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Abstract: Surface plasmon are widely used to promote the exciton generation and light 
absorption in solar cells and photodetectors. In this work, a feasible approach for UV-VIS-
NIR photodetection using plasmon-enhanced silicon nanowires (SiNWs) and amorphous 
TiO2 heterostructure is presented. The photodetector shows excellent photo response up to 3.3 
orders of magnitude enhancement with rise/decay times of 77/51 µs. Under small external 
bias (1V), the photodetector exhibits very high responsivity up to 49 A/W over a broadband 
wavelength range from 300-1100 nm. All the experimental procedures are performed at room 
temperature in ambient conditions. Its simple fabrication route and excellent performance 
make this photodetector distinct from similar architectures. Our finding offers new 
opportunities to engineer plasmon-based nanostructures in chemical sensors, optoelectronics 
and nanophotonic devices and applications.  

Keywords: Silicon nanostructure, plasmonic effect, TiO2, UV-VIS-NIR photodetectors, 
heterojunction. 

1. Introduction 
 
Nanoplasmonics has gained lots of attention thanks to its unique capability of light 
manipulation in the sub-wavelength regions[1-4]. From the historical Lycurgus cup[5], 
crafted by the Romans in 400 A.D., which consists of gold and silver nanoparticles suspended 
in glass to cutting edge devices like nanoscale laser, optical and photonic devices, biomedical 
imaging, and energy storage, it has a wide variety of applications[6-10]. Plasmonics 
technology can also be used to improve absorption in solar cells. As a result, solar 
photovoltaic absorber layers can be made considerably thinner, giving new design options for 
solar cells[4]. Photodetectors play a crucial role in photonic chips. The next generation of 
highly integrated photonic chips will require photodetectors with sub-nanometer details[11]. 
In recent years, researchers have achieved nanosecond response times with hybrid perovskite 
photodetectors[12]. The device architecture, however, is somewhat complex. 

Page 1 of 15 AUTHOR SUBMITTED MANUSCRIPT - NANOX-100615.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

mailto:sylvaing.cloutier@etsmtl.ca


Plasmonic nanoparticles have unprecedented optical properties which further enhance the 
performance of the devices for various applications such as chemical sensing[13], detection, 
night vision, and spectroscopy[14]. Plasmon-enhanced nanostructures have been used for 
more than a decade now to fabricate high performance photodetectors. The preparation 
process, however, is usually complicated and expensive because mostly electron beam 
lithography is utilized to prepare the nanostructures[15].  Other than that, several chemical 
and physical techniques are used to synthesize the plasmonic nanoparticles such as seed 
induced nucleation, ion exchange methods, galvanic displacement methods etc.[16-18]. Seed 
mediated nucleation relies on the degree of the lattice matching between different components 
which are challenging to achieve. Yet these plasmon-enhanced nanostructured devices still 
required high bias voltages, high temperatures, or other complex fabrication processes in 
order to perform as desired[3]. In contrast, galvanic displacement uses all solution-based 
chemical redox reactions in which metallic nanoparticles are reduced, deposited, and the 
substrate is oxidized. This technique offers precise control over the nanostructure’s length, 
diameter, and other important parameters[18-20].  

During the past two decades, Silicon nanowires (SiNWs) have gained considerable attention 
due to their unique chemical and physical properties[21-24]. The confluence of the 
confinement of one-dimensional nanostructure with the plasmonic effect of metallic 
nanoparticles makes the best use of the SiNWs in sub nano dimensions. The surface 
functionalization of SiNWs using Ag nanoparticles enhances the UV to NIR absorption 
through the nanoplasmonic effect, collecting and transporting the photo excited electrons to 
the electrodes[25, 26]. 

Crystalline TiO2 gained much attention for its metal-oxide-semiconductor nature since 
decades. The large band gap of TiO2 makes it a suitable material for UV detection[27-30]. 
The amorphous phase of TiO2 has not been explored as extensively before, despite of having 
similar electronic properties as the crystalline phase[31, 32]. We have previously optimized 
amorphous TiO2 based photodetectors to have similar behavior, which is comparable to 
anatase TiO2 based devices[33, 34]. Making a heterojunction with amorphous TiO2 in 
conjunction with plasmonic SiNWs extends its detection ability in a broadband wavelength 
range from UV to NIR.  

To address the current problems regarding broadband photodetection using low bias, simple 
fabrication route and good performances, we have demonstrated a photodetector architecture 
using plasmon sensitized n-SiNWs / amorphous TiO2 heterostructure in this manuscript. 
When exposed to air, SiNWs form native oxide layer. The native oxide layer acts as an 
electrical insulator, further limiting the conduction across the junction of the device[35]. 
Adding TiO2 on top of SiNWs to form the heterojunction enhances device performance by 
reducing electron injection barriers and enabling a larger electron flow[36]. TiO2 is reported 
to have a greater thermodynamic stability than SiO2 in the literature[37].The geometry of the 
SiNWs enhances with the Ag nanoparticles which further increase the UV and NIR 
absorption through the nanoplasmonic effect. Similar architecture shows excellent 
photoelectrochemical performance indicating its application across various fields[38]. The 
device fabrication process, however, was more complex than the current research.  

 

2. Results and discussions 
 
Plasmon sensitized SiNWs are fabricated using galvanic displacement method (GDM). The 
details of the synthesis process are described in the materials and method section. Figure 1a 
shows the surface morphology of the as synthesized plasmon sensitized SiNWs. The 450 tilted 

Page 2 of 15AUTHOR SUBMITTED MANUSCRIPT - NANOX-100615.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



cross-sectional SEM image is depicted in the figure 1b. Commercially available amorphous 
TiO2 sol-gel are spin coated on top of the plasmon sensitized SiNWs. The surface and 450 
tilted cross-sectional SEM images of the heterojunction are depicted in the figure 1c and 1d 
respectively. The plasmonic nanowires structure on Si substrate contributes to generating 
more electron hole pairs (EHPs) by trapping more of the incident light. As suggested by the 
literature[2, 39, 40], the nanoplasmonic SiNWs have increased scattering cross-section and 
optical path length which further helps in light harvesting and light trapping. As a result, these 
nanoplasmonic SiNWs produces more EHPs. The UV/VIS/NIR spectroscopic plot in figure 
2a reveals the enhanced near UV and NIR absorption of the nanoplasmonic SiNWs to benefit 
the creation of EHPs. 

 

 

Figure 1: (a) Surface, and (b) 450 tilted SEM images of the plasmon induced SiNWs, (c) Surface, and (d) 450 tilted 
SEM images of the plasmon induced SiNWs/amorphous TiO2 heterojunction. 

Aiming at increasing optical absorption in nanoplasmonic SiNWs, the volumetric proportion 
of Ag nanoparticles is controlled by the cleaning process after GDM. The big dendrite layers 
of Ag are removed using dilute HNO3 leaving the minute amounts of Ag nanoparticles on the 
top and the sidewalls of the SiNWs. The reduced reflection of the nanoplasmonic SiNWs 
after removing the dendrite layers can be attributed to the increased absorption due to a strong 
interaction between the free electrons in the Ag nanoparticles and the incident 
electromagnetic radiation. However, the nanoplasmonic SiNWs with the dendrite layers 
(before cleaning) results in increased reflection (shown in the figure S1 in the supplementary 
information section) as the larger density of Ag leads to the percolation effect[41], hence 
acquiring a strong metallic character that inhibits refraction into the layer.  In addition to the 
reflection spectrum of SiNWs, it is evident that the addition of nanoplasmonic Ag results a 
remarkable reduction of the reflection. This behavior can be ascribed to the higher imaginary 
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value of the refractive index that further contributes to the increased optical absorption by the 
Ag nanoparticles. Moreover, the maxima and minima values of reflectance are getting shifted 
due to the changes of the complex nature of the effective refractive index in the spectrum. 
This effect can be attributed to GDM which deposits Ag nanoparticles and creates pores as 
well. The nanoplasmonic Ag suppress the reflectance from the SiNWs throughout the entire 
polychromatic spectrum. The reflectance reduction from the UV region can be attributed to 
the quadrupolar resonance effect of Ag nanoparticles[42, 43]. Scattering of light takes place 
due to the large distribution (from 5-100 nm) of the nanoparticle sizes. Figure 2c 
demonstrates the size distribution of the Ag nanoparticles from the SEM image (figure 2b) 
using image J freeware. The nanoparticles are varied between 5 nm size up to 100 nm. When 
the nanoparticle size is <20 nm, the forward scattering increases due to the small contact area 
between the nanoplasmons and nanowires which establishes a good agreement with the 
literature[44, 45]. The reduction of reflectance from the VIS and NIR region is due to the 
increased Ag nanoparticle size which provides greater surface coverage on SiNWs[42]. Near 
the band gap, Si cannot absorb much light. Therefore, even a small reflection reduction is 
very significant near the band gap region.  

 

 
Figure 2: (a) Optical reflectance of SiNWs arrays and nanoplasmonic SiNWs arrays, (b) Nanoplasmonic SiNWs, and 

(c) Ag nanoparticle size distribution  
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Figure 3: (a) Device architecture and (b) Current vs. voltage characteristics of the plasmon induced 
SiNWs/amorphous TiO2 heterojunction photodetector. 

The schematic of the photodetector device has been illustrated in figure 3a. The photo 
response properties of the photodetector are demonstrated by the current vs. voltage 
characteristic in the dark and 1.5 G illumination as shown in figure 3b. It clearly shows that 
the current of the device increases significantly up to 3.3 orders upon illumination with A.M. 
1.5 G incident light at room temperature. 

Due to having a wide bandgap of around 3.2 eV, TiO2 produces photo generated carriers 
under 1V applied bias and UV illumination. Similarly, the nanoplasmonic SiNWs produced 
photo generated carriers under 1V applied bias and near UV-VIS-NIR illumination thanks to 
the plasmonic effect and relatively narrow band gap of Si. Surface plasmons can trigger 
plasmonic hot carriers with higher energy than those induced by direct excitations. SiNWs 
have a wider band gap than bulk Si because of the nanostructure. Researchers have found that 
SiNWs have a broad absorption spectrum, which is a consequence of bandgap broadening 
compared to bulk material[46]. Using the Kubelka-Monk method[47], S. D. Hutagalung and 
his team calculated the bandgap of MACE synthesized SiNWs in 2017 and determined that 
their bandgap is little wider (1.2 eV) as compared to their bulk counterparts (1.12 eV at room 
temperature)[46], and validated their results through other literature[48, 49]. Since the Fermi 
level of the SiNWs is higher than the Si substrate, electrons will flow from SiNWs to Si and a 
depletion region will be formed in SiNWs region. The band diagram of the photodetector 
device is shown in figure 4.  
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Figure 4:  Band diagram of the charge separation process under 1V external bias. 

The transient photo response behavior of the photodetector device is analyzed as 
demonstrated in the figure 5a and 5b. The response times of the photodetectors are 
determined by the rise and the decay times using a bi-exponential curve fitting as shown in 
figure S3 in the supplementary document section which is a method reported in the 
literature[50-52]. 

The rise and decay times of the photodetector device are found to be 77 µs and 51 µs 
respectively which indicates the fast response behavior from the nanoplasmonic photodetector 
devices. The small rise/decay times assure relatively fast response detection for several 
applications like portable equipment considering such a simple route of fabrication.  

 

Figure 5: (a) Transient photo response of the plasmon induced SiNWs/amorphous TiO2 heterojunction, (b) A single 
pulse from (a) use for the determination of the rise and decay of the current in time through bi-exponential fitting. 
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Figure 6: (a) EQE and (b) Responsivity and detectivity plot of the plasmon induced SiNWs/amorphous TiO2 
heterojunction. 

 

To complete the evaluation of the nanoplasmonic photodetector devices, the external quantum 
efficiency, responsivity and detectivity of the devices are probed using 1V external bias. 
Figure 6a shows the EQE in a broadband wavelength range from 300-1100 nm. The peak 
value of the EQE reaches up to 85% at 475 nm. Another crucial parameter is the spectral 
responsivity which determines the spectral behavior of the photodetectors. The spectral 
responsivity is characterized by the method described in the materials and method section and 
used the formula: 𝐷𝐷∗ = 𝑅𝑅(𝐴𝐴)1 2⁄ / (2𝑒𝑒𝐼𝐼𝑑𝑑)1 2⁄  to calculate the detectivity (where A denotes the 
active area (0.009 cm2) of the device, R is the responsivity, Id  is the dark current, and e is the 
elementary charge).  Figure 6b illustrates the spectral responsivity and detectivity of the 
nanoplasmonic photodetector device from 300-1100 wavelength range under 1 V external 
bias. The peak responsivity reaches up to 11 A/W in the near UV region, and 34 A/W and 49 
A/W in the VIS and NIR region respectively. The detectivity of these photodetector devices 
reaches up to 6.84 E11 Jones, 2.16 E12 Jones and 3.11 E12 Jones in the near UV, VIS and NIR 
regions respectively. Simply adding these minute amounts of Ag nanoparticles extends the 
photodetection from UV-VIS region to UV-VIS-NIR region as compared to the pristine 
SiNWs/ amorphous TiO2 devices as shown in our previous report[33]. Table 1 illustrates the 
performance comparison between the pristine and nanoplasmonic SiNWs/ amorphous TiO2 
based photodetectors. Hence, the superior performance of the nanoplasmonic photodetector as 
compared to our previous report[33] can be attributed to the nanoplasmonic effect. If the 
photon energy is too low while the wavelength is very long, then the essential condition for 
the bandgap (hv > Eg, where hv is the photon energy and Eg is the bandgap) no longer holds, 
causing the responsivity to drop to zero. Indeed, we can see significantly higher responsivity 
values (figure 6b) in the NIR region as compared to the VIS and UV region. The peak values 
of responsivity, EQE and detectivity at different wavelengths of the nanoplasmonic 
photodetector are illustrated in the table 2. 
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Table 1: Performance comparison between pristine[33] and nanoplasmonic SiNWs/amorphous TiO2 photodetectors. 

 

Wavelengt
h (nm) 

EQE (%) R (A/W) Rise/Decay times Dark to 
Photocurrent 
enhancement ratio 

350 25 (pristine) 
38 
(nanoplasmonic) 

6 (pristine) 
11 
(nanoplasmonic) 

0.23/0.17ms 
(pristine) 
77/51 µs  
(nanoplasmonic) 

2 orders of magnitude 
(pristine) 
3.3 orders of 
magnitude 
(nanoplasmonic) 

500 76 (pristine) 
84 
(nanoplasmonic) 

25 (pristine) 
34 
(nanoplasmonic) 

  

1000  N/A (pristine) 
50 
(nanoplasmonic) 

N/A (pristine) 
41 
(nanoplasmonic) 

  

 

 

Table 2: EQE, responsivity and detectivity values at different wavelengths (near UV, VIS, NIR). 

 

Wavelength (nm) EQE (%) R (A/W) D* (Jones) 

350 38.18 10.78 6.84 E 11 

500 84.29 34.04 2.16 E 12 

1000 50.35 40.65 2.58 E 12 

Maximum/peak values 85.88 
 at 475 nm 

49.16  
at 930 nm 

3.11 E 12 
 at 930 nm 
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Figure 7: Histogram of the responsivity in the UV, VIS and NIR region for 5 photodetectors. 

 

Figure 7 illustrates the histogram of the peak values of the responsivities of 5 photodetector 
devices. In the near UV region, the photodetector devices demonstrate peak responsivities 
between 10-11 A/W, in the VIS region, the responsivities lie between 32-34 A/W, while in 
the NIR region the peak value of the responsivity lies in the range of 46-49 A/W. The 
histogram discloses good reproducibility and superior performances for all the photodetector 
devices. 

Table 3 demonstrates the performance comparison of the photodetector devices with the state-
of-the-art devices. With a low applied bias (1V), this work reports a fast UV/VIS/NIR 
photodetector with high responsivities. Since it relies completely on solution-based 
fabrication under ambient conditions, it is also the most accessible of alternative fabrication 
methods. 

Table 3: Comparison of the key parameters with the state-of-the-art. 

 

Paper Rise/decay 
times 

Responsivity External 
bias 

Processing 
temperature 

Morphology Method 

Selman 
et.al.[53], 
2015 

50.8/57.8 
ms 

0.45 A/W @ 
325 nm 

5V 550 C p-Si/rutile TiO2 
nanorod 

sputtering 

Hosseini 
et.al.[54], 
2016 

60/150 s N/A 4.2V 850 C p-Si/n-TiO2 
nanostructures 

Thermal 
oxidation 
growth 

Ji et.al.[28] 
2017 

0.05/0.05 s 17 mA/W 
@365 nm, 2 

-2 to -4V 600 C n-Si/TiO2 
nanorod 

Sputtering 
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A/W @565 
nm 

Banerjee 
et.al.[33] 
2019 
(previous 
work) 

0.23/0.17 
ms 

6 A/W @ 
350 nm, 
25 A/W @ 
500 nm 
 

1V Room 
temperature 

n-
SiNWs/amorph
ous TiO2 thin 
film 

All 
solution 
based 

Banerjee 
et.al.[34] 
2020 
(previous 
work) 

0.16/0.14 
ms 

10 A/W @ 
350 nm, 33 
A/W @ 500 
nm 

1V Room 
temperature 

n-porous 
Si/amorphous 
TiO2 thin film 

All 
solution 
based 

El-
Mahalawy 
et.al.[11] 
2022 

50.2/52.8 
ms 

70.8 mA/W 
@ 280 nm 

Self 
powered 

60 C Plasmonic n-
TiO2/p-Si 

All 
solution 
based 

Banerjee 
et.al. 2022 
(this work) 

77/51 µs 11 A/W @ 
350 nm, 34 
A/W @ 500 
nm, 41 A/W 
@ 1000 nm 

1V Room 
temperature 

Nanoplasmonic 
n-
SiNWs/amorph
ous TiO2 thin 
film 

All 
solution 
based 

 

 

  

3. Materials and methods 
3.1 Fabrication procedure 

 
Plasmon sensitized SiNWs are fabricated by employing all solution based GDM. Details of 
the GDM have been described elsewhere[55, 56]. For this study, we have used low doped n 
type Si wafer with the resistivity of 1-10 ohm-cm. The etchant solution contains 0.02M silver 
nitrate (AgNO3) solution and 4.6M hydrogen fluoride (HF) solution mixed in 1:1 ratio. The Si 
substrates have cleaved into 1 cm2 pieces and cleaned using ultra sonication with acetone and 
IPA for 15 minutes each. Then the Si pieces have rinsed with deionized (DI) water and dried 
using nitrogen (N2) flow. The cleaned samples are transferred immediately into the etching 
bath at room temperature for 40 minutes. After the etching, vertically aligned SiNWs have 
been formed covered with Ag dendrites layers. These Ag dendrites layers are removed using 
diluted nitric acid (HNO3) solution (1:5 of 70% HNO3 and DI water) for 30 minutes at room 
temperature. Vertically aligned SiNWs with Ag nanoparticles on the sidewalls of the 
nanowires are found after the cleaning. Pure SiNWs have found without any Ag 
contamination when the cleaning has been done using concentrated (70%) HNO3 at room 
temperature for 1 hour. Hence, the post cleaning protocol after the fabrication of the 
nanowires plays the key role to achieve plasmon sensitized SiNWs. These nanowires vary 
from 800-1000nm in length and 40-50 nm in diameter. The etching takes place in the 
laboratory environment with 40% humidity at room temperature. Then, a thin film layer 
(~120 nm) of amorphous TiO2 sol-gel purchased from Solaronix is deposited using spin-
coating technique to form the heterojunction. Finally, 50µm channels of gold pads are 
evaporated atop the heterojunction photodetector.  
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3.2 Materials and device characterizations 

 
The morphology of nanoplasmonic SiNWs and TiO2 thin films are probed using a Hitachi 
SU30 scanning electron microscope (SEM). The reflectance measurements are performed 
using Perkin Elmer LAMBDA 750 UV/VIS system. A Keithley 2400 source measuring unit 
(SMU) equipped with a Newport solar simulator is used to characterize the current-voltage 
behavior of the photodetector device.  

Xenon lamp and TRIAX320 monochromator are used for spectral responsivity measurements 
as previously described[50, 57]. A 10 nm-step scan from 300 to 1100 nm is performed using 
the light from the Xenon lamp first passing through a monochromator. A modulation at 100 
Hz is applied to the excitation light before the sample is illuminated. An external bias of 1 V 
is applied to the sample, which is placed before a circular diaphragm. In the final step, a lock-
in amplifier is used to measure the photocurrent. Using a calibrated photodiode (Newport 
918D) placed at the same diaphragm aperture as the sample, we calculate the responsivity by 
dividing the photocurrent by the power of the incident light at each wavelength. The spectral 
plot is used to extract the responsivity at certain wavelengths. 

The transient behavior of the photoresponse is characterized with a continuous illumination  
from a 532 nm laser of power density of the laser is 0.5 mW.mm-2  and Agilent DSO-X 3034 
A oscilloscope via a 1 GΩ load resistance as previously reported[57]. The measurements are 
all performed at room temperature. 

 

4. Conclusions 
 
To conclude, we have experimentally illustrated improved UV/VIS/NIR photodetection from 
chemically synthesized nanoplasmonic heterostructure. Peak performances reach 49 A/W, 85% 
EQE and 77/51 µs rise/decay times. Moreover, these, devices allow operation over a broad 
spectrum with performances exceeding 10 A/W and 30% EQE from 300 nm to 1100 nm. The 
superior detectivity can be helpful in the detection of weak optical signals. These all-solution-
based syntheses of nanoplasmonic heterostructures have the potential to reduce the cost of 
future nanoengineered devices. 
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