Fast HEVC Intra Mode Decision Based on Edge Detection and SATD Costs Classification

Mohammadreza Jamali1
Stéphane Coulombe1
François Caron2

1École de technologie supérieure, Université du Québec, Montréal
2Vantrix corporation, Montréal

April 7th, 2015
Outline

- Introduction
- Problem statement
- Background
- Literature review
- Proposed method
- Experimental results
- Conclusion
Introduction

• New demands for video coding standards
 – Demand for high quality video (4K × 2K and 8K × 4K)
 – Video delivery on mobile devices
 – High resolution 3D or multiview video

• HEVC can reduce the bit rate by half relative to the previous H.264/MPEG-4 standard
Problem Statement

• HEVC encoding could require up to 10x more computational complexity than H.264 with 2x-3x for decoding [1]
 – Need for new algorithms to reduce its complexity without sacrificing the coding performance

• Our focus is on HEVC intra coding complexity reduction
 – All-intra profile to replace the current intra coding techniques

Background

• Coding unit splitting
• Segmentation units
 – Coding tree units (CTUs)
 – Coding units (CUs)
 – Transform units (TUs)
 – Prediction units (PUs)
Background

- Intra mode decision
- HEVC intra modes
 - 33 directional modes
 - DC to predict the homogeneous regions
 - Planar to produce smooth sample surfaces
Background

• Intra mode decision processes (HM)
 – Rough mode decision (RMD)
 • SATD: Sum of absolute transformed differences
 \[J_{RMD} = D_{SATD} + \lambda_{RMD} \times B_{RMD} \]
 – Rate distortion optimization (RDO)
 • SSE: Sum of squared errors
 \[J_{RDO} = D_{SSE} + \lambda_{RDO} \times B_{RDO} \]
Literature Review

• Edge detection

• Neighboring blocks’ modes

• RDO cost estimation
Literature Review

- Mode decision
 - Edge detection [2, 3, 4]

Literature Review

• Mode decision
 – neighboring blocks [5]

Literature Review

- Mode decision
 - RDO cost estimation [6]

Proposed Method

- Intra mode decision based on
 - Improved edge detection
 - Most relevant modes (MRMs) of the neighboring blocks
 - Selecting promising candidates based on SATD
Proposed Method

• Edge detection operator

\[\tilde{G} = G_x \hat{j} + G_y \hat{i} \]

\[G_x = p_{i-1,j+1} + 2 \times p_{i,j+1} + p_{i+1,j+1} - p_{i-1,j-1} - 2 \times p_{i,j-1} - p_{i+1,j-1} \]

\[G_y = p_{i+1,j+1} + 2 \times p_{i+1,j} + p_{i+1,j+1} - p_{i-1,j-1} - 2 \times p_{i-1,j} - p_{i-1,j+1} \]

\[|\tilde{G}| = \sqrt{G_x^2 + G_y^2} \quad \rightarrow \quad |G_x| + |G_y| \quad \text{Ang}(\tilde{G}) = \tan^{-1}\left(\frac{G_y}{G_x}\right) \rightarrow \frac{G_y}{G_x} \]

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) \(G_x \)

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) \(G_y \)

Sobel masks
Proposed Method

- Three assigned modes for each edge

Detected edge and three related modes
Proposed Method

- High and low limits of G_y/G_x for angular modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>lowLimit</th>
<th>highLimit</th>
<th>Mode</th>
<th>lowLimit</th>
<th>highLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1.15928</td>
<td>-1</td>
<td>18</td>
<td>0.86261</td>
<td>1.15928</td>
</tr>
<tr>
<td>3</td>
<td>-1.53711</td>
<td>-1.15928</td>
<td>19</td>
<td>0.65057</td>
<td>0.86261</td>
</tr>
<tr>
<td>4</td>
<td>-1.98666</td>
<td>-1.53711</td>
<td>20</td>
<td>0.50336</td>
<td>0.65057</td>
</tr>
<tr>
<td>5</td>
<td>-2.59240</td>
<td>-1.98666</td>
<td>21</td>
<td>0.38574</td>
<td>0.50336</td>
</tr>
<tr>
<td>6</td>
<td>-3.61354</td>
<td>-2.59240</td>
<td>22</td>
<td>0.27674</td>
<td>0.38574</td>
</tr>
<tr>
<td>7</td>
<td>-5.76314</td>
<td>-3.61354</td>
<td>23</td>
<td>0.17352</td>
<td>0.27674</td>
</tr>
<tr>
<td>8</td>
<td>-11.61240</td>
<td>-5.76314</td>
<td>24</td>
<td>0.08611</td>
<td>0.17352</td>
</tr>
<tr>
<td>9</td>
<td>-40.73548</td>
<td>-11.61240</td>
<td>25</td>
<td>0.02455</td>
<td>0.08611</td>
</tr>
<tr>
<td>10</td>
<td>-∞</td>
<td>-40.73548</td>
<td>26</td>
<td>-0.02455</td>
<td>0.02455</td>
</tr>
<tr>
<td>10</td>
<td>40.73548</td>
<td>∞</td>
<td>27</td>
<td>-0.08611</td>
<td>-0.02455</td>
</tr>
<tr>
<td>11</td>
<td>11.61240</td>
<td>40.73548</td>
<td>28</td>
<td>-0.17352</td>
<td>-0.08611</td>
</tr>
<tr>
<td>12</td>
<td>5.76314</td>
<td>11.61240</td>
<td>29</td>
<td>-0.27674</td>
<td>-0.17352</td>
</tr>
<tr>
<td>13</td>
<td>3.61354</td>
<td>5.76314</td>
<td>30</td>
<td>-0.38574</td>
<td>-0.27674</td>
</tr>
<tr>
<td>14</td>
<td>2.59240</td>
<td>3.61354</td>
<td>31</td>
<td>-0.50336</td>
<td>-0.38574</td>
</tr>
<tr>
<td>15</td>
<td>1.98666</td>
<td>2.59240</td>
<td>32</td>
<td>-0.65057</td>
<td>-0.50336</td>
</tr>
<tr>
<td>16</td>
<td>1.53711</td>
<td>1.98666</td>
<td>33</td>
<td>-0.86261</td>
<td>-0.65057</td>
</tr>
<tr>
<td>17</td>
<td>1.15928</td>
<td>1.53711</td>
<td>34</td>
<td>-1</td>
<td>-0.86261</td>
</tr>
</tbody>
</table>
Proposed Method

- Weights of main and adjacent modes

\[\text{mainModeWeight} = |G_x| + |G_y| \]

\[\text{modeWeightFactor} = (\text{highLimit} - \frac{G_y}{G_x})/(\text{highLimit} - \text{lowLimit}) \]

\[\text{adjacentMode1Weight} = (1 - \text{modeWeightFactor}) \times (|G_x| + |G_y|) \]

\[\text{adjacentMode2Weight} = \text{modeWeightFactor} \times (|G_x| + |G_y|) \]

- Special mode (10)

\[\text{modeWeightFactor} = 0.5 \times (1 + 40.73548/\left|\frac{G_y}{G_x}\right|) \]
Proposed Method

• Adding DC, planar and most relevant modes (MRMs)
• MRM: A neighboring mode that based on its direction is a promising mode for the current block
 – 2n+1 modes
Proposed Method

- Mode ordering, binary classification
- RDO dodging
 - If the mode with lowest cost is one of MRMs select it as a final mode

\[\text{Gap} = \alpha \times (C_{\text{max}} - C_{\text{min}}) \]

\[\alpha \leq 1 \]
Experimental Results

• Implementation setup
 – HEVC test model HM 15.0 (All-Intra profile)
 – Implementation platform: Intel® i7-3770 CPU-3.40, 12 GB of RAM, running Windows 7
 – 100 first frames of the recommended sequences [7]
 – Quantization parameters: 22, 27, 32, 37
 – Parameters of the algorithm: \(N = 8 \) and \(\alpha = 1/4 \) for block sizes \(4 \times 4 \) and \(8 \times 8 \) and \(N = 3 \) and \(\alpha = 2/3 \) for block sizes \(16 \times 16 \), \(32 \times 32 \) and \(64 \times 64 \), \(n=3 \)

Experimental Results (Versus HM 15.0)

<table>
<thead>
<tr>
<th>Class</th>
<th>Video Sequences</th>
<th>ΔT (%)</th>
<th>BD-Rate (%)</th>
<th>BD-PSNR$_Y$ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2560x1600</td>
<td>Traffic</td>
<td>-35.4</td>
<td>0.95</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>PeopleOnStreet</td>
<td>-34.1</td>
<td>1</td>
<td>-0.057</td>
</tr>
<tr>
<td></td>
<td>NebutaFestival</td>
<td>-34.1</td>
<td>0.53</td>
<td>-0.039</td>
</tr>
<tr>
<td></td>
<td>SteamLocomotiveTrain</td>
<td>-37.8</td>
<td>0.48</td>
<td>-0.025</td>
</tr>
<tr>
<td>B 1920x1080</td>
<td>Cactus</td>
<td>-36.1</td>
<td>1.34</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>Kimono</td>
<td>-39.2</td>
<td>0.79</td>
<td>-0.028</td>
</tr>
<tr>
<td></td>
<td>ParkScene</td>
<td>-37.5</td>
<td>0.87</td>
<td>-0.039</td>
</tr>
<tr>
<td></td>
<td>BasketballDrive</td>
<td>-38.4</td>
<td>2.17</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>BQTerrace</td>
<td>-35.2</td>
<td>0.79</td>
<td>-0.048</td>
</tr>
<tr>
<td>C 832x480</td>
<td>BQMall</td>
<td>-34.3</td>
<td>1.15</td>
<td>-0.068</td>
</tr>
<tr>
<td></td>
<td>PartyScene</td>
<td>-32.8</td>
<td>1.18</td>
<td>-0.092</td>
</tr>
<tr>
<td></td>
<td>RaceHorsesC</td>
<td>-34.7</td>
<td>0.72</td>
<td>-0.047</td>
</tr>
<tr>
<td></td>
<td>BasketballDrill</td>
<td>-33.1</td>
<td>0.8</td>
<td>-0.039</td>
</tr>
<tr>
<td>D 416x240</td>
<td>RaceHorses</td>
<td>-34.1</td>
<td>0.99</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>BasketballPass</td>
<td>-36</td>
<td>1.45</td>
<td>-0.085</td>
</tr>
<tr>
<td></td>
<td>BlowingBubbles</td>
<td>-33.7</td>
<td>1.01</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>BQSquare</td>
<td>-32.7</td>
<td>1.38</td>
<td>-0.123</td>
</tr>
<tr>
<td>E 1280x720</td>
<td>Vidyo1</td>
<td>-36.8</td>
<td>1.31</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>Vidyo3</td>
<td>-37.4</td>
<td>1.23</td>
<td>-0.069</td>
</tr>
<tr>
<td></td>
<td>Vidyo4</td>
<td>-37.7</td>
<td>1.33</td>
<td>-0.061</td>
</tr>
<tr>
<td>Average</td>
<td>-35.6</td>
<td>1.07</td>
<td>-0.059</td>
<td></td>
</tr>
<tr>
<td>Jiang’s algorithm</td>
<td>-20</td>
<td>0.74</td>
<td>-0.040</td>
<td></td>
</tr>
<tr>
<td>da Silva’s algorithm</td>
<td>-18.9</td>
<td>1.3</td>
<td>-0.062</td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results

RD curve of the proposed method and HM 15.0 for the RaceHorses sequence
Originality of the Work

• Using an improved edge detector
 – Considering three adjacent modes for each detected edge

• Using all five possible neighboring blocks and select only the relevant modes from them

• Using low-complex SATD in a novel way
 – Select the promising modes based on a Gap

• Simple to implement
Conclusion

• Goal
 – Optimize HEVC intra coding processes for complexity reduction for the same quality

• Procedure
 – Obtain the best intra mode based on edge detection and binary classification
 • We have achieved 35% time reduction using the proposed approach with about 1% BD-rate increment
This research is funded by

The Natural Science And Engineering Research Council of Canada and

Vantrix Corporation
under the
Collaborative Research and Development Program
NSERC-CRD 428942-11