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Abstract

To predict noise in enclosure containing treated vibrating panels, porous layer effect has to be taken
into account. This study propose an analytical model of the effects of a porous layer on a vibrating
plate by separating the acoustical and vibratory behaviours. This paper deals with acoustic coupling
by means of surface impedance derived by a one-dimensional model using ”Biot-Allard” theory. It
is shown that this impedance is different from that calculated when the porous is backed by an im-
pervious rigid wall. The total radiation efficiency of a circular plate characterized by the surface
impedance, clamped in a rigid infinite baffle, is computed and compared with experimental measure-
ments. This model shows good agreement with experimental datas.

1 Introduction

In many applications, porous materials such as polymers foams are used for noise control. Often
attached to a structure subjected to vibration, the porous layer contributes to diminish vibration by in-
creasing structural damping and also reduce noise level in cavities by sound absorption. The acoustic
radiation of a plate covered by a porous layer can be predicted using finite element calculations in-
cluding poroelastic elements. However, this method leads to significant computing time and memory
usage [8]. The aim of this study is to propose an analytical model of this configuration by separating
the acoustical and vibratory behaviours (Fig. 1):

• the vibratory analysis is based on a dynamic study of the two-layer system from mechanical
properties of an equivalent plate. In this case, the coupling between porous skeleton and air are
neglected and the porous layer can be considered as a viscoelastic layer corresponding to the
skeleton in vacuum [6];

• in the acoustical analysis, a surface impedance is applied on this equivalent plate to take into
account the effect of the porous layer on the fluid-structure coupling.

This paper focuses on this second step: the calculation of the surface impedance and the experimental
validation of the model. The porous layer effect on the acoustic radiation of the plate is investigated
by mean of the total radiation efficiency of the coupled system.
The first part deals with the radiation efficiency calculation of a plate characterized by a surface
impedance, vibrating in a infinite rigid baffle. In the second part, the surface impedance is derived
using a one-dimensional model based on ”Biot-Allard” theory [4]. This surface impedance is then
applied to a circular plate excited by a ponctual force and total radiation efficiency is calculated
summing the contributions of axisymmetric modes. Finally, radiation efficiency measurements of a
clamped circular plate with or without attached porous layer are carried out and compared with the
model.

1

Paper presented at the conference
Noise and Vibration: Emerging Methods (NOVEM)
St-Raphael, France, April 2005



Figure 1: Schematic representation of the coupled structure modelisation

2 Theory

2.1 Acoustic radiation of the coupled structure

The radiation efficiency is defined as the ratio of the acoustic power radiated Πa over the vibratory
power Πv. For harmonic motion at frequency ω, the total acoustic power radiated from the plate can
be obtained by integrating the farfield acoustic intensity over a hemisphere of radius r to give

Πa =
∫ 2π

0

∫ π/2

0

|p(r)|2

2 ρ c
r2 sin θdθdϕ, (1)

where p(r) is the complex acoustic pressure at a location in space expressed in spherical co-ordinates,
ρ and c are the density of air and the speed of sound in air. Considering a plate vibrating in an infinite
rigid baffle and characterized by the surface impedance ZS , the complex acoustic pressure p(r) can
be written in terms of the plate surface velocity using the Rayleigh integral [1],

p(r) = j
∫∫

S
k ρ c V Gω dS, (2)

where V is the complex surface normal velocity, k = ω/c is the acoustic wave number and S is the
plate surface. Gω is the Green function derived in the semi-infinite half space using image sources
theory [2]. Hence, the Green function results of the superposition of the incident and reflected waves
respectively generated by the primary source P0 (at location r0) and the image source P ′

0 (at location
r′0) as shown figure (2):

Gω =
e−jk|r−r0|

4π |r − r0|
+ R

e−jk|r−r′

0
|

4π |r − r′0|
, (3)

with R the reflexion coefficient defined by

R =
ZS cos(θ) − ρ c

ZS cos(θ) + ρ c
. (4)

2.2 Surface impedance calculation: one-dimensional plane-wave model

Calculation of the surface impedance must be studied carefully because it characterises how the
porous layer bonded to a vibrating structure may affect its acoustic radiation. In the literature [3],

2



Figure 2: Schematic representation of the image sources theory

surface impedance is defined as the ratio of the surface pressure P (d) (see Fig.3) over the difference
between the source velocity V0 and the surface velocity V (d):

ZS =
P (d)

V0 − V (d)
. (5)

A 1D model has been developed to calculate the surface impedance of a covered piston in a semi-
infinite duct (see Fig.3). The flat piston is animated by an harmonic velocity of amplitude V0. In the
porous layer, according to ”Biot-Allard” theory [4], two types of longitudinal waves can propagate
forward and backward. This leads to four waves of amplitude A, B, C, D. In the fluid domain, only
one wave of amplitude E propagates from the porous interface. Boundary conditions between each
media are continuity of stress and displacements [5]. This system is solved numerically and surface
impedance is obtained using amplitude E [9].

Figure 3: One-dimensional representation of the coupled structure

The surface impedance is independant of the velocity V0 of the piston. Note that this impedance is
different from the surface impedance calculated when material is bonded to an impervious rigid wall
(see Fig.4). Thus, it is not possible to determine it directly with classical method such as impedance
tube.

2.3 Application to a clamped circular plate

In order to compare the vibroacoustic behaviour simulated with experimental measurements, the
model is applied to a circular plate fixed in a rigid baffle.
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Figure 4: Real part and Imaginary part of the surface impedance: (...) porous layer backed by an
impervious rigid wall, (-) porous layer backed by the vibrating piston.

We investigates the total radiation efficiency of a circular plate of radius a, clamped in a rigid baffle
and excited in its center by a ponctual force. The total radiation efficiency of a plate can be obtained
by summing the effect of all modes that contribute significantly in the frequency range under con-
sideration. Here, only axisymmetric modes are taken into account to simplify the far field acoustic
intensity integral (Eq. 2) and thus to reduce the computing time. It is coherent with experimental
set-up which includes an excitation at the center of the plate.
To compute the far field pressure created by the moving plate, we use the Rayleigh integral (Eq. 2) in
polar co-ordinates. The plate velocity V at any location r on the structure can be found by superposing
the modal contributions from each mode of structural vibration of the plate as

V =
∑
n

An wn(r), (6)

where An is the complex velocity amplitude of the mode n, wn(r) is the value of the associated mode
shape function at the location r ∈ [0, a] and n is the indice of the mode. An depends on the form of the
excitation and on the frequency. Here the modal velocity amplitude is calculated considering a point
force applied on the plate center. The mode shape for the clamped circular plate can be expressed as

wn(r) = I0(β0na)J0(β0nr) − J0(β0na)I0(β0nr), (7)

where β4
0n = ω4

nρ1h1/D1 is the nth structural wavenumber raised to 4th power, ωn is the nth eigen-
frequency, ρ1, h1 and D1 are respectively the density, thickness and bending stiffness of the plate, J0

and I0 are the 0th order Bessel and modified Bessel functions.
When acoustic layer is attached to the plate, vibratory analysis must include its influence of thickness
and stiffness. Characteristic of an equivalente plate has been calculated considering pure bending de-
formation of the structure. In this model, the porous layer is considered as a monophasic viscoelastic
media thus neglecting the coupling between its solid and fluid phase [6] (porous layer under vacuum’s
condition). Total bending rigidity is then simply the sum of bending rigidities of the two layers related
to the neutral fiber of the plate

D12 = D1 + D2, (8)

with D2 the skeleton’s complex bending stiffness, and the equivalent density is given by

ρ12 =
ρ1h1 + ρ2h2

h1 + h2
(9)
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with ρ2 and h2 respectively the density and the thickness of the porous layer.

Substituting Eqs. (6) and (7) into Eq. (2) expressed in polar co-ordinates gives the sound pressure
emitted.
The total radiation efficiency of the coupled system is presented in Fig.(5.a) for an aluminium circular
plate clamped in a rigid baffle covered with or without a porous layer. Three disctinct zones (1,
2, 3) are defined. In the low frequency range (zone 1), the porous layer has no or little effect on
radiation effciency. In the second zone, increased acoustic radiation is due to skeleton resonances in
the thickness of the layer. Above these frequencies, radiation efficiency decreases, due to structural,
viscous and thermal dissipation in the porous layer. For a better analysis of the porous layer effect
on acoustic radiation, the total radiation efficiency of the coupled system is normalized by the total
radiation efficiency of the not covered plate (Fig. 5.b). In this configuration, the porous layer has little
effect below 170 Hz. Between 680 Hz and 1600 Hz the normalized radiation efficiency is increased
up to 20 dB. Above 1600 Hz, global radiation level decreases.

Figure 5: (a) Total radiation efficiency of an aluminium clamped circular plate fixed in a rigid baffle:
... plate, − plate with porous layer; (b) Normalized total radiation efficiency.

3 Experimental validation

3.1 Experimental set-up

Measurement of the radiation efficiency of a plate with or without covering porous layer has been
performed. The experimental configuration is an aluminium circular plate (Ø29 cm) clamped in
a rigid baffle. Properties of the plate material are shown Tab.(1). The center of the back face is
connected to a shaker to excite only axisymmetric modes(see Fig. 6).
Vibratory power of the plate is determined from the quadratic mean of normal velocities measured at
13 points by a laser vibrometer. The front face that can be covered by a porous layer is radiating in a
anechoic chamber. Acoustic radiated power is determined from the average of intensity measurements
carried out on a quarter of plate surface using an intensity probe. This probe is made of two 1/2 inch
microphones spaced by 12 mm. The material properties (Tab.1) are chosen so that the radiation
efficiency increase can be seen.
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Figure 6: Experimental set-up

Plate

Thickness 1 mm
Young’s Modulus 74 000 MPa
Density 2800 kg m−3

Porous layer

Thickness 20.17 mm
Air flow resistivity 75 000 N s m−4

Porosity 0.97
Viscous length 56.9 µm
Thermal length 170.7 µm
Skeleton Complex Young’s Modulus at 5Hz 285(1 +  0.128) kPa
Skeleton density 59 kg m−3

Table 1: Properties of materials

3.2 Results and discussion

Fig. (7) presents the normalized total radiation efficiency simulated and measured. For frequencies
ranging between 200 Hz and 1100 Hz (grayed zone), intensity measurements are strongly pertubated
by non-axisymmetric modes influence and thus, the ’Pressure-Intensity Index δpI’ defined by Fahy
[7] is not satisfied.
The increase of the radiation efficiency predicted by the model is also observed experimentally. It
confirms the use of the surface impedance derived when the porous is backed by the moving piston.
Note that the surface impedance of the material backed by the rigid wall can not predict this behaviour.
Considering the adequate surface impedance, simulation is fitted, acting on the mechanical complex
Young modulus of the porous layer: it is adjusted to 685(1 +  0.17) kPa. Simulation presents good
agreements with experimentation at natural frequencies of axisymmetric modes located by circles
(experimental curve) and squares (analytical curve) on the figure.
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Figure 7: Normalized total radiation efficiency : (...) experimental, (-) simulation using the surface
impedance of the porous backed by the vibrating piston, (.-) simulation using the surface impedance
of the porous backed by an impervious rigid wall. Eigen-frequencies of axisymmetric modes are
located by: (circle) experimental, (square) simulated.

4 Conclusion

Porous layer’s effect on plate radiation has been investigated. An analytical model of the coupled
system ”plate/porous” has been developed, separating the vibratory and acoustical behaviors. The
acoustical analysis is based on surface impedance calculation using a one-dimensional plane wave
model according to ”Biot-Allard” theory. The model is applied to a circular plate clamped in a
rigid baffle. Total radiation efficiency is calculated by summing the effect of all the axisymmetric
modes. Simulation are compared with experimental results and good agreements exist at natural
frequencies of the axisymmetric modes. Note that the model must include the surface impedance of
the porous backed by a moving surface and not the surface impedance when the porous is backed by
an impervious rigid wall.
Further work are validation of the model using other materials such as fibrous materials and extension
of the model when the structure is coupled with a cavity.
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