

RATE DISTORTION-BASED MOTION ESTIMATION SEARCH ORDERING FOR RATE-CONSTRAINED SUCCESSIVE ELIMINATION ALGORITHMS

Luc Trudeau, Stéphane Coulombe, Christian Desrosiers École de technologie supérieure, Université du Québec, Canada

Vantrix Industrial Research Chair in Video Optimization

INTRODUCTION AND PROBLEM STATEMENT

- Motion estimation is a predominant task of most modern video encoders.
- Successive elimination algorithms (SEA) rely on known inequalities to avoid computing the cost of candidate blocks during the search process.
- Search orderings, such as raster and spiral search, can impair the filtering criterion of rateconstrained successive elimination algorithms.

STATE OF THE ART APPROACHES

Rate-Constraint Successive Elimination Algorithm

$$|B - C(\mathbf{x}_{i}, \mathbf{y}_{i})| \le SAD(\mathbf{x}_{i-1}^{*}, \mathbf{y}_{i-1}^{*}) + \lambda R(\mathbf{x}_{i-1}^{*}, \mathbf{y}_{i-1}^{*}) - \lambda R(\mathbf{x}_{i}, \mathbf{y}_{i})$$

• When $\lambda R(\mathbf{x}_{i-1}^*, \mathbf{y}_{i-1}^*) > \lambda R(\mathbf{x}_i, \mathbf{y}_i)$, this will increase the filtering threshold and thus **weaken the filtering criterion**.

······ Current Block (B)

Motion vector

THE PROPOSED APPROACH

We propose a new class of search orderings known as rate-constrained search orderings.
To be classified as such, the search ordering must adhere to the following rule

$$R(\mathbf{x}_i, \mathbf{y}_i) \geq R(\mathbf{x}_{i-1}, \mathbf{y}_{i-1})$$

- Values in the following tables show the evaluation order of a subset of candidate blocks (from 0 to 24) in the search area:
 - (a) Raster search ordering
 - (b) H.264 JM implementation of spiral search ordering
 - (c) The proposed rate-constrained search ordering

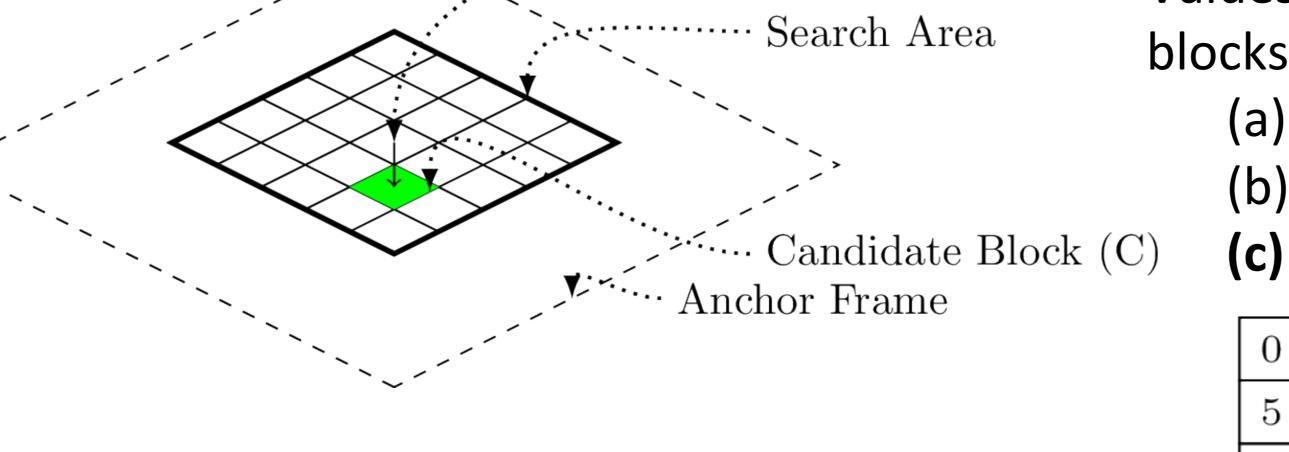


Illustration of motion estimation elements. The current block (shown in red) is predicted using a candidate block (shown in green) inside the search area of the anchor frame.

10 11 12 13 14 19 5 0 6 20 15 16 17 18 19 17 3 1 4 18			(a)					(b)	
5 6 7 8 9 21 7 2 8 22 10 11 12 13 14 19 5 0 6 20	20	21	22	23	24	15	9	11	13	16
5 6 7 8 9 21 7 2 8 22	15	16	17	18	19	17	3	1	4	18
	10	11	12	13	14	19	15	0	6	20
0 1 2 3 4 23 10 12 14 24	5	6	7	8	9	21	7	2	8	22
	0	1	2	3	4	23	10	12	14	24

22	14	6	15	24
18	10	2	12	17
7	3	0	1	5
19	11	4	9	13
23	16	8	20	21
		(c)		

* The gray square is the center of each search area, motion vector (0, 0).

EXPERIMENTAL RESULTS

• SAD reduction using the proposed search ordering compared to the H.264 JM reference software's implementation of spiral search, as a function of block size and QP, for several CIF video sequences.

		Foreman			Football			News		
		# of SAD o	of SAD operations for 300 frames # of			perations for 2	60 frames	# of SAD operations for 300 frames		
QP	Size	Spiral	Proposed	Red. %	Spiral	Proposed	Red. %	Spiral	Proposed	Red. %
28	4	416262070	388 993 410	6.55%	1115661675	1 035 142 134	7.22%	134537882	128099468	4.79%
28	8	785227992	765544865	2.51%	1955919279	1882526019	3.75%	290 136 328	286173266	1.37%
28	16	409325310	401608855	1.89%	903 904 793	879 156 973	2.74%	309 741 039	308 103 709	0.53%
32	4	225442778	204 861 411	9.13%	698 105 494	638 767 242	8.50%	81 710 975	76734942	6.09%
32	8	648570481	627984818	3.17%	1659309376	1 594 498 115	3.91%	255001256	249897228	2.00%
32	16	422019606	414160704	1.86%	922208528	898 298 829	2.59%	291 083 798	289592570	0.51%
36	4	107804660	95285467	11.61%	393 409 060	353 080 194	10.25%	44836321	41544099	7.34%
36	8	529033021	507752081	4.02%	1185610980	1133690522	4.38%	215288507	212 294 102	1.39%
36	16	426912515	419050593	1.84%	923795311	900 217 448	2.55%	270475527	269005875	0.54%
40	4	47435348	41836990	11.80%	183815418	161532698	$\boldsymbol{12.12\%}$	24 308 026	22453474	7.63%
40	8	405457244	383738455	5.36%	760172034	712290223	6.30%	166808837	163627932	1.91%
40	16	421 173 116	413071553	$\boldsymbol{1.92\%}$	876 436 298	856 138 643	2.32%	264 566 993	263 016 343	0.59%
		Average SAD reduction		5.14%	Average SAD reduction		5.55%	Average SAD reduction		2.89%

Le génie pour l'industrie Department of Software and IT Engineering

Sequence	# Fr.	SAD Red.	$\Delta \; \mathrm{Bits} \; (\mathrm{kb/s})$	Δ PSNR-Y
Foreman	300	5.14%	-0.18	0.0000
Flower	250	1.61%	-0.21	-0.0017
Football	260	5.55%	0.09	-0.0025
Mobile	300	0.80%	-0.18	0.0008
News	300	2.89%	-0.04	0.0017
Tempete	260	1.14%	-0.11	0.0008
Average		2.86%	-0.10	-0.0001

This work was funded by Vantrix Corporation and by the Natural Sciences and Engineering Research Council of Canada under the Collaborative Research and Development Program.

CONCLUSIONS

- A new RD-based search ordering was proposed, leading to an average reduction of **2.86%**, **5%** (for unpredictable motion) and **10%** (for smaller block partitions) in the number of SAD operations required for motion estimation.
- Changing the candidate block ordering requires few implementation considerations, and the impact on bit rate and visual quality is negligible.