ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

de Castilla, Hector et Bélanger, Pierre et Zednik, Ricardo J.. 2017. « High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method ». Journal of Applied Physics, vol. 122, nº 24.

[img]
Prévisualisation
PDF
Zednik R 2017 16156 High temperature characterization of piezoelectric.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (1MB) | Prévisualisation

Résumé

Piezoelectric materials reversibly deform when exposed to an electric field. This property is indispensable to modern engineering devices, enabling a wide range of sensors and actuators. However, unfortunately conventional piezoelectric materials are limited to operating temperatures of below approximately 200 °C. Lithium niobate is a promising candidate for high temperature applications (above 500 °C), as it has a high Curie temperature (1200 °C) and good piezoelectric properties. Nevertheless, degradation mechanisms occurring at elevated temperatures are not fully understood, although they are known to interfere with the piezoelectric behavior. In addition, the material properties of this technologically promising ceramic have not been adequately characterized at high temperatures, particularly when excited at high frequencies, due to the difficulty of performing such measurements. We therefore employ an electrochemical impedance spectroscopy resonance method using a novel analytical model to determine the material properties of single crystal lithium niobate over the wide frequency range of 100 kHz to 7 MHz for temperatures up to 750 °C. We find that lithium niobate retains its good piezoelectric properties over this entire frequency and temperature range and rules out suspected degradation mechanisms involving ionic conductivity or vacancy diffusion.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Bélanger, Pierre
Zednik, Ricardo
Affiliation: Génie mécanique, Génie mécanique
Date de dépôt: 17 janv. 2018 18:58
Dernière modification: 17 janv. 2018 22:11
URI: http://espace2.etsmtl.ca/id/eprint/16156

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt