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Abstract—The capacity-achieving property of polar codes
has garnered much recent research attention resulting in low-
complexity and high-throughput hardware and software de-
coders. It would be desirable to implementflexible hardware
for polar encoders and decoders that can implement polar codes
of different lengths and rates, however this topic has not been
studied in depth yet. Flexibility is of significant importance as it
enables the communications system to adapt to varying channel
conditions and is mandated in most communication standards. In
this work, we describe a low-complexity and flexible systematic-
encoding algorithm, prove its correctness, and use it as basis
for encoder implementations capable of encoding any polar
code up to a maximum length. We also investigate hardware
and software implementations of decoders, describing how to
implement flexible decoders that can decode any polar code
up to a given length with little overhead and minor impact
on decoding latency compared to code-specific versions. We
then demonstrate the application of the proposed decoder in
a quantum key distribution setting, in conjunction with a new
sum-product approximation to improve performance.

Index Terms—polar codes, systematic encoding, multi-code
encoders, multi-code decoders.

I. I NTRODUCTION

Modern communication systems must cope with vary-
ing channel conditions and differing throughput constraints.
The 802.11-2012 wireless communication standard specifies
twelve low-density parity-check (LDPC) codes of different
rate and length combinations; in addition to convolutional
codes [1]. The overhead of building a flexible LDPC decoder
capable of decoding different codes is significant, and creating
flexible LDPC decoders is an active area of research [2], [3].

There has been much recent interest in Polar codes, which
achieve the symmetric capacity of memoryless channels with
an explicit construction and are decoded with the low complex-
ity successive-cancellation decoding algorithm [4]. It was also
recently shown that polar codes do not exhibit any error floor
when transmitted over symmetric binary-input memoryless
channels [5]. There have been several implementations of
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polar decoders in the literature, some of which are capable
of decoding polar codes of different rates given a fixed code
length [6], [7]. In this work, we show how this flexibility can
be extended to decode and also encode any code of length
n ≤ nmax.

Polar codes were initially introduced as non-systematic
block codes [4]. Later, systematic polar encoding was de-
scribed in [8] as a method to ease information extraction and
improve bit-error rate without affecting the frame-error rate. In
addition to the error rate improvement, systematic polar codes
were shown to be well suited for use with the fast decoding
algorithm introduced in [6].

The systematic encoding scheme originally proposed in [8]
is serial by nature, and seems non-trivial to parallelize, unless
restricted to a single polar code of fixed rate and length. The
serial nature of this encoding (O(n · logn) time-complexity)
places a speed limit on the encoding process which gets worse
with increasing code length. In contrast, the non-systematic
encoder presented in [4] is parallel by nature, and is amenable
to very fast hardware implementations [9]. To address this, a
new systematic encoding algorithm that is easy to parallelize
was first described in [6]. This new encoding algorithm offers
the best of both worlds: on one hand, it is systematic, and
thus gains all the advantages described above. On the other
hand, it is essentially equivalent to running the non-systematic
encoder twice. Thus, the prior art (and future advances) used
to implement fast non-systematic encoders can be used as is
to implement a fast systematic encoder. We further highlight
that the systematic encoder in [6] is very flexible: it can
encode any polar code of a given length by simply updating
bit masks stored in memory, without any other modifications
to the implementation.

The systematic encoder presented in [6] is knownnot to
work (i.e. not produce valid polar codewords) for certain
choices of frozen index sets. However, it was observed in [6]
that such bad choices of frozen sets do not occur in practice. It
was speculated in [6] that this phenomenon is true in general,
but no proof was given. A key result of this paper is such a
proof. We show that if ties are broken in a specific way during
the polar code construction phase, then the systematic encoder
in [6] will always be correct and produce valid codewords. The
result follows from Theorems 1 and 6 below.

This paper contains two conceptual parts addressing flexible
encoding and decoding, respectively. The first one starts with
Section II where we define some preliminary notation and
contrast the implementation of the original systematic encoder
presented in [8] to the more efficient systematic encoder pre-
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sented in [6]. Note that reading [8] or [6]is not a prerequisite
to reading the current paper. Section III is mainly about setting
notation and casting the various operations needed in matrix
form. In Section IV, we define the property of domination
contiguity, and prove that our algorithms work if this property
is satisfied. The fact that domination contiguity indeed holds
for polar codes is proved in Section V.

The second conceptual part of this paper deals with flex-
ibility of encoders and decoders with respect to codeword
length. Section VI details how the systematic decoder of
[6] can be adapted to work at various codeword lengths.
Sections VII and VIII discuss such flexibility with respect to
hardware and software versions of the simplified successive-
cancellation (SSC) decoder, respectively. Lastly, Section IX
shows how such a flexible software decoder can be used
in the quantum key distribution setting, and introduces a
new sum-product approximation that improves error-correction
performance compared to the min-sum algorithm.

II. BACKGROUND

We start by defining what we mean by a “systematic
encoder”, with respect to a general linear code. For integers
0 < k ≤ n, let G = Gk×n denote ak × n binary matrix with
rank k. The notationG is used to denote a generator matrix.
Namely, the code under consideration is

span(G) =
{
v ·G | v ∈ GF(2)k

}
.

An encoder
E : GF(2)k → span(G)

is a one-to-one function mapping aninformation bit vector

u = (u0, u1, . . . , uk−1) ∈ GF(2)k

to a codeword

x = (x0, x1, . . . , xn−1) ∈ span(G) .

All the encoders discussed in this paper are linear. Namely,

E(u) = u · Π ·G ,

whereΠ = Πk×k is an invertible matrix defined overGF(2).
The encoderE is systematic if there exists a set ofk

systematic indexes

S = {sj}
k−1
j=0 , 0 ≤ s0 < s1 < · · · < sk−1 ≤ n− 1 , (1)

such that restrictingE(u) to the indexesS yields u. Specif-
ically, positionsi of x must containui. We stress that since
the si are in increasing order in (1), a restriction operation is
all that is needed in order to recoveru form x. Namely, the
restrictionneed not be followed by a permutation.

Since G has rankk, there existk linearly independent
columns inG. Thus, we might naively takeΠ as the inverse
of these columns, takeS as the indexes corresponding to these
columns, and state that we are done. Of course, the point of
[8] and [6] is to show that the calculations involved can be
carried out efficiently with respect to the computational model.

The model considered in [8] is the standard serial model.
By making use of the recursive structure of polar codes, it

0 + + + 0 + + + x0

0 + + 0 + + x1

0 + + 0 + + x2

a0 + + a0

a1 + + + + a1

a2 + + a2

a3 + + a3

a4 a4

Fig. 1. The systematic encoder of [6] for an (8, 5) polar code.

is shown that both the operation of multiplyingu by Π and
the operation of multiplying the resulting vector byG can be
carried out in timeO(n · logn).

We are interested in the VLSI model. For this model, it
is known that the operation of multiplying byG can be
implemented very efficiently and can be made to run very
fast. See [9] for current details. In contrast, the algorithm
presented in [8] for calculatingu · Π seems inherently serial:
a computation is carried out on the first half of the codeword.
We wait for the computation to finish, and use the results
in order to perform a very similar operation on the second
half of the codeword. In fact, since the algorithm is similar
to successive-cancellation (SC) decoding, the many methods
used in order to parallelize SC decoding [6], [10] can be used
in this setting as well. However, even with these refinements,
multiplying by G will still be much simpler and much faster.

The systematic encoding algorithm presented in [6] essen-
tially involves multiplying byG twice and setting frozen bits
locations to ‘0’ in between. Fig. 1 illustrates this process
for a non-reversed (8, 5) polar code usingai and xi to
denote information and parity bits, respectively. As far as
we understand, this is rather different from the method in
[8]. Specifically, [8] works for any set of frozen indices
while [6] does not. It was observed in [6] that a bad set
of frozen indices does not occur when constructing polar
codes, and this was assumed to always hold. In this paper,
we prove that this assumption is indeed true. We analyze two
variants of systematic encoders, one for the codes originally
presented in [4] in which a bit-reversing operation is carried
out on the codeword, and one in which no bit-reversing
operation is carried out (this was the version presented in
[6]). The bit-reversed version is more natural in hardware
implementations, where it simplifies routing; while the non-
reversed version is more natural for software implementations,
enabling the use of vectorized single-instruction multiple-data
(SIMD) instructions.

III. SYSTEMATIC ENCODING OFPOLAR CODES

We start this section by recasting the concepts and operation
presented in the previous section into matrix terminology.
Recalling the definition ofS as the set of systematic indices,
define therestriction matrix R = Rn×k corresponding toS
as

R = (Ri,j)
n−1
i=0

k−1
j=0 , where Ri,j =

{

1 if i = sj ,

0 otherwise.
(2)
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With this definition at hand, we require thatE(u) ·R = u, or
equivalently that

Π ·G ·R = I , (3)

whereI above denotes thek × k identity matrix. Our proofs
will center on showing that (3) holds.

We will shortly introduce the two variants of polar codes for
which our two encoders are tailored. Essentially, the difference
between the two codes is a bit reversal operation. Thus, as a
first step, we define the concept of bit reversal.

From this point forward, we adopt the shorthand

m , log2 n .

For an integer0 ≤ i < n, denote the binary representation of
i as

〈i〉2 = (i0, i1, . . . , im−1) ,

wherei =
m−1∑

j=0

ij2
j andij ∈ {0, 1} . (4)

For i as above, we define
�

i as the integer with reversed binary
representation. That is,

〈
�

i 〉2 = (im−1, im−2, . . . , i0) ,
�

i =

m−1∑

j=0

ij2
m−1−j .

As in [4], we denote then × n bit reversal matrix as
Bn. Recall thatBn is a permutation matrix. Specifically,
multiplying a matrix from the left (right) byBn results in
a matrix in which row (column)i equals row (column)

�

i of
the original matrix.

A key concept in the definition of polar codes is the kernel
matrix. Our encoders assume the kernel matrix presented in the
seminal paper [4]. Namely, letF = [ 1 0

1 1 ]. Them-th Kronecker
product ofF is denotedF⊗m and is defined recursively as

F⊗m =

[
F⊗(m−1) 0
F⊗(m−1) F⊗(m−1)

]

, whereF⊗1 = F . (5)

We denote the generator matrices corresponding to our two
code variants asGrv andGnrv, where the subscripts denote
“reversed” and “non-reversed”, respectively. We first discuss
Grv, the version presented in [4].

The matrixGrv is obtained by selecting a subset ofk rows
from the n × n matrix BnF

⊗n. Thus, the name “reversed”
highlights the fact that a bit reversing operation is applied to
the Kronecker product of the kernel matrix. The rows selected
correspond to thek “best” synthetic channels, as discussed in
[4]. We denote the set of rows selected, termed theactive rows
as

A = {αj}
k−1
j=0 , 0 ≤ α0 < α1 < · · · < αk−1 ≤ n− 1 . (6)

As before, we recast the above in matrix terms. Thus, define
the matrixE = Ek×n as

E = (Ei,j)
k−1
i=0

n−1
j=0 , where Ei,j =

{

1 if j = αi ,

0 otherwise.
(7)

By this definition, we have

Grv = E · Bn · F⊗m . (8)

As explained, applyingE to the left ofBn ·F
⊗m results in

a subset of rows ofBn · F⊗m. However, in our context, it is
often more natural to think ofE as a matrix which transforms
an information vectoru of length k into a vectoru · E of
length n. The vectoru · E containsui at positionαi, for
0 ≤ i ≤ k− 1, and0 in all other positions. Thus,E is termed
an expanding matrix.

The generator matrixGnrv for our second polar code variant
is defined as

Gnrv = E · F⊗m . (9)

By [4, Proposition 16], we know thatBn ·F
⊗m = F⊗m ·Bn.

Thus,Grv = Gnrv ·Bn. Namely,Grv andGnrv span the same
code, up to a bit-reversing permutation of indexes.

With the above notation at hand, the non-reversing encoder
can be succinctly described as

Enrv(u) = u ·E · F⊗m ·ET
︸ ︷︷ ︸

Π

·E · F⊗m
︸ ︷︷ ︸

Gnrv

. (10)

Note that multiplying a vectorv of lengthn by ET results
in a vector of lengthk with entry i equal to entryαi of v.
Put another way,ET equals the restriction matrixR, if the
restriction setS equals the set of active rowsA. For the case
of Enrv, this will indeed be the case. Simply put,ui will appear
at positionαi of the codeword1. Thus, for the non-reversed
case, our aim is to show that

E · F⊗m · ET · E · F⊗m · ET = I . (11)

Showing this will further imply that the correspondingΠ in
(10) is indeed invertible.

We now shift to describing our encoder for the bit-reversed
case,Erv. As a first step, we define the set of bit-reversed active
rows,

�

A, gotten from the set of active rowsA by applying the
bit-reverse operation on each elementαi. As before, we order
the elements of

�

A in increasing order and denote
�

A = {βj}
k−1
j=0 , 0 ≤ β0 < β1 < · · · < βk−1 ≤ n− 1 . (12)

Recall that the expansion matrixE was defined usingA. We
now define

�

E =
�

Ek×n according to
�

A in exactly the same
way. That is,

�

E = (
�

Ei,j)
k−1
i=0

n−1
j=0 , where

�

Ei,j =

{

1 if j = βi ,

0 otherwise.
(13)

Note thatE · B and
�

E are the same, up to a permutation of
rows (for i fixed, the reverse ofαi does not generally equal
βi, hence the need for a permutation). Thus, by (8),

G′
rv =

�

EF⊗m (14)

is a generator matrix spanning the same code asGrv. Anal-
ogously to (10), our encoder for the reversed code is given
by

Erv(u) = u ·
�

E · F⊗m · (
�

E)T
︸ ︷︷ ︸

Π

·
�

E · F⊗m
︸ ︷︷ ︸

G′

rv

. (15)

1Since the encoder presented in [8] has this property as well,it must be the
case that for a given information word, both our encoder and [8] produce the
same codeword (if this were not the case, then neither encoder would span
the whole code).
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For the reversed encoder, the set of systematic indices is
�

A.
Thus, our aim will be to prove that

�

E · F⊗m · (
�

E)T ·
�

E · F⊗m · (
�

E)T = I . (16)

IV. D OMINATION CONTIGUITY IMPLIES INVOLUTION

In this section we prove that our encoders are valid by
proving that (11) and (16) indeed hold. A square matrix is
called aninvolution if multiplying the matrix by itself yields
the identity matrix. With this terminology at hand, we must
prove that bothE·F⊗m·ET and

�

E·F⊗m·(
�

E)T are involutions.
Interestingly, and in contrast with the original systematic

encoder presented in [8], the proof of correctness centers on
the structure ofA. That is, in [8], any set ofk active (non-
frozen) channels has a corresponding systematic encoder. In
contrast, consider as an example the case in whichn = 4 and
A = {0, 1, 3}. By our definitions,

E =
[
1 0 0 0
0 1 0 0
0 0 0 1

]

, ET =

[
1 0 0
0 1 0
0 0 0
0 0 1

]

, and F⊗2 =

[
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

]

.

Thus,

E · F⊗2 ·ET =
[
1 0 0
1 1 0
1 1 1

]

, and

(E · F⊗2 ·ET ) · (E · F⊗2 ·ET ) =
[
1 0 0
0 1 0
1 0 1

]

.

Note that the rightmost matrix above isnot an identity matrix.
A similar calculation shows that

�

E · F⊗2 · (
�

E)T is not an
involution either. The apparent contradiction to the correctness
of our algorithms is rectified by noting thatA = {0, 1, 3}
cannot correspond to a polar code (as will be formalized
shortly). Specifically, the aboveA implies thatW+− is frozen
while W−− is unfrozen, a case which will never occur [11].

We now characterize theA for which (11) and (16) hold.
Recall our notation for binary representation given in (4).For
0 ≤ i, j ≤ n, denote

〈i〉2 = (i0, i1, . . . , im−1) , 〈j〉2 = (j0, j1, . . . , jm−1) .

We define thebinary domination relation, denoted�, as
follows.

i � j iff for all 0 ≤ t < m, we haveit ≥ jt .

Namely,i � j iff the support of〈i〉2 (the indexest for which
it = 1) contains the support of〈j〉2.

We say that a set of indexesA ⊆ {0, 1, . . . , n − 1} is
domination contiguous if for all h, j ∈ A and for all0 ≤ i < n
such thath � i and i � j, it holds thati ∈ A. For easy
reference:

(h, j ∈ A and h � i � j) =⇒ i ∈ A . (17)

Theorem 1. Let the active rows setA ⊆ {0, 1, . . . , n − 1}

be domination contiguous, as defined in (17). LetE and
�

E be
defined according to (6), (7), (12), and (13). Then,E ·F⊗m ·ET

and
�

E ·F⊗m · (
�

E)T are involutions. That is, (11) and (16) hold.

Proof. We first note that for0 ≤ i, j < n, we have that
i � j iff

�

i �
�

j . Thus, if A is domination contiguous then

so is
�

A. As a consequence, proving thatE · F⊗m · ET is an
involution will immediately imply that

�

E · F⊗m · (
�

E)T is an
involution as well. Let us prove the former — that is, let us
prove (11).

We start by noting a simple characterization ofF⊗m.
Namely, the entry at rowi and columnj of F⊗m is easily
calculated:

(F⊗m)i,j =

{

1 i � j ,

0 otherwise.
(18)

To see this, consider the recursive definition ofF⊗m given
in (5). Obviously,(F⊗m)i,j equals0 if we are at the upper
right (n/2) × (n/2) block. That is, if im−1 (the MSB of
i) equals0 and jm−1 equals1. If this is not the case, we
continue recursively in much the same fashion, with respect
to i mod 2m−1 and j mod 2m−1. Namely, we continue
recursively with “truncated by one position” versions of the
binary vectors representingi andj.

Recalling (6) and the notation|A| = k, we adopt the
following shorthand: for0 ≤ p, q, r < k given, let

h = αp , i = αq , j = αr .

By the above, a straightforward derivation yields that

(E · F⊗m · ET )p,q = (F⊗m)h,i

and (E · F⊗m · ET )q,r = (F⊗m)i,j .

Thus,
(

(E · F⊗m ·ET ) · (E · F⊗m · ET )

)

p,r

=

k−1∑

q=0

(E · F⊗m · ET )p,q · (E · F⊗m ·ET )q,r

=
∑

i∈A

(F⊗m)h,i · (F
⊗m)i,j . (19)

Proving (11) is now equivalent to proving that the RHS of
(19) equals1 iff h equalsj. Recalling (18), this is equivalent
to showing that ifh 6= j, then there is an even number of
i ∈ A for which

h � i and i � j , (20)

while if h = j, then there is an odd number of suchi.
We distinguish between 3 cases.
1) If h = j, then there is a single0 ≤ i < n for which

(20) holds. Namely,i = h = j. Sinceh, j ∈ A, we have
that i ∈ A as well. Since1 is odd, we are finished with
the first case.

2) If h 6= j andh 6� j, then there can be noi for which
(20) holds. Since0 is an even integer, we are done with
this case as well.

3) If h 6= j and h � j, then the support of the binary
vector 〈j〉2 = (j0, j1, . . . , jm−1) is contained in and
distinct from the support of the binary vector〈h〉2 =
(h0, h1, . . . , hm−1). A moment of thought revels that the
number of0 ≤ i < n for which (20) holds is equal to
2w(h)−w(j), wherew(h) andw(j) represent the support
size of 〈h〉2 and 〈j〉2, respectively. Sinceh 6= j and

https://www.researchgate.net/publication/51941311_How_to_Construct_Polar_Codes?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
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h � j, we have thatw(h)−w(j) > 0. Thus,2w(h)−w(j)

is even. Sinceh, j ∈ A andA is domination contiguous,
all of the above mentionedi are members ofA. To sum
up, an even number ofi ∈ A satisfy (20), as required.

Recall [4, Section X] that an(r,m) Reed-Muller code has
lengthn = 2m and is formed by taking the setA to contain
all indices i such that the support of〈i〉2 has size at least
r. Clearly, such anA is domination contiguous, as defined
in (17). Hence, the following is an immediate corollary of
Theorem 1, and states that our decoders are valid for Reed-
Muller codes.

Corollary 2. Let the active row setA correspond to an(r,m)

Reed-Muller code. LetE and
�

E be defined according to (6),
(7), (12), and (13), wheren = 2m. Then,E · F⊗m · ET and
�

E ·F⊗m · (
�

E)T are involutions. That is, (11) and (16) hold and
thus our two encoders are valid.

V. POLAR CODES SATISFY DOMINATION CONTIGUITY

The previous section concluded with proving that our en-
coders are valid for Reed-Muller codes. Our aim in this section
is to prove that our encoders are valid for polar codes. In
order to do so, we first define the concept of a (stochastically)
upgraded channel.

A channelW with input alphabetX and output alphabet
Y is denotedW : X → Y. The probability of receiving
y ∈ Y given thatx ∈ X was transmitted is denotedW (y|x).
Our channels will be binary input, memoryless, and output
symmetric (BMS). Binary: the channel input alphabet will
be denoted asX = {0, 1}. Memoryless: the probability of
receiving the vector(yi)

n−1
i=0 given that the vector(xi)

n−1
i=0

was transmitted is
∏n−1

i=0 W (yi|xi). Symmetric: there exists
a permutationπ : Y → Y such that that for ally ∈ Y,
π(π(y)) = y andW (y|0) = W (π(y)|1).

We say that a channelW : X → Y is upgraded with respect
to a channelQ : X → Z if there exists a channelΦ : Y → Z
such that concatenatingΦ to W results inQ. Formally, for all
x ∈ X andz ∈ Z,

Q(z|x) =
∑

y∈Y

W (y|x) · Φ(z|y) .

We denoteW being upgraded with respect toQ asW � Q.
As we will soon see, using the same notation for upgraded
channels and binary domination is helpful.

Let W : X → Y be a binary memoryless symmetric (BMS)
channel. LetW− : X → Y2 andW+ : X → Y2 × X be the
“minus” and “plus” transform as defined in [4]. That is,

W−(y0, y1|u0) =
1

2

∑

u1∈{0,1}

W (y0|u0 + u1) ·W (y1|u1) ,

W+(y0, y1, u0|u1) =
1

2
W (y0|u0 + u1) ·W (y1|u1) .

The claim in the following lemma seems to be well known in
the community, and is very easy to prove. Still, since we have
not found a place in which the proof is stated explicitly, we
supply it as well.

Lemma 3.LetW : X → Y be a binary memoryless symmetric
(BMS) channel. Then,W+ is upgraded with respect toW−,

W+ � W− . (21)

Proof. We prove thatW+ � W andW � W−. Since “�”
is easily seen to be a transitive relation, the proof follows. To
show thatW+ � W , takeΦ : Y2 × X → Y as the channel
which maps(y0, y1, u0) to y1 with probability 1. We now
show thatW � W−. Recalling thatW is a BMS, we denote
the corresponding permutation asπ. We also denote byδ() a
function taking as an argument a condition.δ equals1 if the
condition is satisfied and0 otherwise. With these definitions
at hand, we take

Φ(y0, y1|y)

=
1

2

[
W (y1|0) · δ(y0 = y) +W (y1|1) · δ(y0 = π(y)

]
.

The following lemma claims that both polar transformations
preserve the upgradation relation. It is a restatement of [12,
Lemma 4.7].

Lemma 4. Let W : X → Y andQ : X → Z be two BMS
channels such thatW � Q. Then,

W− � Q− and W+ � Q+ (22)

For a BMS channelW and0 ≤ i < n, denote byW (m)
i the

channel which is denoted “W (i+1)
n ” in [4]. By [4, Proposition

13], the channelW (m)
i is symmetric. The following lemma

ties the two definitions of the� relation.

Lemma 5. Let W : X → Y be a BMS channel. Let the
indexes0 ≤ i, j < n be given. Then, binary domination implies
upgradation. That is,

i � j =⇒ W
(m)
i � W

(m)
j . (23)

Proof. We prove the claim by induction onm. For m = 1,
the claim follows from either (21), or the fact that a channel
is upgraded with respect to itself, depending on the case. For
m > 1, we have by induction that

W
(m−1)
⌊i/2⌋ � W

(m−1)
⌊j/2⌋ .

Now, if the least significant bits ofi and j are the same we
use (22), while if they differ we use (21) and the transitivity
of the “�” relation.

We are now ready to prove our second main result.

Theorem 6. Let A be the active rows set corresponding to a
polar code. Then,A is domination contiguous.

Proof. We must first state exactly what we mean by a
“polar code”. Let the code dimensionk be specified. In [4],
A equals the indices corresponding to thek channelsW (m)

i

with smallest Bhattacharyya parameter, where0 ≤ i < n.
Other definitions are possible and will be discussed shortly.
However, for now, let us use the above definition.

Denote the Bhattacharyya parameter of a channelW by
Z(W ). As is well known, ifW andQ are two BMS channels,
then

W � Q =⇒ Z(W ) ≤ Z(Q) . (24)
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For a proof of this fact, see [12, Lemma 1.8].
We deduce from (23) and (24) that ifi � j, then

Z(W
(m)
i ) ≤ Z(W

(m)
i ). Assume for a moment that the

inequality is always strict wheni � j and i 6= j. Under
this assumption,j ∈ A must imply i ∈ A. This is a stronger
claim then (17), which is the definition ofA being domination
contiguous. Thus, under this assumption we are done.

The previous assumption is in fact true for all relevant
cases, but somewhat misleading: The setA is constructed by
algorithms calculating with finite precision. It could be the
case thati 6= j, i � j, but Z(W

(m)
i ) and Z(W

(m)
i ) are

approximated by the same number (a tie), or by two close
numbers, but in the wrong order. Thus, it might conceptually
be the case thatj is a member ofA while i is not (in practice,
we have never observed this to happen). These cases are easy
to check and fix, simply by removingj from A and inserting
i instead. Note that each such operation enlarges the total
Hamming weight of the vectors〈t〉2 corresponding to elements
t of A. Thus, such a swap operation will terminate in at most a
finite number of steps. When the process terminates, we have
by definition that ifj ∈ A and i � j, theni ∈ A. Thus,A is
dominations contiguous.

Instead of taking the Bhattacharyya parameter as the figure
of merit, we could have instead used the channel misdecoding
probability. That is, the probability of an incorrect maximum-
likelihood estimation of the input to the channel given the
channel output, assuming a uniform input distribution. Yet
another figure of merit we could have taken is the channel
capacity. The important point in the proof was that an upgraded
channel has a figure of merit value that is no worse. This holds
true for the other two options discussed in this paragraph. See
[11, Lemma 3] for details.

VI. FLEXIBLE HARDWARE ENCODERS

The most efficient non-systematic polar encoder implemen-
tation is presented in [9]. It is a pipelined, semi-paralleldesign
with a throughput ofP bit/Hz, whereP corresponds to the
level of parallelism, and is capable of encoding any polar code
of lengthn when correct frozen bits are set to zero at its input.
Fig. 2, derived from [9, Fig. 6], shows the architecture of an
encoder forn = 8 and P = 4, whereD denotes a delay
element and the multiplexers alternate between their inputs
starting with input ‘0’. In this section, we show how this
decoder can be used as the basis for our proposed systematic
encoder.

Adapting this architecture to encode any code of length
n ≤ nmax requires extracting data from different locations
along the pipeline. These locations are indicated with dashed
lines in Fig. 2, where the output for a code of lengthn can
be extracted from locationSlogn. Selecting different sets of
output is accomplished usingP instances of alognmax × 1
multiplexer. In a practical system, it is unlikely that the
minimum length of polar codes of interest will be 2; therefore
the required multiplexers will be narrower thanlognmax bits.

The encoder of [9] can be used as the component polar
encoder when implementing the algorithm proposed in Sec-
tion III in two ways: the first targeting high throughput, the

u4i
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u4i+3

+

+

+

+

D

D
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1

0

1

0

1

0
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+

+

xj0

xj1

xj2

xj3

S1 S2 S3

Fig. 2. Architecture of a semi-parallel polar encoder withn = 8 andP = 4

created according to [9].

second, low implementation complexity. In the high through-
put arrangement, two instances of the component encoder are
used, with the output of the first modified to set the frozen bits
to zero before being sent to the second instance. This requires
P ‘AND’ gates applying masks with frozen bit locations set
to zero and annmax/P × P memory to store said masks.
Alternatively, to save implementation resources at the cost of
halving the throughput, one instance of the component can be
used in two passes: the output from pass is masked and then
routed to the input of the encoder where it is encoded again
before being presented as the encoder output. In both cases,
encoding a code of lengthn < nmax can be accomplished by
setting the mask locations corresponding to bits with indexes
greater thann to ‘0’, without any changes to the component
non-systematic encoder. This requireslog2 nmax− log2 n extra
cycles for the data to reach the encoder output. The extra
latency can be eliminated if the component non-systematic
encoder is made flexible as described previously.

The systematic encoder of [8] can be used in a configuration
similar to the proposed high-throughput one. However, it
requires multiplication by matrices that change when the
frozen bits are changed. Therefore, its implementation requires
a configurable parallel matrix multiplier that is significantly
more complex than the component non-systematic encoder
used in this work. In addition, sinceG−1

AB is different from
the encoding matrixG that is used in the second step in [8],
separate circuitry is required to implement the operationsin a
parallelized manner, eliminating the possibility of reusing the
component encoder.

VII. F LEXIBLE HARDWARE DECODERS

After describing flexible encoders in the previous section,
we present flexible hardware decoder in this section and
flexible software decoders in the next.

The original fast simplified successive cancellation (Fast-
SSC) decoder was capable of decoding all polar codes of a
given length: it resembled a processor where the polar code
is loaded as a set of instructions [6]. By decoupling a stage’s
size from its index and updating the control logic, we obtaina
flexible Fast-SSC decoder capable of decoding any polar code
up to a maximum lengthnmax. In this section, we describe the
necessary modifications to the Fast-SSC decoder architecture
and analyze the resulting implementation.

https://www.researchgate.net/publication/273395339_Partially_Parallel_Encoder_Architecture_for_Long_Polar_Codes?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
https://www.researchgate.net/publication/273395339_Partially_Parallel_Encoder_Architecture_for_Long_Polar_Codes?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
https://www.researchgate.net/publication/273395339_Partially_Parallel_Encoder_Architecture_for_Long_Polar_Codes?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
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TABLE I
IMPLEMENTATION OF A FLEXIBLE POLAR DECODER COMPARED TO THAT

OF [6] FORnMAX = 32768 ON THE ALTERA STRATIX IV
EP4SGX530KH40C2.

Decoder LUTs FF RAM (bits) f (MHz)

[6] 24,066 7,231 536,136 102
Proposed 23,583 7,207 536,136 102

A. Stage Indexes and Sizes

The Fast-SSC decoder is organized into stages with a stage
Si corresponding to a constituent polar code of length2i. In
the proposed flexible decoder, we modify these two values,
so that the aforementioned relationship only holds when the
code lengthn = nmax. When nmax/n = r > 1, a stageSi

corresponds to a constituent code of length2i/r. The memory
allocated for a stageSi is always calculated assumingn =
nmax.

The decoder always starts fromSlog
2
nmax, corresponding to a

polar code of lengthn ≤ nmax, and proceeds until it encounters
a constituent code whose output can be estimated according
to the rules of the Fast-SSC algorithm.

B. Implementation Results

Since memory is accessed as words containing multiple
LLR or bit-estimate values, the limits used to determine
the number of memory words per stage must be changed
to accommodate the newn value. The rest of the decoder
implementation remains unchanged from [6]. These limits are
now provided as inputs to the decoder.

Table I compares the proposed flexible decoder (nmax =
32768) with the Fast-SSC decoder of [6] (n = 32768)
when both are implemented using the Altera Stratix IV
EP4SGX530KH40C2 field-programmable gate-array (FPGA).
It can be observed that the change in resource utilization
is negligible as a result of the localized change in limit
calculations. The operating frequency was not affected either.
As a results the two decoders have the same throughput and
latency. When decoding a code of lengthn < nmax, the flexible
decoder has the same latency (in clock cycles) as the Fast-SSC
decoder for a code of lengthn.

VIII. F LEXIBLE SOFTWARE DECODERS

High-throughput software decoders require vectorization
using single-instruction multiple-data (SIMD) instructions in
addition to a reduction in the number of branches. However,
these two considerations significantly limit the flexibility of
the decoder to the point that the lowest latency decoders in
literature are compiled for a single polar code [13]. In this
section, we present a software Fast-SSC decoder balancing
flexibility and decoding latency. The proposed decoder has
30% higher latency than a fully specialized decoder, but can
decode any polar code of lengthn ≤ nmax. As will discussed
later in this section, there are two additional advantages to the
proposed flexible software decoder: the resulting executable
size is an order of magnitude smaller, and it can be used to
decode very long polar codes for which an unrolled decoder
cannot be compiled.

A. Memory

Unlike in hardware decoders, it is simple to access an
arbitrary memory location in software decoders. The LLR
memory in the proposed software decoder is arranged into
stages according to constituent code sizes. When a code of
lengthn ≤ nmax is to be decoded, the channel LLRs are loaded
into stageSlog

2
n, bypassing any stages with a larger index.

The bit-estimate memory is arranged into a flat structure
of length nmax bits. Such a layout was found to decrease
decoding latency by eliminating superfluous copy operations
[13]. For a decoder of lengthn ≤ nmax, the decoder writes
starting from bit index 0. Once decoding is completed, the
estimated codeword will occupy the firstn bits of the bit-
estimate memory, which are provided as the decoder output.

B. Vectorization

The unrolled software decoder [13] specifies input sizes for
each command at compile time. This enables SIMD vector-
ization without any loops, but limits the decoder to a specific
polar code. To efficiently utilize SIMD instructions while
minimizing the number of loops and conditionals, we employ
dynamic dispatch in the proposed decoder. Each decoder
operation in implemented, using SIMD instructions and C++
templates, for all stage sizes up tonmax. These differently sized
implementations are stored in array indexed by the logarithm
of the stage size. Therefore two branch operations are used:
the first to look up the decoding operation, and the second to
look up the correct size of that operation. This is significantly
more efficient than using loops over the SIMD word size.

C. Results

We compare the latency of the proposed vectorized flexible
decoder with a non-vectorized version and with the fully
unrolled decoder of [13] using floating-point values.

Table II compares the proposed flexible, vectorized decoder
with a flexible, non-explicitly-vectorized decoder (denoted by
‘Scalar’) and a fully unrolled (denoted by ‘Unrolled’) one
running on an Intel Core 2 Quad Q9550 with SSE4 extensions.
All decoders were decoding a (32768, 29492) polar code using
the Fast-SSC algorithm, floating-point values, and the min-
sum approximation. The flexible decoders hadnmax = 32768.
From the results in the table, it can be seen that the vectorized
decoder has 41% the latency (or 2.4 times the throughput)
of the non-vectorized version. Compared to the code-specific
unrolled decoder, the proposed decoder has 130% the latency
(or 76% the throughput). In addition to the two layers of
indirection in the proposed decoder, the lack of inlining
contributes to this increase in latency. In the unrolled decoder,
the entire decoding flow is known at compile time, allowing
the compiler to inline function calls, especially those related to
smaller stages. This information is not available to the flexible
decoder.

Results for n < nmax are shown in Table III where
nmax = 32768 for the flexible decoders and the code used
was a (2048, 1723) polar code. The advantage the vectorized
decoder has over the non-vectorized one remains similar to
the n = nmax case at 48% the latency. The gap between the

https://www.researchgate.net/publication/274403259_Low-Latency_Software_Polar_Decoders?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
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https://www.researchgate.net/publication/274403259_Low-Latency_Software_Polar_Decoders?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
https://www.researchgate.net/publication/274403259_Low-Latency_Software_Polar_Decoders?el=1_x_8&enrichId=rgreq-21a509a7a2855d17ce83bfcaf074304a-XXX&enrichSource=Y292ZXJQYWdlOzI4MDEwNTE0MztBUzoyNTYxOTE5MTA2ODI2MjRAMTQzODA5MjMxOTYzOA==
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TABLE II
SPEED OF THE PROPOSED VECTORIZED DECODER COMPARED WITH THAT

OF NON-VECTORIZED AND FULLY-UNROLLED DECODERS WHEN

n = nMAX = 32768 AND k = 29492.

Decoder Latency (µs) Info. Throughput (Mbps)

Scalar Fast-SSC 606.6 48
Unrolled Fast-SSC [13] 188.7 156
Proposed Fast-SSC 247.5 119

TABLE III
SPEED OF THE PROPOSED VECTORIZED DECODER COMPARED WITH THAT

OF NON-VECTORIZED AND FULLY-UNROLLED DECODERS FOR A(2048,
1723)CODE ANDnMAX = 32768.

Decoder Latency (µs) Info. Throughput (Mbps)

Scalar Fast-SSC 36.7 47
Unrolled Fast-SSC [13] 9.8 176
Proposed Fast-SSC 17.6 98

proposed decoder and the unrolled one increases to 1.8 times
the latency, as a result of using a shorter code where a smaller
proportion of stage operations are inlined in the former.

In addition to decoding different codes, the proposed flex-
ible decoder has an advantage over the fully unrolled one in
terms of resulting executable size and the maximum length
of the polar code to be decoded. The size of the executable
corresponding to the proposed decoder withnmax = 32768
was 0.44 MB with 3 kB to store the polar code instruction in
an uncompressed textual representation; whereas that of the
unrolled decoder was 3 MB. In terms of polar code length,
the GNU C++ compiler was unable to compile an unrolled
decoder for a code of length224 even with 32 GB of RAM;
while the proposed decoder did not exhibit any such issues.

IX. A PPLICATION TO QUANTUM KEY DISTRIBUTION

Quantum key distribution (QKD) is a method that exploits
quantum mechanics to provide guaranteed security when
transmitting information. QKD occurs over two channels: a
quantum one used to transmit the secret information and
a classical one used for protocol overhead. The quantum
channel is modeled as a binary symmetric channel (BSC)
for discrete-value (DV) QKD, or an additive white Gaussian
noise (AWGN) channel for continuous-value (CV) distribu-
tion. Moreover, it suffers from high noise levels, requiring
powerful error-correcting codes of rates close to the channel
capacity to correctly and securely transmit information.

It was shown in [14] that long polar codes (n ≥ 224)
provide very high efficiency when used for QKD, where the
efficiency factor is defined as the ratio of the code rate to the
channel capacity, i.e.β = R/C. However, the decoder used
the successive-cancellation algorithm and therefore yielded a
throughput of only 8.3 Mbps; while state of the art DVQKD
systems already exceed 15 Mbps [15], [16].

When using the min-sum algorithm to decode polar codes
of length 224 transmitted over the BSC, we observed that
the resulting frame error rate (FER) was two to three times
that of a significantly slower SPA-based decoder. While the
FER can be improved by lowering the code rate; in QKD

systems, it is desirable to have rates that are at least 95% of
the channel capacity [14]. To resolve this issue, we present
a new approximation for the sum-product algorithm (SPA)
that suffered no error-rate degradation in our simulation,yet
offered∼ 85% the throughput of the min-sum decoder. Finally
we show how the proposed software decoder can be used
to decode polar codes of lengthn = 224 at eight times the
throughput of [14].

A. SPA Approximation

Polar decoders use the same parity check update as the⊞

operation in SPA, which is defined for two input LLRs as

a⊞ b = 2 tanh−1(tanh(a/2) tanh(b/2)). (25)

Using the Jacobi logarithm, this can be rewritten as [17], [18]

a⊞ b = sgn(a)sgn(b)min(|a|, |b|)

+ f+(|a|+ |b|)− f+(|a| − |b|). (26)

The correction functionf+ is defined as

f+(x) = log(1 + e−x) (27)

The first part of (26) is the well-known min-sum ap-
proximation that is well suited for hardware and software
implementations. The correction function however, has high
complexity and is often omitted or approximated using look-
up tables in hardware decoders [17]. A good approximation
in a software decoder should only use functions with direct
mapping to processor instructions, i.e. it cannot use logarithms
and exponentiation. Furthermore, it should minimize opera-
tions that cannot be implemented using SIMD instructions. A
degree-three polynomial, with amax() function to ensure that
the result decays to zero, meets those conditions and provides
a very good approximation with a coefficient of determination
R2 = 0.999. The proposed approximation is

f̃+(x) = max(0,−0.0076x3+0.1010x2−0.4463x+0.6759);
(28)

where the operations used—max(), multiplication, and
addition—all have SIMD implementations on modern proces-
sors.

B. Results

Fig. 3 shows the efficiency of the proposed SPA approxi-
mation compared to that of a min-sum decoder for codes of
length 224 and different rates. The channel used was a BSC
with a probably of crossoverp ∈ [0.02, 0.10] and the rates of
the codes were chosen so that the FER was in[0.08, 0.09].
We observe that the efficiency gap between the two decoding
algorithms grows asp increases. Forp ≥ 0.08, the efficiency
of the min-sum decoder drops below 95%, whereas that of the
approximate SPA decoder remain≥ 95% until p = 0.10.

In terms of decoding speed, the approximate decoder is 15%
slower than the min-sum-based decoder. Table IV lists the la-
tency and information throughput of the proposed approximate
SPA decoder, the min-sum decoder, and the SPA decoder of
[14]; where the first two are implemented using the flexible
software decoder architecture described in Section VIII. The
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Fig. 3. Efficiency relative to the capacity of the BSC(p) using the approximate
SPA and min-sum decoders for codes of length2

24.

TABLE IV
SPEED COMPARISON BETWEEN THE PROPOSED APPROXIMATESPA

DECODER, THE MIN-SUM DECODER, AND THE SPADECODER USED IN

[14].

Decoder Processor Latency (ms) Info. T/P (Mbps)

[14] i5-670 N/A 8.3
Min-sum i7-2700 188 74.8
Aprox. SPA i7-2700 220 64.1
Aprox. SPA Core2 Q9550 558 25.2

latency numbers include the time required to copy data in and
out of the decoder. From the table, it can be seen that the
approximate SPA decoder is three to 7.7 times as fast as that
of [14], depending on which processor is used. We present the
approximate SPA results using two processors: one slower and
one faster than the Intel i5-670 used in [14] as we did not have
access to the last processor. The min-sum decoder is∼ 15%
faster than the approximate SPA decoder. Therefore, the min-
sum decoder is suitable when the channel conditions are good
since it is faster; whereas, the approximate SPA decoder should
be used when the channel conditions worsen as it has better
error-correction performance.

X. CONCLUSION

In this work, we studied flexible implementations of polar
encoders and decoder, proving the correctness of a flexible,
low-complexity systematic polar encoding algorithm. We also
presented hardware and software decoders that can decode any
polar code up to a maximum length. Finally, we proposed a
new approximation for the SPA and used it in conjunction with
the flexible software decoder to provide a decoder for QKD
that is 3–8 times as fast as the state of the art.
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