La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS

Internet of Things in sleep monitoring: an application for posture recognition using supervised learning


Téléchargements par mois depuis la dernière année

Plus de statistiques...

Matar, Georges et Lina, Jean-Marc et Carrier, Julie et Riley, Anna et Kaddoum, Georges. 2016. « Internet of Things in sleep monitoring: an application for posture recognition using supervised learning ». In 18th International Conference on E-Health Networking, Applications and Services (Healthcom) (Munich, Germany, Sept. 14-16, 2016) IEEE.
Compte des citations dans Scopus : 8.

Kaddoum G 2016 14202 Internet of Things in sleep monitoring.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (634kB) | Prévisualisation


In this paper, we propose an Internet of Things (IoT) system application for remote medical monitoring. The body pressure distribution is acquired through a pressure sensing mattress under the person's body, data is sent to a computer workstation for processing, and results are communicated for monitoring and diagnosis. The area of application of such system is large in the medical domain making the system convenient for clinical use such as in sleep studies, non or partial anesthetic surgical procedures, medical-imaging techniques, and other areas involving the determination of the body-posture on a mattress. In this vein, a novel method for human body posture recognition that consists in providing an optimal combination of signal acquisition, processing, and data storage to perform the recognition task in a quasi-real-time basis. A supervised learning approach was used to build a model using a robust synthetic data. The data has been generated beforehand, in a way to enhance and generalize the recognition capability while maintaining both geometrical and spatial performance. Low-cost and fast computation per sample processing along with autonomy, make the system suitable for long-term operation and IoT applications. The recognition results with a Cohen's Kappa coefficient κ = 0.866 was satisfactorily encouraging for further investigation in this field.

Type de document: Compte rendu de conférence
Lina, Jean-Marc
Kaddoum, Georges
Affiliation: Génie électrique, Génie électrique
Date de dépôt: 21 déc. 2016 14:16
Dernière modification: 12 sept. 2018 23:07
URI: http://espace2.etsmtl.ca/id/eprint/14202

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt