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ABSTRACT 

Rate-constrained motion estimation (RCME) is the most 
computationally intensive task of H.265/HEVC encoding. 
Massively parallel architectures, such as graphics processing 
units (GPUs), used in combination with a multi-core central 
processing unit (CPU), provide a promising computing 
platform to achieve fast encoding. However, the 
dependencies in deriving motion vector predictors (MVPs) 
prevent the parallelization of prediction units (PUs) 
processing at a frame level. Moreover, the conditional 
execution structure of typical fast search algorithms is not 
suitable for GPUs designed for data-intensive parallel 
problems. In this paper, we propose a novel highly parallel 
RCME method based on multiple temporal motion vector 
(MV) predictors and a new fast nested diamond search (NDS)
algorithm well-suited for a GPU. The proposed framework
provides fine-grained encoding parallelism. Experimental
results show that our approach provides reduced GPU load
with better BD-Rate compared to prior full search parallel
methods based on a single MV predictor.

Index Terms— HEVC, rate-constrained motion 
estimation, GPU, massively parallel architecture 

1. INTRODUCTION

The latest hybrid video compression standard, H.265/HEVC, 
was developed by the Joint Collaborative Team on Video 
Coding (JCT-VC) [1]. Although HEVC doubles the 
compression efficiency of H.264/AVC without degrading the 
visual quality, its computational complexity is considerably 
higher [2]. Fortunately, HEVC defines several high-level 
parallelization tools, such as wavefront parallel processing 
(WPP) and tiles, which allow processing several coding tree 
unit (CTUs) in parallel. These high-level tools were designed 
for multicore processors, but they cannot provide enough 
parallelization for many-core CPUs or heterogeneous 

CPU/GPU architectures. Moreover, GPUs are appropriate for 
data-parallel algorithms. Therefore, while fast search 
methods are less complex, their conditional execution 
structure is not suitable for a GPU’s single instruction 
multiple thread (SIMT) model. Subsequently, full search (FS) 
method is mostly used for GPU implementation [3].  

In the literature, several methods were proposed to 
process, in parallel, the rate-constrained motion estimation 
(RCME), identified as the most complex task of a video 
encoder. Some of them process several prediction units (PUs) 
in parallel [4–9]. The main challenge with these methods is 
determining the best motion vector (MV) for a PU without 
knowing its motion vector predictors (MVPs). They usually 
estimate these MVPs from already encoded CTUs’ MVs as 
in Yu et al. [4] and Yan et al. [5] where such estimation is 
based on spatial information. These methods permit the 
parallel processing of all the PUs within a CTU. However, to 
provide parallel RCME for all the CTUs in a frame, the 
spatial MVP dependency must be removed completely. 
Moreover, Wang et al. [6] and Fan Wang et al. [7] proposed 
methods by transferring the calculated distortion values to 
CPU. Chen et al. [8] proposed to ignore the MVPs when 
determining MVs in parallel at the frame level, resulting in 
reduced rate-distortion (RD) performance. Shahid et al. 
improved the RD performance by using MVs from a previous 
frame to form a temporal prediction of MVPs [9]. Although 
these methods achieve fine-grained parallelism suitable for a 
GPU, MVP prediction errors lead to noticeable and 
undesirable RD performance losses. 

In this paper, we propose a novel highly parallel RCME 
method for a fast search algorithm using multiple temporal 
MV predictors. The method, targeted at CPU/GPU 
heterogeneous architectures, performs RCME for all the PUs 
of a CTU in parallel. The use of multiple temporal MV 
predictors ensures good RD performance while the proposed 
fast nested diamond search (NDS) is well-suited to the GPU’s 
data-parallel paradigm and provides significant complexity 
reduction compared to FS. Moreover, our approach can be 
combined with high-level tools such as WPP, tiles and slices 
to reach a higher degree of parallelization and speed. 

 The paper is organized as follows. Section 2 presents the 
RCME process in HEVC and its dependencies. The parallel 
encoding framework for a CPU/GPU heterogeneous 
architecture is presented in section 3. Section 4 contains the 
experimental results. Finally, Section 5 concludes this paper. 
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 2. MOTION ESTIMATION IN HEVC 
 
HEVC utilizes a quadtree structure called CTU to partition 
each frame. This structure consists of blocks and units with a 
maximum size of 64×64 pixels. A block is composed of a 
rectangular area of picture samples with related syntax 
information. A CTU can be recursively divided into coding 
units (CUs). The information associated with the prediction 
process of a CU is stored in the PUs. Partitioning and 
selection of best PU modes are performed by an RD 
optimization (RDO) process. 

In the HEVC Test Model (HM) [10], RCME is a process 
which consists in estimating the best temporal prediction 
parameters based jointly on the rate and distortion for each 
PU. It is typically performed at integer precision followed by 
fractional refinement. The sum of absolute differences (SAD) 
and the sum of absolute transformed differences (SATD) are 
used as a distortion measures (Dist) for integer and fractional 
pel precision respectively. 
 
2.1. Full search RCME 
 
This approach examines all the possible MVs in a rectangular 
area. To find the best mode, the cost function is defined as: 
 

				J��	(��,���) = Dist(��) + λ · Rate(��� −��) (1) 

where Dist(��)	is the distortion associated with ��, 
Rate(��� − ��) is the bit-cost, which is a function of the 
difference between the MV and the MVP. The constant λ is a 
Lagrange multiplier. Using Eq. 1, the prediction parameters 
for RCME are obtained as follows:  
 

				P�� 	= (��
∗,���∗)																																													 

							= arg	min�����
∀��∈��������,

���∈{����,����}

{	J��	(��,���)} 
(2) 

where ����	and ����  are determined from neighboring 
PUs, ��������  is defined as the search region composed of 
the set of integer MVs covering a square area. 
 
2.2. Fast search RCME 
 
This approach examines a reduced set of MVs to decrease the 
computational complexity compared to FS but may find 
suboptimal MVs. Among those, the Test Zone search (TZS) 
has been adopted in the HM. It first determines the center of 
the search by evaluating several candidates from neighboring 
CUs [11]. Then a search pattern is employed to find the global 
minimum. After that, if the distance between the best point 
and center is less than 2, the search process ends, else the new 
best point is assigned as the center and the search is repeated. 

As we can anticipate, the number of TZS iterations 
depends on the selected search center and on the distortion 
values, producing unequal number of iterations for different 
PUs. For instance, a spatial area of a frame with unpredictable 

or complex motion will require more iterations than a 
relatively still area. We propose a modified execution model 
for TZS to prevent GPU execution inefficiencies due to 
possible different execution paths for different PUs. 
 

3. PROPOSED FAST MULTI-PREDICTOR RCME  
 
In this section, we present our proposed fast parallel 
framework for RCME in HEVC. It comprises a method to 
efficiently execute fast search on GPU and a novel multi-
temporal-predictor RCME (MTP-RCME) which reduces the 
rate-distortion penalty due to MVP prediction errors.  
 
3.1. GPU fast search RCME  
 
As mentioned, TZS performs a variable number of iterations 
for each PU, making it inefficient for a GPU. In this section, 
we explain the reasons for this inefficiency considering the 
GPU architecture and propose a fast search algorithm.  

 
3.1.1. GPU architecture considerations 
The GPU hardware is designed to execute parallel programs 
using the SIMT computing model. This model executes the 
same copy of a parallel program (kernel) on different data. In 
this paper, we use the Open Computing Language (OpenCL) 
[12][13] terminology to describe our method. Each instance 
of a program is run by a workitem or thread. Workitems are 
grouped into workgroups. However, because of the scheduler 
architecture in the GPU, workitems are executed in clusters. 
The number of workitems that are processed in a cluster is 32 
for NVIDIA (a thread warp) and is 64 for AMD (a thread 
wavefront). To use resources efficiently, the number of 
workitems in a workgroup should be a multiple of the 
wavefront thread number.  

Furthermore, a wavefront executes workitems in parallel 
using the SIMT processing model across the processing unit. 
Thus, the execution time is affected by divergences in the 
execution flow. Branching, for example, is achieved by 
combining all execution paths into a unique sequence of 
instructions. This implies that the total time to execute a 
multipath branch is the sum of the execution time of each 
individual path. As a consequence, even if only one workitem 
in a wavefront diverges, all the workitems in the wavefront 
will execute the diverging branch [14]. 

 
3.1.2. Proposed GPU fast nested diamond search method 
Considering these constraints, to map the TZS algorithm into 
an efficient data-parallel model, we define a fixed search 
pattern with 64 MV positions. This search pattern is a 
modified diamond search pattern as depicted in Fig. 1. This 
pattern is concentrated in the center and surrounded by four 
embedded diamond patterns with 8 pixels step. Furthermore, 
one wavefront performs block matching for all the positions. 
After each iteration, if the termination condition is not met, 
the center is moved to the best position and another search 
iteration is performed by the same workgroup.  



 
Moreover, each CU consists of several PUs but each PU 

might require a different number of iterations. The algorithm 
requires special arrangements to prevent performance loss. 
Thus, we split the CU into all the possible PUs and assign a 
workgroup to each PU. To match the GPU’s data-parallel 
model, the RCME for each PU is defined by a data structure 
containing the arguments for this process. For each PU, the 
job structure contains the position of the PU along with its 
block dimensions and the result is a distortion and MV pair. 
For a CTU, these job structures are precomputed and stored 
into arrays. When asymmetric mode partitioning (AMP) is 
not enabled, each CTU consists of 425 possible PUs and 
accordingly a workgroup is assigned to each PU. Fig.1 
depicts job scheduling and work mapping of a CTU.  

 To exploit even more the GPU’s processing capabilities, 
we also perform interpolation filtering and fractional pel 
refinement after the integer motion estimation in the GPU. 
The reference frames are updated and interpolated in the GPU 
right after the reconstruction of each frame. The interpolation 
filter in GPU is implemented as a separable filter. For each 
pixel, sixteen sub-pel samples are generated. The image is 
partitioned into one-pixel wide columns with 256 one-pixel 
rows, and interpolation of each column is done by one 
workgroup consisting of 256 workitems. Each workitem is 
calculating sixteen subsamples for each pixel. Algorithm 1 
summarizes the GPU kernel for the NDS method. 

 
3.2. Multi-temporal-predictor RCME  
 
In HEVC, the derivation of the MVP from neighboring PUs 
prevents a high degree of parallelism. Also, using an 
improper MVP in the RCME process will produce an 
incorrect rate cost that will in turn lead to incorrect optimal 
MV selection. To achieve a high degree of parallelism while 
preserving a high-coding efficiency, we propose a method 
that evaluates the cost as Eq. 1 on a list of probable MVPs 
collected from the past encoded frame MVs. These MVs 
eliminate dependencies between all the CTUs of the current 
frame. Using multiple probable MVs will result in better 
compression performance than one MVP. This proposed 
method is called multi-temporal-predictor RCME (MTP-
RCME), which was presented for FS in [15].  

 In HEVC, the MVP is derived from neighboring and 
collocated blocks. However, to eliminate the spatial 
dependency, the MTP list for a CTU consists of the set of 
encoded MVs belonging to the collocated CTU in the 
previously encoded frame. For a CTU of size 64x64, the 
encoder preserves sixteen temporal MVs [16]. Therefore, no 
overhead is induced to build the MTP list. The MTP list is: 

���� ∈ {����, … ,����}, 	� ≤ 16 (3) 

where N is the number of different candidates that are derived 
from the previous frame and ���� is a MV in the collocated 
CTU in the previous frame. The same MTP list is used for all 
PUs of a CTU. In the proposed MTP-RCME method, Eq. 2 
is modified as follows: 

��� = arg	min
��∈��������	

{	J��	(��,����)} 

D� = ����(���) 

(4) 

The resulting parameters from Eq. 4 are the best rate-
constrained MV and the corresponding distortion for ���� . 
The pair of (D�,���) is stored to be used in the CPU. In the 
CPU, when the actual MVP is available, the best pair in terms 
of RD is determined by the following formula: 

				P�� 	= (��
∗,���∗)																																															 

                      = arg	min
���,��, ����	�∈�…�,
���∈{����,����}	

{D� + λ · Rate(��� −���)} 
(5) 

In order to integrate our proposed method into HEVC, we 
separate the RCME calculation from the RDO mode decision 
procedure. Our proposed MTP-RCME performs the RCME 
using MTP list in the GPU. The result of this stage is used in 
the RDO process performed by the CPU. In the RDO stage, 
the actual MVP is available, and, using the prior GPU 
calculated results, the best decision is made using Eq. 5 with 
very low computational complexity in the CPU.  

 Furthermore, the frame encoding is executed by two 
separate threads that provide asynchronous CPU and GPU 
execution and communications without stalls. One thread is 
used for the RDO processing, and the other for offloading the 
workload and communicating with the GPU. After providing 
the GPU with data, the GPU calculates MTP-RCME for all 
PUs in parallel, while the CPU performs the RDO process 
when the required data is available. The MTP-RCME process 
flowchart in the CPU is depicted in Figure 2. 

 
Fig. 1. Workitem (WI) and workgroup (WG) mapping  

 
Algorithm 1. Proposed nested diamond search method kernel 
1: WG ← get_group_id()        ► PU index (idx) 
2: WI ← get_work_id()              ►Position idx in search pattern 
3: PUjob ← PUArray[WG]     ► PU size and position  
4: SearchPos ← PosArray[WI]►Search position 
5: BestMVI ← MVPi  , iter ← 0 
6: do 
7:         Center ← BestMVI  
8:         JME[WI] ← SAD(PUjob, Center + SearchPos) 
9:         BestMVI ← argmin(JME[0…63])  ► After barrier 
10:         Iter ← iter + 1 
11: while (iter < 4 and abs(Center - BestMVI) ≥ 2) 
12: BestMV = fractionalRefinement(BestMVI) 
  



 
Fig. 2. Flowchart of RDO and offloading threads on the CPU 

 

 
 4. EXPERIMENTAL RESULTS 

 
To validate the proposed MTP and NDS methods, we 
implemented them into the HEVC Test Model (HM 15.0) 
[10] by modifying the RCME part of the code. We executed 
simulations on an Intel® CPU i7-4770 running at 3.40GHz, 
and equipped with an AMD Radeon R9-270 GPU. These 
simulations consisted of encoding some standard video 
sequences defined in the common HM test conditions [17], 
with the “Low-delay P” configuration and quantization 
parameters (QPs) of 22, 27, 32, and 37.  

In a first set of simulations, we compared the RD 
performance of the following approaches: 1) the original HM 
using the fast search algorithm (TZS); 2) a parallel full search 
algorithm, performed in GPU, using a single MVP set to zero 
as described in [12] (Zero-FS); 3) a parallel full search 
algorithm using a single MVP derived by averaging four 

collocated MVs in a past frame as presented in [18] (AVG-
FS); 4) the proposed parallel NDS method using null MVP of 
[12] (Zero-NDS); 5) the proposed NDS method using the 
AVG MVP of [18] (AVG-NDS) and; 6) the complete 
proposed method combining both MTP and NDS (MTP-
NDS). The RD performance of these approaches are 
measured by the Bjøntegaard delta rate (BD-Rate) [19]. The 
anchor reference is the original HM using its full search 
algorithm. All approaches employ a search range of [-64, 64].  

According to Table 1, the best RD performance for a 
parallel approach is achieved by our MTP-NDS approach 
with a 1.46% BD-Rate increase. In addition to slight BD-Rate 
improvement, the proposed MTP-NDS approach provides a 
significantly better GPU usage than a FS method. We have 
implemented a parallel FS approach similar to the one 
presented in [12]. For FS we measured an average GPU load 
of 86% compared to 52% for MTP-NDS. 

In a second set of simulations, we analyzed the impact of 
the three MVP methods on the execution time when the 
proposed NDS algorithm is used. The speed impact was 
measured by the time reduction (TR) metric between the 
encoding time of the original sequential HM using the TZS 
and the execution time of the evaluated methods on the 
CPU/GPU architecture. Table 1 shows the proposed MVP 
method has no impact on the TR, on the level of 40%, 
compared to the Zero and AVG methods, while it achieves 
better RD performance. The TR is currently limited by the 
CPU. Faster speedups can be achieved by combining this 
method with high-level tools such as WPP, tiles and slices. 

 
 5. CONCLUSION 

 
In this paper, we proposed a novel RCME method based on 
multiple temporal MV predictors and a fast NDS algorithm. 
The method provides the high degree of parallelization 
needed to efficiently exploit massively parallel architectures 
with increased RD performance.   

 Table 1. Rate distortion and time reduction comparison between proposed method and prior art methods 

 Video 
BD-Rate (%) compared to HM full search  TR (%) compared to HM TZS 

TZS Zero-FS AVG-FS Zero-NDS AVG-NDS MTP-NDS Zero-FS AVG-FS Zero-NDS AVG-NDS MTP-NDS 
 BQSquare (416×240) 0.29 1.72 1.41 2.13 1.34 0.68 36.8 38.2 37.1 37.6 37.4 
 BasketballPass (416×240) 0.41 2.01 1.42 2.24 1.82 0.98 37.7 37.3 37.9 37.7 37.5 
 BlowingBubbles (416×240) 0.18 1.78 1.65 1.56 0.77 0.46 37.7 37.5 38.2 37.7 37.6 
 RaceHorses (416×240) 0.95 2.60 2.07 3.84 3.52 2.15 36.2 36.8 36.4 36.4 35.5 
 BQMall (832×480) 1.18 1.94 1.65 3.28 2.76 1.74 41.0 40.7 41.4 41.5 40.9 
 BasketballDrill (832×480) 1.11 2.16 1.73 3.14 2.59 1.60 42.1 41.7 41.9 41.3 41.1 
 Flowervase (832×480) 0.31 2.11 1.52 2.08 1.49 0.64 37.9 39.0 37.7 38.6 38.4 
 RaceHorses (832×480) 1.08 2.97 2.28 3.80 3.39 2.56 38.9 37.8 38.5 37.5 37.6 
 FourPeople (1280×720) 0.81 2.15 1.67 3.02 2.39 1.43 43.7 43.4 43.2 43.6 43.1 
 Johnny (1280×720) 0.82 1.76 1.55 2.64 2.24 1.57 44.0 43.7 44.8 44.5 45.8 
 Cactus (1920×1080) 0.47 2.63 1.99 2.66 2.01 1.29 43.7 42.7 43.5 42.9 42.9 
 Kimono (1920×1080) 0.59 2.25 1.72 3.28 2.49 1.85 41.3 40.9 41.3 41.4 41.7 
 ParkScene (1920×1080) 0.48 2.61 1.93 3.18 2.62 1.68 42.6 41.5 42.8 42.1 42.5 
 PeopleOnStreet (2560×1600) 0.62 2.98 2.49 3.30 2.62 1.83 41.5 42.6 42.3 42.1 42.3 
 Average 0.66 2.26 1.79 2.87 2.29 1.46 40.4 40.3 40.5 40.3 40.1 
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