
HIGHLY PARALLEL HEVC MOTION ESTIMATION BASED ON MULTIPLE
TEMPORAL PREDICTORS AND NESTED DIAMOND SEARCH

Esmaeil Hojati, Jean-François Franche, Stéphane Coulombe, Carlos Vázquez
École de technologie supérieure, Montréal, Canada

ABSTRACT

Rate-constrained motion estimation (RCME) is the most
computationally intensive task of H.265/HEVC encoding.
Massively parallel architectures, such as graphics processing
units (GPUs), used in combination with a multi-core central
processing unit (CPU), provide a promising computing
platform to achieve fast encoding. However, the
dependencies in deriving motion vector predictors (MVPs)
prevent the parallelization of prediction units (PUs)
processing at a frame level. Moreover, the conditional
execution structure of typical fast search algorithms is not
suitable for GPUs designed for data-intensive parallel
problems. In this paper, we propose a novel highly parallel
RCME method based on multiple temporal motion vector
(MV) predictors and a new fast nested diamond search (NDS)
algorithm well-suited for a GPU. The proposed framework
provides fine-grained encoding parallelism. Experimental
results show that our approach provides reduced GPU load
with better BD-Rate compared to prior full search parallel
methods based on a single MV predictor.

Index Terms— HEVC, rate-constrained motion
estimation, GPU, massively parallel architecture

1. INTRODUCTION

The latest hybrid video compression standard, H.265/HEVC,
was developed by the Joint Collaborative Team on Video
Coding (JCT-VC) [1]. Although HEVC doubles the
compression efficiency of H.264/AVC without degrading the
visual quality, its computational complexity is considerably
higher [2]. Fortunately, HEVC defines several high-level
parallelization tools, such as wavefront parallel processing
(WPP) and tiles, which allow processing several coding tree
unit (CTUs) in parallel. These high-level tools were designed
for multicore processors, but they cannot provide enough
parallelization for many-core CPUs or heterogeneous

CPU/GPU architectures. Moreover, GPUs are appropriate for
data-parallel algorithms. Therefore, while fast search
methods are less complex, their conditional execution
structure is not suitable for a GPU’s single instruction
multiple thread (SIMT) model. Subsequently, full search (FS)
method is mostly used for GPU implementation [3].

In the literature, several methods were proposed to
process, in parallel, the rate-constrained motion estimation
(RCME), identified as the most complex task of a video
encoder. Some of them process several prediction units (PUs)
in parallel [4–9]. The main challenge with these methods is
determining the best motion vector (MV) for a PU without
knowing its motion vector predictors (MVPs). They usually
estimate these MVPs from already encoded CTUs’ MVs as
in Yu et al. [4] and Yan et al. [5] where such estimation is
based on spatial information. These methods permit the
parallel processing of all the PUs within a CTU. However, to
provide parallel RCME for all the CTUs in a frame, the
spatial MVP dependency must be removed completely.
Moreover, Wang et al. [6] and Fan Wang et al. [7] proposed
methods by transferring the calculated distortion values to
CPU. Chen et al. [8] proposed to ignore the MVPs when
determining MVs in parallel at the frame level, resulting in
reduced rate-distortion (RD) performance. Shahid et al.
improved the RD performance by using MVs from a previous
frame to form a temporal prediction of MVPs [9]. Although
these methods achieve fine-grained parallelism suitable for a
GPU, MVP prediction errors lead to noticeable and
undesirable RD performance losses.

In this paper, we propose a novel highly parallel RCME
method for a fast search algorithm using multiple temporal
MV predictors. The method, targeted at CPU/GPU
heterogeneous architectures, performs RCME for all the PUs
of a CTU in parallel. The use of multiple temporal MV
predictors ensures good RD performance while the proposed
fast nested diamond search (NDS) is well-suited to the GPU’s
data-parallel paradigm and provides significant complexity
reduction compared to FS. Moreover, our approach can be
combined with high-level tools such as WPP, tiles and slices
to reach a higher degree of parallelization and speed.

 The paper is organized as follows. Section 2 presents the
RCME process in HEVC and its dependencies. The parallel
encoding framework for a CPU/GPU heterogeneous
architecture is presented in section 3. Section 4 contains the
experimental results. Finally, Section 5 concludes this paper.

This work was funded by Vantrix Corporation and by the Natural
Sciences and Engineering Research Council of Canada under the
Collaborative Research and Development Program (NSERC-
CRD 428942-11). Emails: {esmaeil.hojati-najafabadi.1, jean-
francois.franche.1}@ens.etsmtl.ca,{stephane.coulombe,
carlos.vazquez}@etsmtl.ca

Accepted in IEEE Int. Conference on Image Processing (ICIP 2017), 2017

Paper presented at 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17-20 Sept. 2017
https://doi.org/10.1109/ICIP.2017.8296782
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

 2. MOTION ESTIMATION IN HEVC

HEVC utilizes a quadtree structure called CTU to partition
each frame. This structure consists of blocks and units with a
maximum size of 64×64 pixels. A block is composed of a
rectangular area of picture samples with related syntax
information. A CTU can be recursively divided into coding
units (CUs). The information associated with the prediction
process of a CU is stored in the PUs. Partitioning and
selection of best PU modes are performed by an RD
optimization (RDO) process.

In the HEVC Test Model (HM) [10], RCME is a process
which consists in estimating the best temporal prediction
parameters based jointly on the rate and distortion for each
PU. It is typically performed at integer precision followed by
fractional refinement. The sum of absolute differences (SAD)
and the sum of absolute transformed differences (SATD) are
used as a distortion measures (Dist) for integer and fractional
pel precision respectively.

2.1. Full search RCME

This approach examines all the possible MVs in a rectangular
area. To find the best mode, the cost function is defined as:

				J��	(��,���) = Dist(��) + λ · Rate(��� −��) (1)

where Dist(��)	is the distortion associated with ��,
Rate(��� − ��) is the bit-cost, which is a function of the
difference between the MV and the MVP. The constant λ is a
Lagrange multiplier. Using Eq. 1, the prediction parameters
for RCME are obtained as follows:

				P�� 	= (��
∗,���∗)																																													

							= arg	min�����
∀��∈��������,

���∈{����,����}

{	J��	(��,���)}
(2)

where ����	and ���� are determined from neighboring
PUs, �������� is defined as the search region composed of
the set of integer MVs covering a square area.

2.2. Fast search RCME

This approach examines a reduced set of MVs to decrease the
computational complexity compared to FS but may find
suboptimal MVs. Among those, the Test Zone search (TZS)
has been adopted in the HM. It first determines the center of
the search by evaluating several candidates from neighboring
CUs [11]. Then a search pattern is employed to find the global
minimum. After that, if the distance between the best point
and center is less than 2, the search process ends, else the new
best point is assigned as the center and the search is repeated.

As we can anticipate, the number of TZS iterations
depends on the selected search center and on the distortion
values, producing unequal number of iterations for different
PUs. For instance, a spatial area of a frame with unpredictable

or complex motion will require more iterations than a
relatively still area. We propose a modified execution model
for TZS to prevent GPU execution inefficiencies due to
possible different execution paths for different PUs.

3. PROPOSED FAST MULTI-PREDICTOR RCME

In this section, we present our proposed fast parallel
framework for RCME in HEVC. It comprises a method to
efficiently execute fast search on GPU and a novel multi-
temporal-predictor RCME (MTP-RCME) which reduces the
rate-distortion penalty due to MVP prediction errors.

3.1. GPU fast search RCME

As mentioned, TZS performs a variable number of iterations
for each PU, making it inefficient for a GPU. In this section,
we explain the reasons for this inefficiency considering the
GPU architecture and propose a fast search algorithm.

3.1.1. GPU architecture considerations
The GPU hardware is designed to execute parallel programs
using the SIMT computing model. This model executes the
same copy of a parallel program (kernel) on different data. In
this paper, we use the Open Computing Language (OpenCL)
[12][13] terminology to describe our method. Each instance
of a program is run by a workitem or thread. Workitems are
grouped into workgroups. However, because of the scheduler
architecture in the GPU, workitems are executed in clusters.
The number of workitems that are processed in a cluster is 32
for NVIDIA (a thread warp) and is 64 for AMD (a thread
wavefront). To use resources efficiently, the number of
workitems in a workgroup should be a multiple of the
wavefront thread number.

Furthermore, a wavefront executes workitems in parallel
using the SIMT processing model across the processing unit.
Thus, the execution time is affected by divergences in the
execution flow. Branching, for example, is achieved by
combining all execution paths into a unique sequence of
instructions. This implies that the total time to execute a
multipath branch is the sum of the execution time of each
individual path. As a consequence, even if only one workitem
in a wavefront diverges, all the workitems in the wavefront
will execute the diverging branch [14].

3.1.2. Proposed GPU fast nested diamond search method
Considering these constraints, to map the TZS algorithm into
an efficient data-parallel model, we define a fixed search
pattern with 64 MV positions. This search pattern is a
modified diamond search pattern as depicted in Fig. 1. This
pattern is concentrated in the center and surrounded by four
embedded diamond patterns with 8 pixels step. Furthermore,
one wavefront performs block matching for all the positions.
After each iteration, if the termination condition is not met,
the center is moved to the best position and another search
iteration is performed by the same workgroup.

Moreover, each CU consists of several PUs but each PU

might require a different number of iterations. The algorithm
requires special arrangements to prevent performance loss.
Thus, we split the CU into all the possible PUs and assign a
workgroup to each PU. To match the GPU’s data-parallel
model, the RCME for each PU is defined by a data structure
containing the arguments for this process. For each PU, the
job structure contains the position of the PU along with its
block dimensions and the result is a distortion and MV pair.
For a CTU, these job structures are precomputed and stored
into arrays. When asymmetric mode partitioning (AMP) is
not enabled, each CTU consists of 425 possible PUs and
accordingly a workgroup is assigned to each PU. Fig.1
depicts job scheduling and work mapping of a CTU.

 To exploit even more the GPU’s processing capabilities,
we also perform interpolation filtering and fractional pel
refinement after the integer motion estimation in the GPU.
The reference frames are updated and interpolated in the GPU
right after the reconstruction of each frame. The interpolation
filter in GPU is implemented as a separable filter. For each
pixel, sixteen sub-pel samples are generated. The image is
partitioned into one-pixel wide columns with 256 one-pixel
rows, and interpolation of each column is done by one
workgroup consisting of 256 workitems. Each workitem is
calculating sixteen subsamples for each pixel. Algorithm 1
summarizes the GPU kernel for the NDS method.

3.2. Multi-temporal-predictor RCME

In HEVC, the derivation of the MVP from neighboring PUs
prevents a high degree of parallelism. Also, using an
improper MVP in the RCME process will produce an
incorrect rate cost that will in turn lead to incorrect optimal
MV selection. To achieve a high degree of parallelism while
preserving a high-coding efficiency, we propose a method
that evaluates the cost as Eq. 1 on a list of probable MVPs
collected from the past encoded frame MVs. These MVs
eliminate dependencies between all the CTUs of the current
frame. Using multiple probable MVs will result in better
compression performance than one MVP. This proposed
method is called multi-temporal-predictor RCME (MTP-
RCME), which was presented for FS in [15].

 In HEVC, the MVP is derived from neighboring and
collocated blocks. However, to eliminate the spatial
dependency, the MTP list for a CTU consists of the set of
encoded MVs belonging to the collocated CTU in the
previously encoded frame. For a CTU of size 64x64, the
encoder preserves sixteen temporal MVs [16]. Therefore, no
overhead is induced to build the MTP list. The MTP list is:

���� ∈ {����, … ,����}, 	� ≤ 16 (3)

where N is the number of different candidates that are derived
from the previous frame and ���� is a MV in the collocated
CTU in the previous frame. The same MTP list is used for all
PUs of a CTU. In the proposed MTP-RCME method, Eq. 2
is modified as follows:

��� = arg	min
��∈��������	

{	J��	(��,����)}

D� = ����(���)

(4)

The resulting parameters from Eq. 4 are the best rate-
constrained MV and the corresponding distortion for ���� .
The pair of (D�,���) is stored to be used in the CPU. In the
CPU, when the actual MVP is available, the best pair in terms
of RD is determined by the following formula:

				P�� 	= (��
∗,���∗)																																															

 = arg	min
���,��, ����	�∈�…�,
���∈{����,����}	

{D� + λ · Rate(��� −���)}
(5)

In order to integrate our proposed method into HEVC, we
separate the RCME calculation from the RDO mode decision
procedure. Our proposed MTP-RCME performs the RCME
using MTP list in the GPU. The result of this stage is used in
the RDO process performed by the CPU. In the RDO stage,
the actual MVP is available, and, using the prior GPU
calculated results, the best decision is made using Eq. 5 with
very low computational complexity in the CPU.

 Furthermore, the frame encoding is executed by two
separate threads that provide asynchronous CPU and GPU
execution and communications without stalls. One thread is
used for the RDO processing, and the other for offloading the
workload and communicating with the GPU. After providing
the GPU with data, the GPU calculates MTP-RCME for all
PUs in parallel, while the CPU performs the RDO process
when the required data is available. The MTP-RCME process
flowchart in the CPU is depicted in Figure 2.

Fig. 1. Workitem (WI) and workgroup (WG) mapping

Algorithm 1. Proposed nested diamond search method kernel
1: WG ← get_group_id() ► PU index (idx)
2: WI ← get_work_id() ►Position idx in search pattern
3: PUjob ← PUArray[WG] ► PU size and position
4: SearchPos ← PosArray[WI]►Search position
5: BestMVI ← MVPi , iter ← 0
6: do
7: Center ← BestMVI
8: JME[WI] ← SAD(PUjob, Center + SearchPos)
9: BestMVI ← argmin(JME[0…63]) ► After barrier
10: Iter ← iter + 1
11: while (iter < 4 and abs(Center - BestMVI) ≥ 2)
12: BestMV = fractionalRefinement(BestMVI)

Fig. 2. Flowchart of RDO and offloading threads on the CPU

 4. EXPERIMENTAL RESULTS

To validate the proposed MTP and NDS methods, we
implemented them into the HEVC Test Model (HM 15.0)
[10] by modifying the RCME part of the code. We executed
simulations on an Intel® CPU i7-4770 running at 3.40GHz,
and equipped with an AMD Radeon R9-270 GPU. These
simulations consisted of encoding some standard video
sequences defined in the common HM test conditions [17],
with the “Low-delay P” configuration and quantization
parameters (QPs) of 22, 27, 32, and 37.

In a first set of simulations, we compared the RD
performance of the following approaches: 1) the original HM
using the fast search algorithm (TZS); 2) a parallel full search
algorithm, performed in GPU, using a single MVP set to zero
as described in [12] (Zero-FS); 3) a parallel full search
algorithm using a single MVP derived by averaging four

collocated MVs in a past frame as presented in [18] (AVG-
FS); 4) the proposed parallel NDS method using null MVP of
[12] (Zero-NDS); 5) the proposed NDS method using the
AVG MVP of [18] (AVG-NDS) and; 6) the complete
proposed method combining both MTP and NDS (MTP-
NDS). The RD performance of these approaches are
measured by the Bjøntegaard delta rate (BD-Rate) [19]. The
anchor reference is the original HM using its full search
algorithm. All approaches employ a search range of [-64, 64].

According to Table 1, the best RD performance for a
parallel approach is achieved by our MTP-NDS approach
with a 1.46% BD-Rate increase. In addition to slight BD-Rate
improvement, the proposed MTP-NDS approach provides a
significantly better GPU usage than a FS method. We have
implemented a parallel FS approach similar to the one
presented in [12]. For FS we measured an average GPU load
of 86% compared to 52% for MTP-NDS.

In a second set of simulations, we analyzed the impact of
the three MVP methods on the execution time when the
proposed NDS algorithm is used. The speed impact was
measured by the time reduction (TR) metric between the
encoding time of the original sequential HM using the TZS
and the execution time of the evaluated methods on the
CPU/GPU architecture. Table 1 shows the proposed MVP
method has no impact on the TR, on the level of 40%,
compared to the Zero and AVG methods, while it achieves
better RD performance. The TR is currently limited by the
CPU. Faster speedups can be achieved by combining this
method with high-level tools such as WPP, tiles and slices.

 5. CONCLUSION

In this paper, we proposed a novel RCME method based on
multiple temporal MV predictors and a fast NDS algorithm.
The method provides the high degree of parallelization
needed to efficiently exploit massively parallel architectures
with increased RD performance.

 Table 1. Rate distortion and time reduction comparison between proposed method and prior art methods

 Video
BD-Rate (%) compared to HM full search TR (%) compared to HM TZS

TZS Zero-FS AVG-FS Zero-NDS AVG-NDS MTP-NDS Zero-FS AVG-FS Zero-NDS AVG-NDS MTP-NDS
 BQSquare (416×240) 0.29 1.72 1.41 2.13 1.34 0.68 36.8 38.2 37.1 37.6 37.4
 BasketballPass (416×240) 0.41 2.01 1.42 2.24 1.82 0.98 37.7 37.3 37.9 37.7 37.5
 BlowingBubbles (416×240) 0.18 1.78 1.65 1.56 0.77 0.46 37.7 37.5 38.2 37.7 37.6
 RaceHorses (416×240) 0.95 2.60 2.07 3.84 3.52 2.15 36.2 36.8 36.4 36.4 35.5
 BQMall (832×480) 1.18 1.94 1.65 3.28 2.76 1.74 41.0 40.7 41.4 41.5 40.9
 BasketballDrill (832×480) 1.11 2.16 1.73 3.14 2.59 1.60 42.1 41.7 41.9 41.3 41.1
 Flowervase (832×480) 0.31 2.11 1.52 2.08 1.49 0.64 37.9 39.0 37.7 38.6 38.4
 RaceHorses (832×480) 1.08 2.97 2.28 3.80 3.39 2.56 38.9 37.8 38.5 37.5 37.6
 FourPeople (1280×720) 0.81 2.15 1.67 3.02 2.39 1.43 43.7 43.4 43.2 43.6 43.1
 Johnny (1280×720) 0.82 1.76 1.55 2.64 2.24 1.57 44.0 43.7 44.8 44.5 45.8
 Cactus (1920×1080) 0.47 2.63 1.99 2.66 2.01 1.29 43.7 42.7 43.5 42.9 42.9
 Kimono (1920×1080) 0.59 2.25 1.72 3.28 2.49 1.85 41.3 40.9 41.3 41.4 41.7
 ParkScene (1920×1080) 0.48 2.61 1.93 3.18 2.62 1.68 42.6 41.5 42.8 42.1 42.5
 PeopleOnStreet (2560×1600) 0.62 2.98 2.49 3.30 2.62 1.83 41.5 42.6 42.3 42.1 42.3
 Average 0.66 2.26 1.79 2.87 2.29 1.46 40.4 40.3 40.5 40.3 40.1

6. REFERENCES

[1] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, Y. K.
Wang, and T. Wiegand, “High Efficiency Video
Coding (HEVC) text specification draft 10.”
document JCTVC-L1003, ITU-T/ISO/IEC Joint
Collaborative Team on Video Coding (JCT-VC),
Jan-2013.

[2] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O.
Hadar, “Performance comparison of H.265/MPEG-
HEVC, VP9, and H.264/MPEG-AVC encoders,”
2013 Picture Coding Symposium (PCS). IEEE, pp.
394–397, 2013.

[3] C. Jiang and S. Nooshabadi, “GPU accelerated
motion and disparity estimations for multiview
coding,” 2013 IEEE International Conference on
Image Processing. pp. 2106–2110, 2013.

[4] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP
candidate list construction for HEVC,” Vis. Commun.
Image Process., 2012.

[5] C. Yan et al., “Efficient Parallel Framework for
HEVC Motion Estimation on Many-Core
Processors,” IEEE Trans. Circuits Syst. Video
Technol., vol. 24, no. 12, pp. 2077–2089, 2014.

[6] X. Wang, L. Song, M. Chen, and J. Yang,
“Paralleling variable block size motion estimation of
HEVC on multi-core CPU plus GPU platform,”
Image Process., no. 10110502200, pp. 1836–1839,
2013.

[7] S. Fan Wang , Dajiang Zhou, “OpenCL based high-
quality HEVC motion estimation on GPU,” IEEE Int.
Conf. Image Process., pp. 1263–1267, 2014.

[8] W. Chen and H. Hang, “H.264/AVC motion
estimation implementation on compute unified
device architecture (CUDA),” IEEE Int. Conf.
Multimed. Expo, pp. 697–700, 2008.

[9] M. U. Shahid, A. Ahmed, and E. Magli, “Parallel
rate-distortion optimised fast motion estimation
algorithm for H.264/AVC using GPU,” 2013 Picture
Coding Symposium (PCS). IEEE, pp. 221–224, 2013.

[10] “Joint Collaborative Team on Video Coding
Reference Software, ver. HM 15.0.” [Online].
Available: http://hevc.hhi.fraunhofer.de/.

[11] J. H. Jeong, N. Parmar, and M. H. Sunwoo,
“Enhanced test zone search algorithm with rotating
pentagon search,” 2015 International SoC Design
Conference (ISOCC). pp. 275–276, 2015.

[12] S. Momcilovic and L. Sousa, “Development and
evaluation of scalable video motion estimators on
GPU,” Signal Processing Systems, 2009. SiPS 2009.
IEEE Workshop on. IEEE, pp. 291–296, 2009.

[13] “The open standard for parallel programming of
heterogeneous systems,” Khronos Group. [Online].
Available: https://www.khronos.org/opencl/.

[14] AMD, “AMD Accelerated Parallel Processing
OpenCL Programming Guide,” 2013. [Online].
Available:
http://developer.amd.com/wordpress/media/2013/07
/AMD_Accelerated_Parallel_Processing_OpenCL_
Programming_Guide-rev-2.7.pdf.

[15] E. Hojati, J. F. Franche, S. Coulombe, and C.
Vázquez, “Massively Parallel Rate-Constrained
Motion Estimation using Multiple Temporal
Predictors in HEVC,” submitted to the 2017 IEEE
International Conference on Multimedia and Expo
(ICME2017). Nov-2016.

[16] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1649–1668, 2012.

[17] F. Bossen, “JCTVC-L1100: Common HM test
conditions and software reference configurations.
JCT-VC Document Management System (April
2013).” 2013.

[18] J. Ma, F. Luo, S. Wang, and S. Ma, “Flexible CTU-
level parallel motion estimation by CPU and GPU
pipeline for HEVC,” Visual Communications and
Image Processing Conference, 2014 IEEE. IEEE, pp.
282–285, 2014.

[19] G. Bjøntegaard, “Improvements of the BD-PSNR
model.” ITU-T SG16/Q6 Video Coding Experts
Group (VCEG), Document VCEG-AI11, Berlin,
Germany, 16-Jul-2008.

