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Abstract 

This article extends previous work on co-optimization of production and corrective and 

preventive maintenance including lockout/tagout. We study the impact of human error on 

repairable manufacturing systems subject to random failure over an infinite planning 

horizon and its implications for system capacity and inventory policies, and we derive an 

optimal policy for minimizing production cost based on machinery maintenance and 

inventory management while meeting market demand over an infinite horizon. A 

numerical example is provided to demonstrate the usefulness of the proposed approach 

and a sensitivity analysis is presented to confirm the efficiency of the control policy. 

Keywords: human error, lockout/tagout, corrective maintenance, preventive 

maintenance, production control 
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1. Introduction 

Production planning has become an important area of operations management over the 

past three decades[1]. This is due in large part to its ever-increasing importance in 

today’s highly competitive business environments. Production planning and control 

involves solving challenging optimization problems that combine strategic and 

operational decisions regarding production, corrective and preventive maintenance, and 

stock levels[2]. Such optimization is particularly relevant in manufacturing environments 

made uncertain by a variety of stochastic factors such as operational activities, 

maintenance, injury, raw materials and demand. Implicit in optimal planning is protection 

of employees against the risk of injury associated with activities such as operations and 

maintenance. One of the procedures developed to make servicing and repair of machinery 

safer is lockout/tagout or LOTO. For a variety of reasons, compliance with this procedure 

remains poor in some manufacturing businesses, where it may be regarded as non-

productive. Despite the extensive literature on flexible manufacturing systems(FMS), 

only a few studies have addressed the integration of LOTO into production control in 

stochastic environments. Although considering this integration into a manufacturing 

system makes the study more realistic, it complicates the optimal control problem. 

Incorporating accident prevention techniques such as LOTO into equipment servicing 

and repair has been proven to increase occupational safety significantly [3].  

The economic importance of responding quickly to customer requirements has fuelled 

interest in production optimization. In uncertain environments, optimization is effective 

only if it reduces the total cost of production while increasing occupational safety[3]. 

Some authors attach more importance to techno-economic aspects, that is, controlling 

parameters that determine production and the frequency of maintenance to meet demand 

more reliably [4,5,6,7], while others focus on occupational health and safety, that is, 

preventing accidents and work-related illness by eliminating or controlling hazards [8]. 

To estimate the impact of maintenance on occupational risks in Quebec, the Institut de 

Recherche Robert Sauvé en Santé et Sécurité du Travail (IRSST) has studied fatal 

accidents in the province between 1999 and 2003 [9] using data available at the 

Commission de la Santé et de la Sécurité du Travail (CSST). According to this report, 

1275 deaths resulted from workplace accidents during this period, of which 163 (13%) 
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occurred during maintenance activities such as machine upgrading, testing, 

troubleshooting, inspection, modification, repair and monitoring. This study made it clear 

that a significant proportion of workplace fatalities in manufacturing settings was 

associated with maintenance activities, which highlights the importance of applying 

LOTO and hence of considering it in planning models. 

Several methods have been used to determine optimal control policies for FMS control 

problems. These include the Kushner algorithm [10], artificial intelligence based on 

genetic algorithms [11], heuristics [12] and simulation [13]. Rishel [14] has identified the 

sufficient and necessary conditions for optimizing a finite-state Markov process using 

dynamic programming. Older and Suri [15] have extended Rishel’s formalism by 

presenting FMS production planning optimality as a problem of stochastic control subject 

to random failure. They obtained dynamic programming equations of optimal control, 

while the differential equations remained unsolved due to their complexity. Kimemia and 

Gershwin[16] modelled stochastic manufacturing systems using homogeneous Markov 

processes with a constant transition rate. They determined production policies in which 

inventory and order backlog costs are minimized based on the rate of production by the 

machines. Akella and Kumar [17] used homogeneous Markov chains to model a 

manufacturing system consisting of one machine producing one part type, and Hamilton-

Jacobi-Bellman (HJB) equations to determine an optimal control policy, namely the 

Hedging Point Policy (HPP). In the case of complex manufacturing systems, no 

analytical solution to HJB equations is currently possible. To find the optimal solution to 

the stochastic control optimization problem, Yan and Zhang [18] used a numerical 

method based on the Kushner approach [10] to manufacturing systems producing several 

parts. Addressing realistic manufacturing systems, Kenné and Nkeungoue [19] modeled 

machine failure and repair using non-homogenous Markov processes, showing that 

machine failure probability increases with machinery age. While several studies have 

provided adequate descriptions of the theoretical basis of control system optimization, the 

impact of human error (e.g. carelessness, forgetfulness, inattentive or reckless behaviour) 

on production costs in manufacturing settings needs closer examination. Human error and 

its frequency during maintenance activities depend significantly on the machinery under 

repair and, in principal, on the type of industrial sector. Occupational safety researchers 
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have confirmed in several studies the importance of controlling accident and incident 

factors during maintenance activities [3,13]. This raises two important research questions: 

1) How can human safety policies in manufacturing environments be improved?2) What 

is the impact of human error during maintenance activities on production costs? 

One possible answer to the first question is rigorous application of LOTO procedures, 

which consist of locking a machine with a padlock after discharging all residual energy 

sources (electrical, hydraulic, etc.). LOTO prevents premature starting of equipment 

during a maintenance intervention. It is unfortunate that some companies allow their 

employees to bypass LOTO procedures during equipment maintenance. This alone 

explains much of the greater number of accidents that these companies experience[20]. In 

answer to the second question, Emami-Mehrgani et al. [13,21] have studied two 

analytical models combining production,  LOTO and corrective maintenance policies in a 

passive redundancy system. They examined a manufacturing system consisting of two 

non-identical machines with passive redundancy and a system consisting of three non-

identical machines (a third in series with the previous two), producing one part type. 

They illustrate that passive redundancy optimizes production and maintenance costs 

while increasing occupational safety. In many manufacturing scenarios, human 

participation is a critical element affecting system performance and reliability. Ferguson 

et al. [22] and Mason and Rushworth [23] have shown that human error decreases safety 

and can cause damage to machinery or reduce machine reliability. Njike et al. [24] have 

demonstrated that the frequency of machine failure is related not only to machine age but 

also to machine operator performance. The second question nevertheless remains a 

production control and operations management issue. In this article, we address this issue 

in a way that is more relevant to a repairable manufacturing system. We consider a 

system consisting of one machine producing one part type with random failure. We 

develop a non-homogeneous Markov process in which human error during maintenance 

activities including LOTO is integrated over an infinite horizon. The control optimization 

problem consists of determining policies that justify maintenance activities including 

LOTO and optimize production rate given the changing states of a machine over an 

infinite horizon. We formulate our system as a stochastic dynamic programming 

problem. Obtaining the optimal solution analytically remains a challenge for this type of 
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problem. We illustrate the corresponding optimality conditions using a set of HJB 

equations, which are difficult-to-solve non-linear partial differential equations. We 

further provide some numerical examples to obtain a solution to the problem.  

This article is organized as follows: Section 2 presents the notations and assumptions. 

Section 3 describes the research problem. Section 4 provides a numerical example and 

sensitivity analysis. In section 5,a discussion of the results obtained using our approach is 

provided. Our conclusions are presented in Section 6. 

2. Assumptions and notations 

2.1. Assumptions 

The following assumptions apply throughout this article: 

1. ALL maintenance, corrective or preventive, is carried out with LOTO. 

2. Corrective and preventive maintenance may be carried out with or without human 

error. 

3. Mean corrective and preventive maintenance time without human error is shorter than 

mean corrective and preventive maintenance time with human error. 

4. Mean preventive maintenance time is shorter than mean corrective maintenance time. 

5. After each corrective or preventive maintenance activity, machine performance is 

restored to the level of the brand new machine. 

6. Frequency of machine failure is a continuous function of machine age. It remains 

undisturbed by corrective or preventive maintenance. 

2.2. Notations  

Throughout this article, the following notations are used: 
 

x :  inventory level 

:d  demand 

:α  machine state or mode 

:a  machine age 

:ρ  discount 
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(.) :J  total cost 

( ) :αΓ  set of admissible decisions applicable to mode α  

( ) :Θ ⋅  system mode Aα ∈  

:A   set of machine states or modes 

:c+  manufactured unit holding cost per unit of time 

:c−  order backlog unit cost per unit of time 

:rc  corrective maintenance cost 

:mpc   preventive maintenance cost   

:tagoutc  LOTO cost 

:cα  maintenance cost 

max :u  maximal production rate    

(.) :Q  transition matrix 

qαβ   :  rate of mode transition fromα to β  

21k :     frequency of corrective maintenance without human error 

min
21k :  minimal frequency of corrective maintenance without human error 

max
21k :  maximal frequency of corrective maintenance without human error 

41k :      frequency of corrective maintenance with human error 

min
41k :   minimal frequency of corrective maintenance with human error 

max
41k :  maximal frequency of corrective maintenance with human error 

13k :     frequency of preventive maintenance without human error 

min
13k :   minimal frequency of preventive maintenance without human error 
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max
13k :  maximal frequency of preventive maintenance without human error 

35k :    frequency of preventive maintenance with human error 

min
35k :  minimal frequency of preventive maintenance with human error 

max
35k :  maximal frequency of preventive maintenance with human error 

xh :       increment of the finite difference interval of variable x  

ah :     increment of the finite difference interval of variable a  

( )xv ⋅ : value function given a small increment in the direction of x  

( )av ⋅ : value function given a small increment in the direction of a  

( )hv ⋅ : approximation of the value function given a small increment in the direction of 
 andx a  

3. Problem statement 

The system under study consists of one machine producing one part type. The machine is 

subject to random breakdown and repair, is either operational or shutdown, and shall be 

considered as a production unit installed in a facility that manufactures and stocks the 

part. LOTO is applied during all maintenance activities, meaning that the machine is 

always locked for corrective and preventive maintenance and unlocked thereafter. Three 

situations thus arise: the machine is operational; the machine is under repair (corrective 

maintenance); the machine is being serviced (preventive maintenance). The effect of 

human error during maintenance activities is modelled (corrective and preventive 

maintenance with human error), meaning that an improperly conducted maintenance 

activity leading to repeating the activity before resuming production is counted. We 

describe the machine capacity using a finite-state Markov chain. Based on the above 

description of the system, the machine has five states: ( ) 1tξ =  if the machine is 

operational, ( ) 2tξ = if the machine is in corrective maintenance without human 

error, ( ) 3tξ = if the machine is in preventive maintenance without human error, ( ) 4tξ =  if 
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the machine is in corrective maintenance with human error, and ( ) 5tξ =  if the machine 

is in preventive maintenance with human error.  

The manufacturing system dynamics are hybrid and consist of a discrete element ( )tξ that 

describes machine state and a continuous element ( )x t that represents inventory level. The 

difference between cumulative production and demand, ( )x ⋅ ,can be positive if inventory 

costs c+ have been considered, or negative if backlog costs c− have been considered. The 

dynamics are described as follows: 

( ) , (0) ,

( ( )), (0) ,

( ) 0 (1)

dx u d x x
dt
da f u a a
dt
a T

= ⋅ − =

= ⋅ =

=
where ( )u ⋅ , d , x , a , and T are respectively production rate, demand, initial surplus, 

initial machine age, and most recent machine restart time, and ( ( ))f u ⋅  is machine aging 

expressed as an increasing function of production rate. 

The discrete part of the hybrid state ( )tξ of the manufacturing system is a time-

continuous Markov process taking a value in { }1,2,3,4,5A = where A presents the set of 

machine states or modes. 

 

Figure 1. State transition diagram 

Figure 1 depicts the Markov states of this manufacturing system. The machine is either 

operational or in maintenance, which may be corrective (repair) or preventive (servicing). 
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Human error is defined as an improper procedure that increases the mean maintenance 

time [25]. This corresponds to jumps from states 2 to 4or 3 to 5, meaning that if the 

procedure is improper at state 2 or 3, it is repeated to complete the maintenance, thus 

lengthening the maintenance time. 

The transition rate matrix Q of the stochastic processes ( )tξ is defined such that it 

satisfies the following conditions: 

{ }( ) ( ) ,Q qαβ⋅ = ⋅ with 0qαβ ≥ if (2)α β≠  

( ) ( ),q qαα αββ α≠
⋅ = − ⋅∑ where , . (3)α β ∈Α  

The transition probabilities associated with the transition rate qαβ  are given as: 

( ) ( ) ,

( ) ( ) (4)1 ( ) ( ) .

q t o t if

p t t t q t o t if

δ δ α βαβ
ξ δ β ξ α δ δ α βαβ

⋅ + ≠
 + = = =   + ⋅ + =



 

With 0lim ( ( ) / ) 0 ,t o t t Aδ δ δ α β→ = ∀ ∈ .It should be noted that ( )o tδ describes the noise 

or perturbation that may occur at each transition. In the Markov process, we 

consider 0lim ( ( ) / ) 0t o t tδ δ δ→ = in order to eliminate this perturbation. 

The transition rate matrix Q  is given as follows: 

11 12 13

21 22 24

13 21 35 41 31 33 35

41 44

51 55

0 0
0 0

( , , , ) 0 0 , (5)
0 0 0
0 0 0

q q k
k q q

Q k k k k q q k
k q
q q

 
 
 
 =
 
 
  

 

We now define the set of admissible decisions and control policies (control variables) at 

mode ( )tα as in equation (6). 

5 max min max
13 21 35 41 13 13 13

min max min max min max
21 21 21 35 35 35 41 41 41

( ( ), ( ), ( ), ( ), ( )) , 0 || ( ) || , ( ) ( ) ( ),
( ) , (6)

( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )

u k k k k R u u k k k

k k k k k k k k k
a ∞ ⋅ ⋅ ⋅ ⋅ ⋅ ∈ ≤ ⋅ ≤ ⋅ ≤ ⋅ ≤ ⋅ Γ =  

⋅ ≤ ⋅ ≤ ⋅ ⋅ ≤ ⋅ ≤ ⋅ ⋅ ≤ ⋅ ≤ ⋅  
 

The cost function ( )J ⋅  given by equation (7) is minimized through the control problem, 

of which the solution is an admissible control law 13 21 35 41B( ) ( , , , , )u k k k k⋅ = .  
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( ) ( ) ( ) ( )13 21 35 41 13 21 35 41, , , , , , , , , , , , , , 0 , 0 , (0) , (7)
0

tJ a x u k k k k E e g a x u k k k k dt x x a aρaaxa  
∞ −= = = =∫ 
 

 

Where { }E � is the expected value function for determining the expected production cost 

based on the instantaneous cost over an infinite planning horizon. It should be noted that 

the instantaneous cost varies at each time lapse. In equation (7), ρ  is discount rate 

and g( , , , ) ( ) ( )a x h w c x c x caa + + − −⋅ = ⋅ + ⋅ = + + is the instantaneous cost. Hence, we have 

( ) and ( )h c x c x w ca+ + − −⋅ = + ⋅ = .In the instantaneous cost equation, c+ , c− and cα  are 

respectively the inventory and order backlog costs per unit, and maintenance cost.   

max(0, ) max( ,0)
and

,x xx x+ − −= =
 

{ } { }
{ } { }

)

)

( )Ind 2 ( Ind 3

( )Ind 4 ( Ind 5
tagout tagoutr pm

r tagout pm tagout

c cc c c

c c c c

a aa

β a β a

+ += = + =

+ + = + + =

 with:  

 

Where 1β > is the cost index and ( )Θ ⋅  represents the system mode Aα ∈ .For instance, if 

the system is in state 2 ( 2α = ), then maintenance cost tagoutr cc ca = + . That is, 

{ } { } { } { }Ind 2 1, Ind 3 0, Ind 4 0 and Ind 5 0.aaaa   = = = = = = = =  It should be noted that 

a state 2 or 3 improper maintenance procedure will lead to a machine malfunction 

requiring diagnosis followed by a suitable repair procedure, increasing process time and 

hence production cost. To model this cost we introduce a parameter 1β > . 

The manufacturing system should be able to meet demand, meaning that the demand 

should not be higher than the average production capacity, as described by Akella and 

Kumar [17]. 

Let ( ), ,a xν a denote the value function (minimal discounted cost) for equation 7 as given 

by equation 8. 

{ }
1 if ( ) is true

Ind ( )
0      otherwise

Θ ⋅
Θ ⋅ =

 
 
 
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( )
( )

( )
13 21 35 41

13 21 35 41, , , ),
, , min , (8)

(
, , , , , , ,

k k ku k
a x J Aa x u k k k knaa 

a
a= ∀ ∈

∈Γ  

If the appropriate assumptions are respected, the value function ( ), ,a xν a satisfies a set of 

Hamilton-Jacobi-Bellman (HJB) partial differential equations (Appendix A). 

4. Numerical example and sensitivity analysis 

As mentioned, the manufacturing system consists of one machine producing one part 

type. A five-state Markov process ( )tξ ∈ Α defines the system capacity. The generator 

matrix ( )Q ⋅ defined above (5)is described more explicitly as follows: 

12 13 12 13

21 21 24 24

13 21 35 41 31 31 35 35

41 41

51 51

( ( ) ) ( ) 0 0
( ) 0 0

( , , , ) 0 ( ) 0
0 0 0
0 0 0

q a k q k
k k q q

Q k k k k q q k k
k k
q q

a− + 
 − + 
 = − +
 − 
 − 

 

and 

2

12 12
( ( ) )( ( )) 1 , (9)tB a tq a t B e∞ − × = −  

 

Equation 9 describes the impact of machine age on its probability of failure 12 ( ( ))q a t as 
illustrated by Kenné and Nkeungoue [19]. Constants tB  and 12B∞ represent the frequency 
of failure respectively at age ( )a t and infinity. The mean time between failures (MTBF) is 

subsequently machine-age-dependent and is given by 
12

1MTBF( ) = 
( )

a
q a

and 

12

1MTBF( ) = 
B∞∞  at age a and ∞ . We refer our readers to Rausand and Hoyland [26] 

for more details on the definition of MTBF. 

Let 13 21 35 41B( ) ( , , , , )u k k k k⋅ = .The following five equations are obtained from the discrete 
dynamic programming equation A.2.16 (see appendix A for more details): 
 

 

 

( )
( )

( ) ( )

( ) ( )

( ) ( )
13 21 35 41

1

12 13
( , , , ) Γ 1

12 13

( x+h , ,1 x-h , ,1 )

,x,1 min ( x+h ,x,1 x, ,1 , (10)
,

x, , 2 x, ,3

h h
x x

x

h h

x a a
h h

u d
k k

h
u d Ku Kuq k g

u k k k k h h h
q k

α

ν α ν α

ν α ρ ν α

ν α ν α

+ −

−

∈

 − 
+ 

 
  − 

= + + + + + +  
   

 + + 
 
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Where ( ),x,hν α ⋅ is an approximation of the value function for small increments in the 

direction of and .x a In this study, we consider the computational domain defined as 

follows: 

{ }( , ) : 10 30; 0 150h
axG x a x a= − ≤ ≤ ≤ ≤  

Where age unit a  is arbitrary. Note that we opted not to consider a specific time unit, 

since it can be defined on a weekly, monthly or yearly basis depending on the particular 

application. Stock unit x  corresponds to the number of parts. We assume 

2and 2x ah h= = . 

It should be noted that machine characteristics must be defined in terms of system 

feasibility, meaning that the manufacturing system average capacity is not less than the 

demand. A manufacturing system is feasible, as described in Akella and Kumar [17], 

when: 

( )
( )

( ) ( ) ( )

( )13 21 35 41

1
21

21 24
( , , , ) Γ 2

24

x-h , , 2 x, , 2 x, ,1
,x,2 min , (11)

,
x, , 4

h h
xh

x
x h

d g kd hk q
u k k k k h

q

ν α α ν α
ν α ρ

ν α

−

∈

 + +   = + + +   
   + 

( )
( )

( ) ( ) ( )

( )13 21 35 41

1
31

31 35
( , , , ) Γ 3

35

x-h , ,3 x, ,3 x, ,1
,x,3 min , (12)

,
x, ,5

h h
xh

x
x h

d g qd hq k
u k k k k h

k

ν α α ν α
ν α ρ

ν α

−

∈

 + +   = + + +   
   + 

( )
( )

( ) ( ) ( )
13 21 35 41

1

41 41
( , , , ) Γ 4

,x,4 min x-h , , 4 x, , 4 x, ,1 , (13)
,

h h h
x

x x

d dk g k
u k k k k h h

ν α ρ ν α α ν α
−

∈

   
= + + + +  

   

( )
( )

( ) ( ) ( )
13 21 35 41

1

51 51
( , , , ) Γ 5

,x,5 min x-h , ,5 x, ,5 x, ,1 , (14)
,

h h h
x

x x

d dq g q
u k k k k h h

ν α ρ ν α α ν α
−

∈

   
= + + + +  

   
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max
1 (15)u dπ ≥  

It should be noted that the limitation probabilities are obtained for a system that follows a 

Markov process as follows: 
 

1

( ) ( ) 0
(16)

1 where 5
n

i
i

Q

n

π

π
=







⋅ ⋅ =

= =∑
 

with: 

( )π ⋅ : Limiting probabilities 

( )Q ⋅ : Transition matrix rates 

The vector of limiting probabilities 1 2 3 4 5( , , , , )π π π π π indicates the average time for which 
the system stays in mode i  = 1 to 5. 

From equation (16) based on the theory illustrated by Ross [27], we have for the 
manufacturing system under consideration:  

[ ] [ ]

12 13 12 13

21 21 24 24

1 2 3 4 5 31 31 35 35

41 41

51 51

1 2 3 4 5

( ( ) ) ( ) 0 0
( ) 0 0

0 ( ) 0 0 0 0 0 0
0 0 0
0 0 0

1

q a k q k
k k q q
q q k k
k k
q q

a

π π π π π

π π π π π

 − + 
  − +  
  − + =

  − 
  − 

+ + + + =

 

Solving equation system (16) gives:  
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1
13 13 3512 12 24

21 24 31 35 41 21 41 24 51 31 51 35

12
2

13 13 3512 12 24 21 24

21 24 31 35 41 21 41 24 51 31 51 35

3
1312

21 24 31 35

1 (17)( ) ( )1

( )1 (18)( ) ( )1

1
( )1

k k kq a q a q
k q q k k k k q q q q k

q a
k k kq a q a q k q

k q q k k k k q q q q k

kq a q
k q q k

π

π

π

=
+ + + +

+ + + +

= ×
++ + + +

+ + + +

=
+ + +

+ +

13

13 3512 24 31 35

41 21 41 24 51 31 51 35

12 24
4

13 13 3512 12 24 21 24 41

21 24 31 35 41 21 41 24 51 31 51 35

5
1312 12 24

21 24 31 35 41 21

(19)( )

( )1 (20)( ) ( )1

1
( ) ( )1

k
k ka q q k

k k k q q q q k
q a q

k k kq a q a q k q k
k q q k k k k q q q q k

kq a q a q
k q q k k k

π

π

×
++

+ +

= × ×
++ + + +

+ + + +

=
+ + +

+ +

13 35

13 35 31 35 51

41 24 51 31 51 35

(21)k k
k k q k q

k q q q q k

× ×
++

+ +  

Given that the manufacturing system under consideration is operational only in mode 1 

and by definition feasible only under the condition stated in equation 15,that is, 0δ ≥ , 

where δ  is difference between the capacity and the demand( max
1 duπ − ) the feasibility 

of the considered manufacturing system depends on 1π ; hence: 

max

13 13 3512 12 24

21 24 31 35 41 21 41 24 51 31 51 35

1 (22)( ) ( )1
dk k kq a q a q

k q q k k k k q q q q k

u× ≥
+ + + +

+ + + +
 

The machine failure rate for each value of its age is plotted in Figure 2, 
where 12 0.1andB∞ = 51 10Bt

−= ×  are selected to obtain a failure probability trajectory 

according to the machine age as described by Kenné and Nkeungoue [19].

 



16 
 

 

Figure 2. Age-dependent frequency of machine failure 

After tuning to reflect the behaviour of the developing policy more accurately, the 

parameters for the described manufacturing system were set to specific values shown in 

Table 1,without loss of generality. 

Table 1 

 

We note that there are no benchmarks in the literature and we therefore generated a 

dataset that better reflects the behaviour of the system, while maintaining feasibility 
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conditions. There is thus a trade-off between production rate and demand since the order 

backlog cost is considered greater than the inventory holding cost. It should be noted that 

there is also a trade-off between the frequency of corrective maintenance and the 

production rate, since more frequent corrective maintenance means more shutdowns. The 

frequencies of corrective and preventive maintenance are chosen accordingly to reflect 

system behaviour/performance more accurately. Human error, described as improper 

procedure, is assumed to increase the mean time spent on corrective and preventive 

maintenance (including LOTO) by 20% (see [28] for details). 

In this article, the policy improvement technique is used to solve the optimization 

approximation problem, namely equations 10 through 14.The numerical solution that 

meets the optimality conditions is used to obtain the control policies. We describe the 

policy improvement technique as follows: 

Step 1. (Initialization) Choose , : 1, ( ( , )) : 0, , ( , )h n h
axset n v x k A a x Gδ a+∈ = = ∀ ∈ ∈�  

Step 2.Compute 1( ( , , )) : ( ( , , )) , , ( , ) .h n h n h
axv a x v a x A a x Gaaa  − = ∀ ∈ ∈  

Step 3. Compute the corresponding value function to obtain the control policy 

13 21 35 41( , , , , )u k k k k  

Step 4.  Test the convergence  

{ }
[ ]
{ }

[ ]

1

min

1

max

max min

min ( ( , , ) ( ( , , ) ,

/(1 )) ,

max ( ( , , ) ( ( , , ) ,

/(1 )) ,

If , then stop, else 1 and go tostep 2.

h h
n n

h h
n n

c v a x v a x

c c

c v a x v a x

c c

c c n n

aa

ρ ρ

aa

ρ ρ

d

−

−

= −

= −

= −

= −

− ≤ = +

 

Where δ +∈� is a threshold value corresponding to the convergence of the algorithm. 

The production policy structure ( )u ⋅ recommends that if the stock level is lower than a 

threshold level, the facility should produce at maximal capacity; if the stock level is equal 

to the associated critical threshold, the facility should produce at the rate that meets 

demand; otherwise production should be halted. Such a structure is commonly called the 

hedging point policy (HPP) in the literature on production control [17]. 
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For illustrative purposes, results obtained for the control variables 13 21 35 41( , , , , )u k k k k of a 
machine producing a single type of part are shown in Figures3 through 5(b). 

For the parameters mentioned in Table 1, the machine-age-dependent threshold value is 

defined using the trend plotted in Figures 3 through 5(b). The production policy is 

therefore stated as follows: 

max *

*

if ( ) ( ),
(1, , ) if ( ) ( ), (23)

0 otherwise.

u x t X a
u x a d x t X a

 <


= =

  

Where *( )X a  is optimal stock level at age ( )a t . Equation (23) determines the 

production policy for the manufacturing system under consideration. Recall that the 

machine is operational only in mode 1α = . 

 

Figure 3. Machine production rate 
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Figure 3 proposes different zones for the production rate. Each of these corresponds to an 

optimal production policy based on inventory level and machine age. The optimal policy 

appears to be to maximize the production rate when the current stock level is below an 

age-dependent threshold value. In this zone, machine failure is frequent because of aging. 

This policy also suggests that when the current stock level is equal to an age-dependent 

threshold value, production should be set at a rate corresponding to demand. Under any 

other condition, production should be halted. 

The corrective maintenance policies with and without human error are plotted in Figures 

4(a) and 4(b). Figure 4(a) shows that the computational domain ( , )x a is divided into two 

regions, one in which the frequency of corrective maintenance without human error is set 

at its maximal value, resulting in order backlog situations, and one in which it is set at its 

minimal value, resulting in comfortable stock levels. Figure 4(b) has the same structure. 

At a given machine age, higher levels of inventories are recommended when corrective 

maintenance (including LOTO) might be conducted improperly. For instance, the penalty 

on inventory level for age 80 and a corrective maintenance frequency of 0.25 is an 

increase of 29%. The corresponding optimal policies have a bang-bang structure and are 

given by equations 24 and 25. 

max *
21

21 min
21

if ( ) ( ),
(2, , ) (24)

otherwise.

k x C a
k x a

k

 ⋅ <= 


 

Where *( )C a represents the optimal stock level at which the frequency of corrective 

maintenance without human error should be changed from min
21k to max

21k . 

max *
41

41 min
41

if ( ) ( ),
(4, , ) (25)

otherwise.

k x D a
k x a

k

 ⋅ <= 


 

Where *( )D a represents the optimal stock level at which the corrective maintenance with 

human error should be changed from min
41k to max

41k . 
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Figures 4(a) and 4(b). Frequency of machine corrective maintenance including LOTO (a) 
without human error and (b) with human error 

The preventive maintenance rates without and with human error are plotted in Figures 

5(a) and 5(b). Figure 5(a) shows that the computational domain ( , )x a  is divided into two 

regions. The frequency of preventive maintenance without human error is set at its 

maximum for backlog situations and at zero for large stock levels. The zone in the 

domain ( , )x a  where this frequency is maximal increases with machine age for significant 

stock levels. The policy recommends increasing inventory levels as machine age 

increases to meet demand when preventive maintenance might be conducted improperly. 

For example, at age 80 and a preventive maintenance frequency of 0.05, the inventory 

level penalty is an increase of 25%. 

The corresponding optimal policies have a bang-bang structure, as was the case for the 

corrective maintenance policies with or without human error. These control policies are 

given by equations 26 and 27. 

max *
13

13 min
13

if ( ) ( ),
(1, , ) (26)

otherwise.

k x E a
k x a

k

 ⋅ <= 
  

Where *( )E a is a machine-age function that gives the optimal stock level at which it is 

necessary to change the frequency of preventive maintenance without human error 

from min
13k to max

13k . 

max *
35

35 min
35

if ( ) ( ),
(3, , ) (27)

otherwise.

k x F a
k x a

k

 ⋅ <= 
  
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Where *( )F a is a machine-age function that gives the optimal stock level at which it is 

necessary to change the frequency of preventive maintenance with human error from 
min
35k to max

35k . 

  

Figures 5(a) and 5(b). Frequency of machine preventive maintenance including LOTO (a) 
without human error and (b) with human error 

The variability was analyzed to evaluate the sensitivity of the results to the policies. The 

influences of the backlog cost on the production threshold, the corrective maintenance 

cost and the preventive maintenance cost as a function of machine age are plotted in 

Figures 6 through 8. 

Figure 6 shows that it is not necessary to keep large inventories if the manufacturing 

system is in its youthful phase, that is, while the production machinery is highly reliable 

and can meet demand. However, as the machine ages, storing more finished inventory is 

recommended to meet demand as it peaks. In other words, the manufacturing system 

must prepare for shutdowns at increasing frequency. Furthermore, if the order backlog 

cost increases at any machine age, the consequences of stock shortfall become greater 

and stock levels should therefore be increased. 
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Figure 6. Threshold value versus machine age 

C- Backlog cost 

Figure 7 displays the relationship between corrective maintenance, inventory level and 

machine age. This relationship indicates that if the corrective maintenance cost increases, 

the stock level at any machine age should be increased to avoid possible shortages, all the 

more if that maintenance activity is subject to improper procedure by the technician. In 

the latter case, the probability of incident or accident is also greater. To reduce this 

probability, the production speed must not be increased quickly and worker training 

should be improved [29]. 
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Figure 7. Frequency of corrective maintenance without and with human error, versus 

machine age 

The abbreviations in Figure 7 refer to the following: 

CM* : corrective maintenance cost 

WOHE*: without human error 

WHE* : with human error 

Figure 8 describes the recommended inventory level at a given the machine age and 

preventive maintenance cost. The dotted line represents the recommended inventory 

when the effect of human error during preventive maintenance is integrated. Each line 

divides the ( , )x a  domain into two zones. In zone I, the production policy recommends 

not to impose preventive maintenance, since the probability of machine failure is almost 

zero (e.g. the machine is brand new). The machine will certainly meet demand. 

Maintenance is appropriate in zone II, since the manufacturing system is aging and 

breakdown is more likely. To increase the life and reliability of the production unit, 
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preventive maintenance becomes indispensable, and inventory must be increased to meet 

demand. Furthermore, the frequency of preventive maintenance must be decreased if its 

cost increases. These results illustrate that inventory must be increased for any preventive 

maintenance cost when it is likely that maintenance procedures will be improper and the 

probability of accident will increase. This is consistent with previous study [29] of the 

impact of increased production speed and reduced training on the probability of incidents 

and accidents. 

 

Figure 8 here. Frequency of preventive maintenance without and with human error versus 

machine age 

The abbreviations in figure 8refer to the following: 

PMC* : preventive maintenance cost  

WOHE*: without human error 

WHE* : with human error 
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5. Discussion 

The motivation for this study is the concept of corporate social responsibility as presented 

elsewhere [30, 31]and the fundamental message of the Brundtland Commission on social, 

economic and environmental integration and the contribution of workers to sustainable 

development [32]. These studies highlight the importance of seizing opportunities to 

achieve better integration of occupational safety and day-to-day management of 

manufacturing processes. The results presented in this article could help corporate 

managers to realise the impact of human error on production costs as well as accidents 

and occupational health hazards in uncertain manufacturing environments. This paper 

contributes to a stream of research that emphasises integrating human aspects into 

operations models as called for by [29] and as exemplified by the integration of human 

aspects like biomechanical loading and fatigue into discrete event simulation [33,34], 

connecting learning and forgetting into mathematical models of Dual Resource 

Constrained (DRC) systems [35,36,37], modelling production costs in ways that include 

employee health hazards [38], and incorporating human aspects into industrial 

engineering design tools to support the production system design process [39]. This 

current study contributes to this agenda by providing further examples of novel 

approaches to integrating human aspects into engineering design and decision making 

tools that can support better design choices for both improved system safety and long 

term system performance. 

Already in the 1960s, Rook [40] illustrated that 82% of 23,000 production defects 

originating on assembly lines were due to human error. At the beginning of the 2000s, 

Shibata [41] reported that on average, 42% of the assembly defects in products such as 

compact disc/mini disc dual-deck players were due to human error. This work also 

revealed that assembly process complexity increases the human error rate and hence the 

occurrence of defects. To discuss the impact of human error on assembly process 

production quality and defective parts, Bubb [42] used field data from the electronic 

assembly line sector and recommended using methods such as THERP (Technique for 

Human Error Rate Prediction) to reduce the probability of human error. Liu et al [43] 

later showed the direct relationship between human error and economic loss in 

production and developed a loss estimation model in which the impact of human error is 
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categorized as minor, medium, or severe. Considering 33 types of cost factor, the effect 

of complexity on quality in consumer audio equipment assembly has been analyzed at 

various sites around the world using a vast field dataset [41]. In the recent literature, 

researchers now recommend integrating production and human factors [44] as well as 

maintenance [45] and human error probability (HEP) to improve production system 

reliability [46]. The group headed by B.S. Dhillon has contributed substantially to our 

current comprehension of maintenance and maintenance errors. The consensus in the 

recent literature is that “most human errors occur in the inspection and maintenance 

phases” [46]. The main sources of human error in maintenance have been identified as 

“lack of communication, distraction, lack of resources, stress, complacency, lack of 

teamwork, pressure, lack of awareness, lack of knowledge, fatigue, lack of assertiveness 

and social norms” [45]. For example, in a study of chemical processing, 21 % of 

maintenance-related major accidents were found to be the result of bypassing safety 

measures (active failure), while 69% were caused by “deficient planning/scheduling/fault 

diagnosis”, a form of latent failure [47]. Quality inspection errors have been modeled 

recently [48]. HEP has been assessed in LOTO pump maintenance activities using the 

success likelihood index method or SLIM [46]. Nevertheless, the difficulties of 

quantifying error occurrence in maintenance tasks are immense, due to the diversity of 

the activities [49].The literature on LOTO focuses on the sole utilization of LOTO in the 

procedural form focusing on how LOTO should be implemented [50,51]. While 

appropriate LOTO procedural routines are indeed needed they are insufficient. The 

problem that persists is the lack of inclusion of the LOTO procedures into production 

planning and control. To cope with this shortcoming Charlot et al. [3] integrated LOTO 

control into production planning. They showed that this integration into production 

planning makes the implementation of safety measures to reduce risk of accidents easier. 

Moreover, Emami-Mehrgani et al. [13,21] showed that by integrating the LOTO into 

production capacity control planning for a passive redundancy system, the system 

becomes less vulnerable to changes in shortage and inventory costs by meeting the 

demand permanently. They also disclosed that the integration of LOTO in passive 

redundancy system allows managers to respect the essential space and time requirements 

during machine repair actions. With the appropriate consideration of space and time 
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issues, the LOTO procedure can be put in place effectively. In this article, we address 

corrective and preventive maintenance with LOTO while considering human error – a 

novel approach. By relying on the literature and the fact that “most human errors occur in 

the inspection and maintenance phases” [46] the importance of this research work, to 

improve system performance by attending to critical human aspects, is highlighted.  

In this study, we built our policy on the assumption that thanks to safety measures such as 

LOTO as well as appropriate maintenance and production planning, the risk of accident 

during maintenance activities is negligible, although human error may occur in the 

procedures. We are interested in the impact of such error on inventories, production 

capacity and the cost associated with maintenance and safety. LOTO contributes to the 

cost associated with the frequency of preventive and corrective maintenance. However, 

this cost should be acceptable compared to the cost of accidents or managing preventable 

hazards [52]. The impact of human error during maintenance activity on production costs 

appears to be twofold: the additional downtime required to rectify inadequate repairs, as 

well as the additional LOTO cost. 

The analytical model developed here was preferred because of the smaller number of 

parameters and assumptions required. Such a model may be very useful in support of 

results obtained by numerical methods, due to the flexibility it offers when the parameter 

values are changed. However, the policies obtained have to be robust. That is, they must 

propose sound responses to uncertainties (e.g. breakdown and human error) and to the 

rapidly changing conditions under which manufacturing systems operate. 

The sensitivity analysis, results and observations presented in this article validate the 

effectiveness and usefulness of the proposed model, meaning that the control policy is 

well developed. As claimed above, we have defined the optimal policies for production 

and corrective and preventive maintenance including LOTO, for a manufacturing system 

producing one part type, said system subject to random failure and to human error during 

maintenance activities. The policies thus developed could be extended to address real-

scale manufacturing systems involving more than one machine and multiple part types. 

However, this makes the problem more complex. A certain number of conditions have to 

be met to make efficient use of this model. Close monitoring and an efficient time 
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management system are required. In addition, a breakdown history recording system has 

to be in place to estimate probabilities of occurrence and the costs of intervention of one 

kind or another.  

6. Conclusion 

In this study of the impact of human error on corrective and preventive maintenance 

activities including LOTO and the associated production cost, we developed a control 

policy based on an extension of the hedging point structure. A parameterized near-

optimal control policy was derived from the numerical solution obtained. By running a 

numerical example and sensitivity analysis, we showed how human error throughout the 

maintenance activities increases the total production cost. We note that increasing 

production speed and reducing worker training increase human error and subsequently 

the total production cost while decreasing worker safety. The total production cost is also 

subject to increases due to the larger inventory needed to meet demand while machinery 

is subject to breakdown at increased frequency.  
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Appendix A. Optimal conditions and numerical approach  

In this section, the assumptions and lemmas underlying the analysis are described.  

Assumptions A.1.

 

A.1.1) ( )h ⋅ is a non-negative convex function with ( )0 0h = . It has positive 

constants g gC and K such that:  

1 2 1 2 1 2

C

C

( ) (1 )
and

( ) ( ) (1 )

g

g g

g

g

K

K K
x x

h x x

h x h x x x+

≤ +

− ≤ + −
 

A.1.2) ( )w ⋅ is a non-negative function with (0) 0w = and is twice differentiable and either 
strictly convex or linear.  
 
Lemmas A.1: 

A.1.1) if ( ), , ,g x aa ⋅  is convex, then ( ), ,x aν a is convex in ( ),x a for each .Aα ∈  

A.1.2) if ( ), , ,g x aa ⋅  is locally Lipschitz, meaning that positive constants gC and gk exist 

such that: 

( , , , ) ),C (1 g g
g

K K
g x a x aa ⋅ ≤ + + then for all 1 1 13 21 35 41 2 2, , , , , , , andx a u k k k k x a we have:  

( )

( ) ( )

1 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2 1 2

, ,

, , , ,

)

Hence,  is locally Lipschitz which means:

, , )

C

C

( , ) ( , )

(1 )(

, , (1 )(

g

g

g g g g

g g g g

K K K K

x a
K K K K

a a

a a x a

a a a a x a

g x g x

x x x a

x x x x x a
na

aa

nana  

⋅ ⋅

+ − + −

− + − + −

−

≤ + + +

≤ + + +

 

Proof: 

For A.1.1, we now show that ( ), , ,J x aa ⋅  is jointly convex.  

Let 1 1 2 2, , anda x a x be arbitrary initial values, 1 2( ) and ( )B B⋅ ⋅ to be some admissible 

controls. Let 11 11 22 22( ), ( ) , ( ) and ( ) with 0a t x t a t x t t ≥ denote the trajectories related to 

( ) ( )1 2
1 1 2 2, , ( ) and , , ( )x a B x a B⋅ ⋅ .  

For any [ ]0,1 ,µ∈  
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( ) ( )1 2
1 1 2 2

1 2
1 1 2 2

0

1 1 2 2
0

1 2 1
0

, , , ( ) (1 ) , , , ( )

( ( , , , ( )) (1 ) ( , , , ( )))

( ( ) ( ) (1 ) ( ) (1 ) ( ))

( ( ) (1 ) ( )) ( ( ) (1

t

t

t t

J x a B J x a B

E e g x a B g x a B dt

E e h x w a h x w a dt

E e h x h x dt E e w a

ρ

ρ

ρ ρ

µ a µ a

µ a µ a

µ µ µ µ

µ µ µ

∞
−

∞
−

∞
− −

⋅ + − ⋅

 
= ⋅ + − ⋅ 

 
 

= + + − + − 
 
 

= + − + + − 
 

∫

∫

∫ 2
0

) ( ))w a dtµ
∞ 
 
 
∫

 

With assumptions A.1.1 and A.1.2 we have: 

( ) ( )1 2
1 1 2 2

0

, , , ( ) (1 ) , , , ( ) ( , ( ), ( ), ( ))tJ x a B J x a B E e g x t a t B t dtρµ a µ aa
∞

− 
⋅ + − ⋅ ≥  

 
∫  

where 1 2( ) ( ) (1 ) ( )B t B t B tµ µ= + − , ( ) and ( )x t a t denote the trajectory with initial values 

1 2 1 2

1 2 1 2

( ) (1 ) ( ) (1 ) ,
( ) (1 ) ( ) ( (1 )  

and admissible controls ( ).

x x t x t x x
a a t a t a a

B

mmmm  
mmmm  

= + − = + −
= + − = + −

⋅
 

Therefore, we obtain: 

1 2 1 2
1 1 2 2 1 2 1 2( , , , ( )) (1 ) ( , , , ( )) ( , (1 ) , (1 ) , ( ) (1 ) ( ))J x a B J x a B J a x x a a B Bµ a µ a µ µ µ µ µ µ⋅ + − ⋅ ≥ + − + − ⋅ + − ⋅  

meaning that ( ), , ,J a x a ⋅ is jointly convex and thus ( ), ,a xν a is convex. 

For A.1.2, we take into consideration an admissible 

control ( )B ⋅ where 11 11 22 22( ), ( ), ( ) and ( )a x a x⋅ ⋅ ⋅ ⋅ denote the state trajectories under ( )B ⋅ with 

initial values 1 1 2 2, , anda x a x . Then, we have:  

11 22 11 22 1 2 1 2

1 1 1 11 11 2 2 22 22

( ) ( ) ( ) ( ) ),

( ) ( ) (1 ) and ( ) ( ) (1 )

(x t x t a t a t x a

x t a t C x a x t a t C x a

x a− + − − + −

+ ≤ + + + ≤ + +

≤
 

Assuming a locally Lipschitz condition, a constant 1C exists independently of ( )B ⋅ , 

1 1 2 2, ,  and such that :x a x a  

( ) ( )1 1 2 2 1 1 2 1 2 1 2 1 2, , , ( ) , , , ( ) )(1 )(g g g gK K K K
J x a B J x a B C a a x ax x x aaa ⋅ − ⋅ ≤ + − + −+ + +  

From this, we obtain: 
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( ) ( )
( )

( ) ( )1 1 2 2 1 1 2 2
( )

, , , , , ( ) , , , ( ), , Sup
B

a a J x a B J x a Bx x
a

aa ν a ν a
⋅ ∈Γ

− ≤ ⋅ − ⋅  

Hence: 

( ) ( )1 1 2 2 1 1 2 1 2 1 2 1 2, , ), , (1 )(g g g gK K K K
a a C a a x ax x x x x aν a ν a− ≤ + − + −+ + +  

Lemma A.2: 

The value function ( ), , is the unique viscosity solution to the HJB equations:x ana   

( )
( )

( ) ( ) ( ) ( )

( ) ( )
min

           B( )

, , ( ) , , ,
x

, , , , (A.2.1)
[ ( ) , , ]

d x a f u x a g
a

x a A
q

u

aβ
a β

a

nanaa   

ρnaa   β
n β na

≠

⋅ ∈Γ

∂ ∂
− + ⋅

∂ ∂
= ∀ ∈

+ ⋅ ⋅ − ⋅

 +  
 
 
  
∑

where ( ) ( ), , and , ,
x

x a x a
a

nana  
∂ ∂

∂ ∂
 are the partial derivatives of the value function 

( ), ,x aν a . 

 Proof: 

This involves showing that ( )ν ⋅ is both a viscosity sub-solution and viscosity super-

solution of equation (A.2.1) by using the procedure presented by Sethi and Zhang [53]. 

The reader is referred to Yong and Zhou [54] for more details. 

Let us consider 1( )C R R+ ++× to be a class of continuously differentiable function defined 

on R R+ ++× . Set 0 0, and .a xa  Then, let 1( ) ( )C R Rϑ + ++⋅ ∈ × be such that: 

( ) ( , ), , x ax a ϑν a − attains its maximum at 0 0( , )x x a a= = in neighbourhood 0 0P( , ).x a  

Let τ denote the first jump time of ( ).tξ  We take into consideration ( )B t B=  for 
0 ,t t≤ ≤ where ( )B α∈ Γ is a constant. In addition, let (0, ]ε τ∈  be such that ( , )x a starts at 

0 0( , )x a and stays in 0 0P( , )x a  for 0 .t ε≤ ≤  We define: 

0 0 0( , ) ( , , ) ( , ) if ( )
( , , ) (A.2.2)

if ( )( , , )
x a v x a x a t

x a
tv x a

ϑ a ϑ xa
γ x

xa a
+ − =

=  ≠
 

Then, by Dykin's formula and the fact that ( ) and 0 ,t tξ a ε= ≤ ≤  
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 
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 
 
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( ) ( , ), , x ax a ϑν a − reaches its maximum 

at 0 0 0 0( , ) and ( ( ), ( )) ( , ) for 0 .P x a x t a t P x a t ε∈ ≤ ≤  

Therefore:

 0 0 0( , , ) ( , ) ( , , ) ( , ) , that is:v x a x a v x a x aa ϑ a ϑ− ≥ −  

0 0 0 0( , ) ( , , ) ( ( , , ) ( , )) for 0 . (A.2.4)x a v x a v x a x a tϑ aa  ϑ ε≥ − − ≤ ≤  

0 0 0 0( , , ) ( , )v x a x aa ϑ− is a constant, and when we replace ( ), ,x aγ a in (A.2.3) by 

0 0 0 0( , , ) ( ( , , ) ( , ))v x a v x a x aaa  ϑ− − , we have:  
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( ) ( )

0 0
0

( , ( ), ( )) ( , ) ( )

( , ( ( ), ( )) ( , ( ), ( )) (A.2.5)

( , ) ( ) [ ( ) , , ]
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And by using the optimality principle, we obtain:

 

0 0 ( , ( ), ( ), ( )) ( , ( ), ( )) (A.2.6)
0

( , , ) te g x t a t B t dt e v x av a x a E
e ρ ρeaaee  
 
 
 
 

≤ − −+∫
 

Through a combination(A.2.5) and (A.2.6), we have:  

( ) ( ) ( )( , ( ), ( ), ( )) ( , ) ( ) ( , ) ( ) [ ( ) , , ]
0

0 te g x t a t B t x a u t d x a f u q v vx aE dtaβ

e ρ a ϑ ϑ β a
a β

 
 
 
  

− + − + + ⋅ ⋅ − ⋅∑∫
≠

≤
 

By letting 0ε → , we conclude that:  

( )
( ) ( ) ( ), , , , ,0 0 0 0 0 0 0min ( , ) ( ) ( ) ( ) [ ( ) , , ] ( , ) 00B( )

a B a ag x x a u d x f u q v v v xx a aβa ϑ ϑ β a ρ a
a a β

 
 
 
  

+ − + + ⋅ ⋅ − ⋅ − ≥∑
⋅ ∈Γ ≠  

Hence, ( )v ⋅ is a viscosity sub-solution of equation (A.2.1). 
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We now show that ( )v ⋅  is a viscosity super-solution of equation (A.2.1) by assuming that 
it is not.  

If ( )v ⋅ is not a viscosity super-solution, this implies that 0 0, ,x aa and 0 0δ >  exist such 
that for all 

( )B α∈ Γ :

( ) ( ) ( ) ( , , ) (A.2.7)0( , , , ) ( , ) ( , ) ( ) [ ( ) , , ] v x ag x a B x a u d x a f u q v vx a aβ ρ ad a ϑ ϑ β a
a β

− ≥+ − + + ⋅ ⋅ − ⋅∑
≠  

In neighbourhood 0 0P( , )x a  where 1( ) ( )C R Rϑ + ++⋅ ∈ ×  such that 

( ) ( , ), , x ax a ϑν a − reaches its maximum at 0 0( , )x a in neighbourhood 0 0P( , ).x z  

Then for all 0 0( ( ), ( )) ( , ) :x t a t P x a∈  

0 0 0 0( , , ) ( , ) ( , , ) ( , ) (A.2.8)v x a x a v x a x aa ϑ a ϑ≥ + −  

For any ( )B α∈ Γ , let 0ε denote a small number such that ( , )x a starts at 0 0( , )x a and stays 

in 0 0( , )P x a for 00 .t ε≤ ≤ Note that 0ε is dependent on the admissible control 

B( ).⋅ Nevertheless, given that ( )u t d− is always bounded, there exists a constant 1 0ε ≥ such 

that 0 1 0ε ε≥ ≥ . Let τ denote the first jump time of the process ( ).ξ ⋅ Hence, 

( ) ( )

00

( , )( ( ) ) ( , ) ( ) ( , ( ), ( )) [ ( ) , , ]0
0

( , ( ), ( ))

( , ( ), ( ), ( )) ( , ( ), ( ))
0

( , , , ( ))

te x a u t d x a f u v x a q v v dtx a

e v x a

te g x t a t B dt e v x a

E

J a x a B E

e ρ dJJ   ρ aee   β aaβ
a β

ρe aee 

e ρ ρeaaee  
 
 
 
  

  
       
 
 

− − − − + + ⋅ ⋅ − ⋅∑∫
≠

−+

≤ − −⋅ +∫

≥

⋅

 

Using the differentiability of ( )ϑ ⋅ together with (A.2.4), we can show that 

( ) ( )0 0
0

( , , ) ( , ( ), ( )) ( , )( ( ) ) ( , ) ( ) [ ( ) , , ]

( , ( ), ( ))

t
x av x a e v x t a t x a u t d x a f u q v v dt

e v x a

E
e

ρ
aβ

a β

ρe

a ρ a ϑ ϑ β a

aee 

−

≠

−

≤
 

− − − + ⋅ ⋅ − ⋅ 
 

+

∑∫

Therefore:  
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0 0 0 0 0 0
0

0 ( , , ) ( , , )( , , , ( )) tv x a E e dt v x aJ a x a B
e

ρada   η−+ ≥ +⋅ ≥ ∫ , which is a contradiction. 

This reveals that ( , , )v x aa is a viscosity super-solution of equation (A.2.1).  

Hence, ( , , )v x aa is a viscosity solution to equation (A.2.1). 

Theorem 1 (Uniqueness Theorem) 

Given assumptions A.1.1 and A1.2 and since the function ( )w ⋅ is non-negative and either 
strictly convex or linear with (0) 0w = , we can conclude that the HJB equations (A.2.1) 
has a unique viscosity solution. 

Proof: 

For this proof, the reader is referred to Yong and Zhou [54].  

The optimality conditions are described by these equations for a manufacturing system 

consisting of one machine producing one type of part. Regarding the optimality principle 

to control problem [55,56], we can rewrite the HJB equations (A.2.1) as follows:  

 

( )
( )

( ) ( ) ( ) ( )

( ) ( ))13 21 35 41
min (A.2.9)

           (

, , ( ) , , , ,
x, , , ,

, , ,
, , , ,

, ( )[ ]

d a x f u a x g x
aa x A

k k k k
q a x a x

u

u
a β

a

nanaa   
ρnaa   β

n β na aβ≠

∈Γ

∂ ∂
− + ⋅

∂ ∂= ∀ ∈

+ ∑

 + 
 
 ⋅ −
 

 

The control policy * * * * *
13 21 35 41( , , , , )u k k k k denotes a minimizer over ( )αΓ  of the right-hand 

side of equation A.2.9. The value function obtained in equation 8 is in line with this 

policy. Hence, the optimal control policy is based on solving equation A.2.9. Obtaining 

an analytical solution of equation A.2.9 is almost impossible. In the scientific literature, 

the numerical solution of the HJB equation A.2.9 is considered as an insurmountable 

challenge [57]. 

In this section, the numerical method for solving the optimality conditions using the 

Kushner method [10] is presented. This method uses an approximation scheme for the 

gradient of the value function ( ), ,a xν a . Let andx ah h denote the step length of finite 
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difference interval of the variables x and a respectively and ( ), ,h a xν a  denote a solution 

to HJB. The function ( ), ,a xν a may be approximated by ( ), ,h a xν a  where ( ), ,x a xν a  for 

a given step size xh is obtained from equation A.2.10 as follows: 

( )
( ) ( )( ) ( )

( ) ( )( )

1 , , , , ( ) 0
, , ( ) , (A.2.10)

1 , , , - , ( )

x

x

h ha x h a x u d if u dxh
a x u dx

h ha x a x h u d otherwisexh

ν a ν a
ν a

ν a ν a

 + - × --  ≥  × - =  
 - × -
    

And using ,ah the value function given a small increment in the direction of a , 

( ), ,a a xν a , is approximated as 

follows:

( ) ( ) ( )( )1, , ( ) , , , , ( ), (A.2.11)
a

h ha x f u a h x a x f ua ah
ν a ν a ν a× = + − ×

 

If we simplify equations A.2.10 and A.2.11, we obtain respectively equations A.2.12 and 

A.2.13: 

( )
( ) ( )( ) ( )

( ) ( )( )

1 , , , , 0
, , , (A.2.12)

1 , , , - ,

x

x

h ha x h a x if u dxh
a xx

h ha x a x h otherwisexh

ν a ν a
ν a

ν a ν a

 + --  ≥  =  
 -
  

 

( ) ( ) ( )( )1, , , , , , , (A.2.13)
a

h ha x a h x a xa ah
ν a ν a ν a= + −  

If we replace (A.2.9) by (A.2.12) and (A.2.13) for the case with ( ) 0u d− ≥ , we have:  

( )
( )

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )

)13 21 35 41
min

           (

1
, , , ,

1
, , ( ) , , , , , , , ,

, , ,

, , , ,

,

( )[ ]

h h

x

x

h h

a

a

h

h h

d a x h a x
h

a x f u a h x a x g x A
k k k k h

q a x a x

u

u

a β

a

nana  

ρnananaaa        β

n β na aβ≠

∈Γ

− + −

= + + − ⋅ ∀ ∈

+ ∑

 
 
 
 
 
 
 

⋅ − 
   

with 
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( ) ( ),q qαα αββ α≠
⋅ = − ⋅∑ where , .α β ∈Α  

We then obtain:  

( )
( )

( ) ( )( )

( ) ( )

( )

)13 21 35 41

min
           (

1
, ,

1
, , ( ) , , , , , , (A.2.14)

, , ,

, ,

( )
,

( )

x

x

a

a

h

h

x a

h

h

d a x h
h

a x f u a h x g x A
k k k k h

q a x

u

u d f u
q uh h

aβ

a β

aa a

na

na  ρ naaa    β

n β
≠

∈Γ

− +

+ = + + ⋅ ∀ ∈

+

−
+ +

 
 
 

   
  

   
 

⋅ 
 
∑

 

For the case with ( ) 0u d− < if we replace A.2.9 with A.2.12 and A.2.13, we have:  

( )
( )

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )

)13 21 35 41
min

           ( ,

1
, , , - ,

1
, , ( ) , , , , , , , ,

, , ,

, , , ,

,

( )[ ]

x

x

a

a

h h

h hh
x

h h

d a x a x h
h

a x f u a h x a x g x A
k k k k h

q a x a x

u

u

a β

a

nana  

ρnananaaa        β

n β na aβ≠

∈Γ

--

= + + - ⋅ ∀ ∈

+ ∑

 
 
 
 
 
 
 

⋅ - 
   

We then obtain:  

( )
( )

( )

( ) ( )

( )

)13 21 35 41

min
           (

1
, - ,

1
, , ( ) , , , , , , (A.2.15)

, , ,

, ,

( )
,
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u d a x h
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h a x f u a h x g x A
k k k k h

hq a x

u d f u
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a β

a
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na  ρ naaa    β

n βaβ
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∈Γ

-

+ = + + ⋅ ∀ ∈

∑+

-
+ +

 
 
 

   
  

   
 ⋅ 
   

Grouping equations A.2.14 and A.2.15, the HJB equation can be expressed follows:  

( )
( )

( )(

( )

13 21 35 41

1

( )

, (A.2.16)

( ), , min , ,
, , , ,

( ), , )+ ( , , ) g( , , ) ( ) ( , , ) ,

h

h h
x

x a x

h h h
x a

a

A

u d u df ua x q a x h K
u k k k k h h h

f ua x h K v a x h a x q a x
h

aa
a

aβ
a β

a β

na  ρ na

naaan     β

−

+

∈Γ

−

≠

∀ ∈

 −   −= + + + × +  
  

 + − + + + ⋅ 
 

∑
 

Where ( )k αΓ  is the discrete feasible control space and K + and K − are defined as follows: 
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1 ( ) 0
0

if u d
K

otherwise
+ − ≥
= 
  

1 ( ) 0
0

if u d
K

otherwise
− − <
= 
  

For a discrete-time, discrete-state decision processes, equation A.2.16 may be considered 

as the infinite-horizon dynamic programming equation that takes into account problems 

faced in production optimization as well as maintenance control [55].The following 

theorem demonstrates that value function ( ), ,h a xν a is an approximation to ( ), ,a xν a for 

small increments andx ah h . 

Theorem 2 

Let ( , , )hv a x a be a solution to HJB equation A.2.16 and gC and gK  be positive constants 
satisfying the Lipschitz property (see [48] for details): 

( ), ,0 C (1 )g g
g

K K
a x x aν a≤ ≤ + + , then 

0
lim ( , , ) ( , , ) (A.2.17)h

h
v a x v a xaa

→
=  

Knowing that ( ), , ,g x aa ⋅  is non-negative and has a growth rate not 

exceeding1 g gK Kx a+ + associated with assumptions and lemmas A.1. Furthermore, 

controls 13 21 35 41, , ,k k k k  are all bounded variables. This means that the value 
function ( ), ,a xν a  is also non-negative and has a growth rate lower than a multiple of  

1 g gK Kx a+ + . Then we can conclude that
0

lim ( , , ) ( , , )h

h
v a x v a xaa

→
= , for small 

increments of h. 
 

Proof 

We refer the reader to the published literature [18,21] for proof of theorem 2. 
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