= [u; v; w] in the same global reference 

axis. To compute the aerodynamic forces acting on the particle, the relative velocity Vrel = 

[ur; vr; wr] is needed (1).  

𝐕𝐫𝐞𝐥 =  𝐕 − 𝐮                  (1) 

This relative velocity has to be changed to the local rotating axis formulation using the 

Rq(q) matrix: 

𝐕𝐫𝐞𝐥𝐦 = 𝐑𝐪(𝐪)𝐕𝐫𝐞𝐥 = [𝑢𝑟𝑚; 𝑣𝑟𝑚; 𝑤𝑟𝑚]               (2) 

To be able to calculate the aerodynamic forces from this relative velocity, the two angles 

describing the orientation of the relative velocity in the mobile axis are computed: the angle 

of attack α and the side slip angle β (see Fig.5 and Eq. (3) for their definitions).  



 

Fig.5 Angle of attack α and side slip angle β 

 
α = asin (

𝑤𝑟𝑚

|𝐕𝐫𝐞𝐥𝐦|
) 

β = asin (
𝑣𝑟𝑚

|𝐕𝐫𝐞𝐥𝐦| cos(α)
) 

 

 

 

(3) 

With these angles and the assumption of Richards et al (2008) that the only aerodynamic 

force is the normal force acting on the center of pressure, in the mobile axis system, the 

components of the force FP are:  

 𝐹𝑋𝑃 = 0 

𝐹𝑌𝑃 = 0 

𝐹𝑍𝑃 = 0.5𝜌|𝐕𝐫𝐞𝐥𝐦|²𝐿𝑙𝐶𝑁       

 

 

(4) 

where: 

 ρ is the density of the air (kg/m3); 

 CN is the normal coefficient. 



According to Richards et al (2008), for a plate, the normal force coefficient is determined 

as a function of α and β by experimental tests in wind tunnel. These results are used to 

build a database. The normal coefficient is known for plates with a surface ratio SR of 1, 2 

or 4. Fig.6 illustrates the CN for SR = 1. The coordinates of the center of pressure are also 

given in the paper by Richards et al (2008). 

 

 

Fig.6 CN for a plate with SR =1, adapted from Richards et al (2008) 

 

To determine the translational motion of the plate in the reference axis, the force FP (4) is 

changed to the global reference axis formulation to solve the Newton equation of motion 

(5):  

𝑚𝐮̇ = 𝐅 + 𝑚𝐠                              (5) 



with: 𝐅 =  𝐑𝐪
−𝟏(𝐪)𝐅𝐏 𝑎𝑛𝑑 𝐠 = [0;  0; −9.81]. 

The dot stands for the temporal derivative, and m is the mass of the ice particle calculated 

with a density of 917 kg /m3.  

The angular velocity vector, about Xp, Yp and Zp, is Ω= [P; Q; R]. The static moment M of 

the plate at the center of gravity results from the force applied at the center of pressure. 

To avoid an unlimited angular velocity for the plate, Richard et al (2008) propose a 

dynamic moment Md to be added to the previous static moment:  

                                               𝐌𝐝 = 0.5ρ𝐂𝐝𝐦 (|𝐕𝐫𝐞𝐥𝐦| + |𝛀|
𝑙

2
) 𝐿𝑙3𝛀                       (6) 

𝑤𝑖𝑡ℎ 𝐂𝐝𝐦 = [−0.2;−0.185;−0.01] being the constant vector values selected to fit 

experimental results (Richards et al 2008). 

The total moment Mp is M+Md. Once the total moment and the matrix of inertia of the 

plate I are known, the conservation of angular momentum equation, with ⋀ standing for 

the cross product of two vectors, is:  

𝐈𝛀̇ = 𝐌𝐏 − 𝛀⋀𝐈𝛀                                       (7) 

The dynamic moment of Eq. (6) proposed by Richards et al (2008) is constantly opposed 

to the angular velocity. As shown in the results section, this eventually stops the rotation 

of the plate in its flight and induces a translating motion. However, experimental video 

recordings by Tachikawa (1983) show that in most cases, a plate is either totally in 

translation or in rotation, or evolves from translation to rotation. The case where a rotating 

plate acquires a translation motion was not observed.  



The dynamic moment proposed by Tachikawa (1983) was a 2D model. The fundamental 

aspect of this model is that the plate has a maximum angular velocity, depending on the 

flow relative velocity and the geometry. This angular velocity ω0 is given by Eq. (8):  

 
ω0 =

2|𝐕𝐫𝐞𝐥𝐦|𝐾

𝑙
 

(8) 

where:  

 ω0 is the maximum angular velocity (rad/s); 

 K is the parameter measured experimentally: 0.32 for a square plate, 0.45 and 0.48 

for an e/l ratio of 5.3% and 2.9%, respectively, for a rectangle plate (Tachikawa 

1983); 

 l is the dimension of the plate perpendicular to the rotation axis (m). 

The 2D dynamic moment proposed by Tachikawa (1983) has the generic expression given 

by Eq. (9), where Cmr is the dynamic moment coefficient, and is scalar since there is only 

one rotation (see Fig.7 for its definition).  

𝐌𝐝 =
1

2
ρ|𝐕𝐫𝐞𝐥𝐦|2𝐿𝑙²𝐶𝑚𝑟 

(9) 

The dynamic moment model of Eq. (9) was used for 2D motions involving only one 

rotation perpendicular to the flow direction. The present work proposes an extension to 3D 

models involving three rotations. In practice, the rotation about the Zp axis presents a very 

small frontal area (i.e., le or Le). The dynamic moment coefficient can then be assumed to 

be 0 for that rotation. The 3D-adapted model proposes to define maximum angular velocity 

values for the two rotations about XP and YP and the dynamic moment coefficients for both 

of them. The expression of the 3D dynamic moment is given by Eq. (10):  



𝐌𝐝 =
1

2
ρ|𝐕𝐫𝐞𝐥𝐦|2 [

𝑙2𝐿𝐶𝑚𝑟𝑥

𝐿²𝑙𝐶𝑚𝑟𝑦

0

] 

(10) 

where Cmrx, Cmry and Cmrz = 0, are the components of the 3D-extended dynamic moment 

coefficient Cmr. The 2D dynamic moment coefficient was experimentally determined by 

Tachikawa (1983) as a function of the ratio ω/ω0, where ω is the angular velocity of the 

plate (see Fig.7). 

  

 

Fig.7 Dynamic moment coefficient as a function of ω/ω0, adapted from Tachikawa  

(1983) 

 

In the 3D adaptation, the Cmr will be considered to be the same for the two rotations of the 

plate, meaning that the ω of Fig.7 stands for P or Q. Following that, the maximum angular 



velocity values will be denoted as P0, Q0. For the square plate, the value of 0.32 for K will 

be kept for the two rotations.  

For the rectangle plate, the K values determined by Tachikawa (1983) are 0.45 and 0.48, 

depending on the e/l ratio, as shown earlier. Tachikawa determined these values for a 

rotation about the longest axis of the plate, Xp. In the present 3D extension, K for the Xp 

rotation is chosen to be a linear function of the ratio e/l, matching the values of Tachikawa 

for ratios of 2.9 and 5.3%. This will allow the simulation of trajectories for plates with 

various thickness ratios. The K value for the rotation about the Yp axis was taken as 0.4 as 

the plate can rotate faster about the Yp axis than about the Xp axis due to a smaller length in 

the axis direction. This value of 0.4 is a hypothesis, and is an extrapolated value, based on 

the criterion that K has to be greater in that case than in the square plate case. Finally, the 

maximum angular velocities are given by Eq. (11), where the expressions are extrapolated 

from Tachikawa (1983): 

For a square plate: 𝑃𝑜 = 𝑄𝑜 = 0.64
|𝐕𝐫𝐞𝐥𝐦|

𝐿
 

            For a rectangle plate: 𝑃𝑜 = 2(−1.25
𝑒

𝑙
+ 0.516)

|𝐕𝐫𝐞𝐥𝐦|

𝑙
  

                           𝑄𝑜 = 0.8
|𝐕𝐫𝐞𝐥𝐦|

𝐿
 

 

 

 

(11) 

 

And the dynamic moment coefficient is:  



𝐂𝐦𝐫𝟑𝐃 = 

[
 
 
 
 𝑠𝑖𝑔𝑛(𝑃)𝐹𝐷𝑀(

|𝑃|

𝑃0
)

𝑠𝑖𝑔𝑛(𝑄)𝐹𝐷𝑀(
|𝑄|

𝑄0
)

0 ]
 
 
 
 

 

 

(12) 

The linear by segments function of Fig.7 is denoted FDM. The absolute values and the sign 

function are used to allow positive and negative rotations, since the graphs of Fig.7 were 

experimentally obtained by Tachikawa for positive angular velocities. The assumption in 

the present work is that for a negative rotation, the value of the dynamic moment coefficient 

is the same, but of opposite sign. Eq. (8) shows that K is one of the major parameters 

involved in the model. Nevertheless, a sensitivity analysis performed shows that varying 

K has a minor impact on the trajectory. Setting K at 0.30 instead of 0.32 (6% variation ) for 

the square plate implies a variation of 1.3 cm in the trajectory path after 20 m travelled, 

representing an error of just above 0.06 %. For the same amount of variation of K, the 

conclusion is the same for the rectangle plate: differences in trajectories are less than 0.1%. 

By solving the translation, the moment and the quaternion equations simultaneously, the 

trajectory of the 6 DOF plate is computed in the flow field around the BWB. The six 

ordinary differential equations are solved with a Runge-Kutta integration scheme. The 

system solved is composed of Eqs. (5) and (7) and quaternion derivatives described by 

Suares (2005), forming a set of 10 equations. 

Sphere 

The computation of the sphere trajectory is an interesting case for numerical method 

verifications due to its simplicity. As the sphere is symmetric, the only significant 

aerodynamic force is drag, since the rotation is not considered. The global reference axis 



(X, Y, Z) and the local sphere’s axis are parallel to the global reference at all times. The 

definition of the relative velocity, of the angle of attack, and of the side slip angles are the 

same as in the plate case (see Eqs. (2) and (3)). The drag acts at the center of gravity, and 

is parallel to the relative velocity. Eq. (13) gives the general expression of the drag: 

𝐷 = 0.5ρ|𝐕𝐫𝐞𝐥|
2𝑆𝐶𝑑                  (13) 

where: 

 S is the frontal area (m²) which is πr², with r being the sphere radius; 

 Cd is the drag coefficient. 

Clift, Grace and Weber (1978) give correlations to determine the Cd coefficient depending 

on the Reynolds number (Re). These correlations are shown in Table 1, next. 

Table 1. Clift et al.’s (1978) sphere drag coefficient correlations 

Reynolds number range Empirical Cd value 

Re < 0.01 
3

16
+

24

Re
 

0.01< Re ≤ 20 
24(1 + 0.1315Re0.82−0.05 log(Re))

Re
 

20 < Re ≤ 260 
24(1 + 0.1935Re0.6305)

Re
 

260 < Re ≤ 1500 101.6435−1.1242 log(Re)+0.1558log (Re)² 

1500 < Re ≤ 12000 10−2.4571+2.5558 log(Re)−0.9295 log(Re)2+0.1049log (Re)3 

12000 < Re ≤ 44000 10−1.9181+0.6370 log(Re)−0.0636log (Re)² 

44000 < Re ≤ 338000 10−4.3390+1.5809 log(Re)−0.1546log (Re)² 

338000 < Re ≤ 400000 29.78 − 5.3 log(Re) 

400000 < Re ≤ 1·106 0.1 log(Re) − 0.49 

Re > 1·106 0.19 −
8 · 104

Re
 

 



 Finally, the three aerodynamic forces acting on the sphere along each direction are (Eq. 

(14)):  

 𝐹𝑥 = 𝑠𝑖𝑔𝑛(𝑢𝑟)0.5ρ|𝐕𝐫𝐞𝐥|
2𝑆𝐶𝑑cos(α) cos(β) 

𝐹𝑦 = 0.5ρ|𝐕𝐫𝐞𝐥|
2𝑆𝐶𝑑 cos(α) sin(β) 

𝐹𝑧 = 0.5ρ|𝐕𝐫𝐞𝐥|
2𝑆𝐶𝑑sin(α) 

 

 

 

(14) 

Because α and β are defined as sin-1, their values lie between -90° and 90°. Thus, cos(α) 

and cos(β) are always positive. To avoid having Fx always positive, the sign function is 

used to align the force with the relative velocity direction. 

Results and discussion 

In this section, the models described in the previous section will be used to perform 

trajectory simulations around the BWB. Trajectory patterns around the airplane geometry 

will be shown, as well as footprints of the trajectories in a transverse plane 20 m 

downstream from the nose of the BWB. Prior to these simulations, the code results will be 

compared and validated against the results of Richards et al (2008) and Tachikawa (1983), 

for the plate, and against those of Holmes (2004), for the sphere. Both dynamic moment 

models for the plate will be compared to see the differences in trajectories, and finally, the 

difference in footprint distribution behind the BWB between the two models will be 

highlighted.  

 

 

 



Validation 

Plate 

o Trajectory code with hybrid dynamic moment  (Richards et al 2008) 

 Only a few articles in the literature present detailed (X, Y, Z) coordinates for computed 3D 

trajectories of 6 DOF plates. The single trajectory numerical pattern presented by Richards 

et al (2008) is used for verification. For this test case, the conditions used are:  

 Plate with SR = 2, 0.0225 m² area, i.e., l = 0.1061 m and L = 0.2122 m, and e = 

0.002 m; 

 Surface density of 0.340 kg/m², corresponding to a density of 170 kg/m3 ; 

 10 m/s uniform flow field in X direction; 

 Initial orientation of the plate: Ψ = 30°, θ = 20°, Φ = 30° (see Fig.4). 

Comparisons are shown in Fig.8. These two graphs show the trajectory in the XZ and XY 

planes, respectively. The trajectory code results are obtained with the model presented in 

the preceding sections. The differences observed are due to the sensitivity of the trajectory 

pattern regarding the CN value. Sensitivity tests carried out showed that a 3% variation in 

the CN value leads to a difference of about 8% for the final Y or Z coordinate. The trajectory 

simulated is longer than the test case proposed by Richards et al, and provides an idea of 

the trend of the path after 3 m in X, since the reference pattern is short. The dynamic 

moment used was the one proposed by Richards et al (2008). 

 



 

Fig.8 Comparison with the trajectory of Richards et al (2008) 

 

The 3D plate trajectory calculations present satisfactory agreement with the results from 

the literature: the overall maximum difference observed is 9 cm in the XZ plane for X = 

1.32 m, which represents less than 7% of variations with respect to the X distance travelled.  

o Tri-linear dependent dynamic moment based on Tachikawa (1983) model 

A 3D extension of the 2D dynamic moment was developed based on the model proposed 

by Tachikawa (1983), in parallel with the implementation of the Richards et al (2008) 

model. The new model developed in this paper will be called the 3D tri-linear model. Since 

Tachikawa worked on 2D trajectories, results presented in his paper provide 2D side views 



of trajectories in the XZ plane for different initial pitching angles of the plate. The 

conditions of the two test cases used to validate the 3D tri-linear model are:  

 Square plate with L = 0.04 m side length, thickness  e= 0.002 m, density 1120 

kg/m3; 

 X-unidirectional horizontal wind at 9.2 m/s; 

 Initial pitching angles θ0 = 45° and θ0 = 75°. 

The comparisons are presented in the following figure, where the experimental curves from 

Tachikawa’s video recordings are digitized from his paper, along with the results of his 

experimental tests.  

 

Fig.9 Comparison with Tachikawa’s (1983) results, with initial pitching angles of 45° 

and 75° 

  



The maximum difference observed with respect to the horizontal distance travelled is 

between 13 and 15%. These differences are acceptable since the trajectory code model uses 

the correlation of Richards et al (2008) for the aerodynamic normal coefficient. Tachikawa 

did not use the same model for the aerodynamic coefficient, but rather, adapted it 

depending on the dynamic effects. In the present 3D tri-linear model, this dependence is 

neglected. To highlight the capability of the 3D code, the previous test case, with an initial 

angle of 75°, was reproduced with a Y-unidirectional wind. The initial angle of release was 

about the Xp axis:  

 

Fig.10 Side view comparison, with a Y-unidirectional wind  

 



With a wind in the Y direction, the pattern is still in accordance with the observations of 

Tachikawa, presenting less than 5% in differences. 

It is interesting to compare both dynamic moment models for the same test case. The 

following figures present comparisons for the test case used for the verification of the 

dynamic Richards et al model. Fig.11 shows comparisons of the trajectories, while Fig.12 

presents a comparison of the dynamic moment value and the angular velocity. 

 

Fig.11 Trajectory comparisons between the two dynamic moment models 

 



 

Fig.12 Dynamic moment value (a) and angular velocity (b) comparison  

As expected with the definitions of the moments given in the theory section, the moment 

proposed by Richards et al has a sign constantly opposed to the angular velocity, while the 

3D tri-linear dynamic moment model presents a moment with the same sign as the angular 

velocity. These discrepancies lead to the angular velocity being 0 in the Richards et al case, 

and blocks the rotation of the plate after a certain period. The same observation was made 

for the other two rotations about the Xp and Zp axes. While the plate is rotating, both models 

have a similar trajectory. Once the plate stops rotating in the case of Richards et al (around 

14 m in X direction), it obviously leads to an increase in the differences between the 

trajectories. It would therefore seem that the Richards et al model is suitable for a short 

simulation distance before the plate stops rotating. Such differences can be explained using 

the equations describing the models. The Richards et al model, shown in Eq. (6), is mainly 



a damping moment that most often damps the rotation of the plate. The 3D tri-linear model, 

described in Eqs. (10) and (12), will mostly aid in this rotation, only damping when the 

limiting angular velocity of Eq. (11) is reached. The 3D tri-linear model is better suited for 

longer travelled distances, a quality that is required for aeronautics applications.  

Sphere 

In the case of the sphere, past studies show 2D results in uniform flow fields. For 

verification of this paper’s 3D code, the uniform flow field is oriented in all three directions 

to ensure that the results are consistent, prior to comparisons with the literature. The 

trajectory code results are compared to the results of Holmes (2004) for shed spheres in 

hurricanes. The test case from Holmes has the following conditions: 

 0.080 m diameter sphere; 

 Wooden sphere of 500 kg/m3 density; 

 Constant unidirectional wind speed of 30.0 m/s; 

 Constant drag coefficient of the sphere at 0.5, but the correlation of the theory 

section (Clift et al 1978) is kept in the trajectory code to ensure that the code 

developed for aeronautics applications is consistent. 

The following figures present the comparison with Holmes (2004): Fig.13 plots the 

horizontal displacement and the horizontal sphere speed versus time. Fig.14 presents the 

side view of the trajectory seen in the XZ plane.  



 

Fig.13 Comparison of sphere velocity and displacement with Holmes (2004) results 



 

Fig.14 Trajectory comparison in XZ plane with Holmes (2004) results 

The results match the curves from the literature perfectly on some portions, and the 

maximum differences observed at t = 1.4 s in Fig.13 and X = 8.5 m in Fig.14 are acceptable. 

The 3D sphere trajectory code shows less than 4% of differences for the biggest gaps, at 

the end of the trajectory pattern, and is in accordance with the literature, despite not having 

the same drag coefficient correlation. Holmes chose to keep it constant at 0.5, while the 

trajectory code uses the correlation depicted in the theory section (Clift et al 1978). 

Nevertheless, the correlation used gives a drag coefficient of about 0.5 for the Reynolds 

numbers reached in the validation test case. At t = 1.6 s, the relative velocity is 9.4 m/s, 

which corresponds to a drag coefficient of 0.4674. This decrease in the drag coefficient 



value along the trajectory can explain the small differences at the end of the graphs of 

Figs.13 and 14.  

Trajectories around the BWB 

Plate 

Trajectory calculations are done in the flow field described in the methodology section to 

demonstrate the capability of the code in a non-uniform aerodynamic flow. The plate is a 

square with a side length of 0.1 m. The results are presented as (X, Y, Z) plots in Fig.15. 

The initial conditions and location of the plate for each of the simulations presented were 

chosen randomly among 300 trajectories. For clarity, only four trajectories are shown in 

Fig.15. Note that the dynamic moment used for these simulations is the 3D tri-linear model: 

 

Fig.15 Trajectories of plates around the BWB: 3D view (a) and top view (b) 

An analysis of the flow field next to the wing shows a non-negligible Y velocity of the 

flow, meaning that the aerodynamic forces are responsible for the plates shed from the 

wing having a visible Y translation component. The gravity has only minor effects on the 

trajectory. 



Sphere 

 Other verification test cases were done with a 0.04 m diameter sphere in the same flow 

field. Table 2 presents the initial conditions of the trajectory patterns shown on the left side 

of Fig.16. These initial conditions differ from those in the plate case to avoid collisions 

with the airplane surface. In the case of collisions, a post-treatment of the trajectories 

ensures plotting only the part of the trajectories before the impacts instead of going through 

the surface. Thus, the initial conditions presented in Table 2 are cases that ensure a 

trajectory without collisions against the BWB. 

Table 2. Initial conditions of the sphere simulations 

Simulation Initial position X Y Z  

(m) 

Initial velocity u v w 

 (m/s) 

Simu 1 15.07  12.05  0.0600 -0.200  0  0.200 

Simu 2 16.70  13.89  0.143 -0.200  0  0.200 

Simu 3 10.71  6.93  0.105 -0.200  0  0.500 

 

In the case of the sphere, only the drag acts, parallel to the flow velocity. The sphere 

trajectory should then present a pattern close to, but not totally identical to, the streamlines 

of the flow field due to inertia and gravity. Fig.16 presents a comparison between the 

trajectories and the streamlines, as seen from above the BWB. The right view shows the 

streamlines in the flow field near the initial location of Simulations 1 and 2. 



 

Fig.16 Comparison between the spheres trajectories (a) and the streamlines (b) 

Fig.16 shows that the trajectories of Simulations 1 and 2 present a similar orientation as 

the streamlines passing around the end of the wing. This comparison allows verification of 

the trajectory code results for the sphere at the tip of the wing. The streamlines move away 

from the center body once they get near to and downstream from the wing leading edge. 

The sphere trajectories show the same tendency, although the sphere inertia removes some 

curvature to the path.  

Footprints in a transverse plane 

It is interesting to note the effect of the dynamic model choice on the footprints of the 

trajectories in a cross-plane near the rear of the aircraft. Fig.17 shows footprints of ice 

blocks in the YZ cross-plane located 20 m downstream from the nose of the BWB for both 

dynamic moment models. It should be noted that the view of the airplane in Fig.17 does 

not show the section by the cross-plane, but rather, the global rear view of the BWB. A 

sample of 500 initiated particles was used. All ice particles were released at different 

locations on the wing since these locations are more likely to present ice accretion in real 

situations. The range of positions on the wing in the Y direction were between 6.0 and 13.9 



m and between 9.5 and 16.7 m in the X direction. The simulations in Fig.17 were carried 

out with plates with a 0.1 m side length. All initial conditions were chosen randomly: the 

position, orientation and initial velocity of the particle were random between 0 and 0.5 m/s 

in both the X and Z directions.  

 

Fig.17 Plates’ footprints using the Richards et al (2008) model (a) and the 3D tri-linear 

model (b) 

The following figure converts the previous raw footprints into a probability map, 

highlighting the zones with a high chance of plate crossings. It can be seen that the mapping 

differs from one model to the other, confirming the trend seen with the raw footprints. The 

tri-linear model tends to spread the plate less and gets the high probability zones closer to 

the aircraft than does the Richards et al model. 

 



Fig.18 Plates’ probability map location using the Richards et al (2008) model (a) and the 

3D tri-linear model (b) 

Differences are observed between the two dynamic moment models. The Richards et al 

model, blocking the rotations as seen earlier, presents a wider dispersion, especially in the 

Z direction. This is explained by the fact that once blocked in rotation in the first case, the 

plate continues in a privileged direction, depending on the final and fixed orientations. In 

the case of the proposed 3D model, the plate can rotate freely and adapt its orientation to 

the flow field. The footprint shows a trajectory concentration just below the wing. Note 

that about 38 to 44% of ice blocks reach the X = 20 m plane, meaning 56 to 62% of blocks 

strike the aircraft. The computed trajectories are sensitive to the choice of the dynamic 

moment model. For real ice fragments, it is to be expected that the constant K and 𝜔0 

should be fixed using numerical or experimental databases. 

The results shown demonstrate the ability of the code to generate footprints. These 

observations are not definitive, and further work on probabilistic trajectories, with around 

104 footprints, has to be carried out to obtain statistically valid conclusions regarding the 

footprint distribution and validate an engine location.  

Conclusions 



During the development phase of an aircraft, anticipating ice ingestion and impacts by 

numerical trajectory simulation is crucial. A three-dimensional 6 DOF Lagrangian 

approach models the trajectory of the sphere and plate ice particles. The innovation in the 

approach in the present work lies in developing a 3D tri-linear dynamic moment model 

based on previous 2D work in order to allow the plate to rotate during its complete 

movement. The solution of the equations of motion and quaternion equations to model the 

particle motion and rotations implied the use of an interpolation module to compute the 

flow velocity at each point from a CFD solution. In a Lagrangian frame of reference, 

correlations from the literature determine the static aerodynamic coefficients. Finally, the 

code is in good agreement with previous works in wind engineering. As a proof of concept, 

the code is used to study footprint sensitivity to the dynamic model selection around a 

blended wing body aircraft in a low speed phase. Future work will focus on dynamic model 

improvement for the plate and ice fragments using CFD. The statistical study of the 

trajectories and the related uncertainties will also be used for the verification of high-

fidelity methods based on immersed boundary methods.  
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