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Bayesian MMSE Estimation of a Gaussian Source
in the Presence of Bursty Impulsive Noise

Md Sahabul Alam, Georges Kaddoum, and Basile L. Agba

Abstract—In this letter, we derive the minimum mean square
error (MMSE) optimal Bayesian estimation (OBE) for a Gaussian
source, in the presence of bursty impulsive noise, as essentially
encountered within power substations. Clearly, it is observed
that the presence of bursty impulsive noise makes the input-
output characteristics of MMSE OBE non-linear. To handle the
non-linearity, we propose a novel MMSE estimator, based on
the detection of the unobservable states of the noise process,
using the maximum a posteriori (MAP) detector. Resultantly, the
proposed MAP-based MMSE estimator is shown to achieve the
lower bound derived for the proposed scenario and outperform
the various MMSE estimators that neglect the noise memory.

Index Terms—Bursty impulsive noise, Markov process,
Bayesian MMSE estimation, BCJR/MAP algorithm.

I. INTRODUCTION

The difficulty of estimating a Gaussian source from its
available noisy measurements is prevalent in numerous signal
processing contexts. In particular, a great deal of prior research
is available in the literature, regarding the Gaussian source es-
timation in the presence of Gaussian noise, in various aspects.
In such a scenario [1], the linear MMSE (LMMSE) estimator
is proved to be the optimal estimation technique. However, the
noise that usually occurs in many environments are highly non-
Gaussian and display a significant impulsive nature [2]. For
example, in power substations, the noise emitted from various
power equipment is impulsive [2]–[4]. The impulsive noise
measurement campaign in power substation environments also
shows that the impulses occur in bursts [3], [4].

On the other hand, the performance of the estimation
techniques, in the presence of an impulsive noise, is not
widely acknowledged. Banelli considered the MMSE OBE for
a Gaussian source impaired by Middleton class-A impulsive
noise in [5]. In his work, he showed that the performance of
the MMSE OBE strictly depends on the input-output char-
acteristics of the received signal, which becomes non-linear
for impulsive noise environments. To tackle this challenge,
several MMSE estimators were introduced. The authors in [6]
derived the MMSE OBE and its mean-square error (MSE)
performance bounds in closed form, assuming that both the
noise and the source signals are Gaussian mixture distributed.
The obtained results show that the MMSE estimator, under
this condition, outperforms the LMMSE estimator. These
approaches, however, have a major shortcoming; they ignore
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the inherent memory in the noise process. To address this,
Markov chain models have been proposed [7], [8]; in order to
better represent the impulsive noise characteristics. Hence, the
impact on the performance gain, observed when the memory
is exploited in the estimation process, must be evaluated.

To address this issue, the present letter provides a framework
for the performance analysis of Bayesian MMSE estimation of
a Gaussian source, in the presence of a bursty impulsive noise
source. This necessitates a two-step operation: the estimator
should be optimal in minimizing the resulting MSE and can
detect the state of the noise process simultaneously, thanks to
the BCJR algorithm [9] that was found as an effective tool
to detect the states of a finite state hidden Markov process.
In this letter, we redesign a robust estimator combining these
two techniques - MMSE estimation and the BCJR algorithm.
As shown in Fig. 1, the MAP detector executes the BCJR
algorithm and provides the hard decision of the noise state
information to the MMSE estimator. Given the state, the
LMMSE estimator is optimal in minimizing the MSE sense.

The contribution of this work is depicted as follows: we
derived the MMSE OBE for a scalar Gaussian source esti-
mation in the presence of bursty impulsive noise, modeled
by a two-state Markov-Gaussian (TSMG) process [7]. It is
shown that similarly to uncorrelated Middleton class-A noise
[5], the presence of TSMG noise also makes the input-output
characteristics of MMSE OBE non-linear, especially when
the environment is more impulsive. To combat the adverse
effect of non-linearity, we propose a novel MMSE estimator,
based on detecting the unobservable states of the noise process
using the MAP state detection. Through the simulation results,
the proposed MAP-based MMSE estimator achieves the MSE
lower bound derived for the proposed scenario and performs
significantly better than the conventional LMMSE estimator,
optimized for AWGN environment, and the MMSE estimator
that neglects the noise memory.

II. SYSTEM MODEL

In this paper, we consider a point-to-point communication
system, as shown in Fig. 1. We assume sk is the parameter to
be estimated, modeled by a zero-mean Gaussian random vari-
able with variance σ2

s . The received signal at the destination
at each time epoch k can be expressed as

yk = sk + nk, k = 0, 1, . . . ,K − 1 (1)

where nk is the additive noise, statistically independent of
sk, and K is the length of the whole received sequence. It is
assumed that the noise sample nk follows the TSMG process.
The statistical properties of nk are completely defined by the

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/LCOMM.2018.2856746



2

sk +

nk

yk
MMSE sk

^

MAP

p(ik|y
K)

Signal estimation

Noise state detection

Hard Decoder

^
ik

Fig. 1. MAP-based Bayesian MMSE estimation of a Gaussian source in the
presence of bursty impulsive noise.

noise state indicator ik ∈ {G,B}. In the context of our noise
modeling, G and B represent respectively the good and the
bad state. The channel is impaired by the Gaussian noise only
in the good state, and the bad state occurs when this latter
is impaired by impulsive interferers. We model nk as a zero-
mean Gaussian random variable, so that the probability density
function (PDF) of nk conditioned on ik is represented by

f(nk|ik=m)=
1√
2πσ2

m

exp

(
− n2k
2σ2

m

)
, m ∈ (G,B), (2)

For this model, the parameter R = σ2
B/σ

2
G quantifies the

impulsive to Gaussian noise power ratio. The statistical de-
scription of the state process iK={i0, i1, . . . , iK−1} specifies
the channel completely and is evaluated by the state transition
probabilities pikik+1

=p(ik+1|ik), ik,ik+1∈{G,B}. Using these
transition probabilities, the stationary probabilities of being in
either the good or the bad state are respectively given by [7],

πG=
pBG

pGB + pBG
and πB=

pGB

pGB + pBG
. (3)

Also, the parameter γ= 1
pGB+pBG

determines the noise memory
and γ>1 indicates that the channel has a persistent memory.

III. BAYESIAN MMSE ESTIMATION

In this section, we consider the MMSE OBE of sk, given the
observation yk. The MMSE OBE corresponds to the posteriori
mean [1] and is given by

ŝk(yk) = E (sk|yk) = E [E (sk|yk, ik = m)] ,

=
∑

m∈(G,B)

p(ik = m|yk)ŝm,k(yk), (4)

where E is the expectation operator and ŝm,k(yk) =
E (sk|yk, ik=m). It should be noted that given ik=m, sk and
yk are jointly Gaussian. Hence, LMMSE estimator (ŝm,k(yk))
is the optimal estimator of sk and we have [1]

ŝm,k(yk) =
σ2
s

σ2
s + σ2

m

yk, (5)

where σ2
s +σ

2
m is the variance of yk, given that ik=m. Since,

sk is independent of nk, from the convolution property, the
PDF of yk can be represented by
f(yk) = f(sk)∗f(nk) =

∑
m∈(G,B)

πmfG(yk; 0, σ
2
s+σ

2
m), (6)

where πm = p(ik = m) and fG(yk; 0, σ2
s + σ2

m) represents a
zero-mean Gaussian PDF with variance σ2

s + σ2
m. Now, from

(4), we can deduce that the posteriori probability p(ik = m|yk)
is also required to derive the MMSE estimator. Using the
Bayes rule, this can be obtained as

p(ik = m|yk) =
πmfG(yk; 0, σ

2
s + σ2

m)∑
j∈(G,B)πjfG(yk; 0, σ

2
s + σ2

j )
, (7)
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Fig. 2. Impact of the impulsive probability πB on the input-output charac-
teristics of MMSE optimal Bayesian estimation. It is assumed that σ2

s = 1,
σ2
n = 1, R = 100, and γ = 100.

Hence, substituting equation (5) and (7) into (4), the MMSE
OBE of sk given yk is obtained by

ŝk(yk)=
∑

m∈(G,B)

πmfG(yk; 0, σ
2
s + σ2

m)σ2
s∑

j∈(G,B) πjfG(yk; 0, σ
2
s + σ2

j )(σ
2
s + σ2

m)
yk.

(8)
Fig. 2 shows the input-output characteristics of MMSE OBE,
using equation (8) for different values of the impulsive prob-
ability πB . As observed in Fig. 2, when the value of πB
increases, the impulsive noise becomes closer to the Gaussian
noise and the input-output characteristics of MMSE OBE tend
to the well-known LMMSE estimation. On the other hand,
when the value of πB decreases, the environment becomes
more impulsive, as indicated by rare impulsive events, and
the input-output characteristic becomes more non-linear. Thus,
the presence of bursty impulsive noise introduces non-linearity
in the measurement yk. This necessitates the designing of a
MMSE estimator, in order to achieve a better MSE perfor-
mance over the conventional LMMSE estimator.

In addition, as well as having to estimate the source signal,
if the estimator can detect the states of the impulsive process
simultaneously, the conventional LMMSE estimator can be
considered as the optimal choice in minimizing the MSE sense
[1]. In this vein, in the following section, we will discuss three
state detection algorithms. To achieve the best performance,
the optimal detector must detect the states of the impulsive
noise as accurately as possible.

IV. EXPLOITING STATE INFORMATION

In this section, we will discuss three state detection algo-
rithms to pursue the explicit use of the noise state information
in the MMSE estimation process. Hence, in other words, when
the receiver knows whether the impulsive noise is affecting
the signal samples or not, the MMSE OBE can be confirmed,
according to equation (5). Revisiting equation (5), it can be
illustrated by the fact that σ2

m can be substituted by σ2
B , in case

of the presence of an impulsive noise and with σ2
G otherwise.

A. Genie Detection

For genie detection, it is assumed that the receiver is
deemed to have perfect noise state information. While such
an approach is conceptually valuable to provide us a good
indication of the best achievable performance, the realization
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Fig. 3. Trellis representation of the two-state Markov-Gaussian noise model.

of such a detector is very hard, if not impossible. In the context
of achievable performance, the following sections provide
some algorithms to obtain the states of the noise.

B. MAP-based State Detection using the BCJR Algorithm

For this scheme, at each k, the receiver evaluates the a
posteriori probability p(ik|yK) that the actual channel state
is ik, given the received sequence yK = {y0, y1, . . . , yK−1}.
This can be obtained as

p(ik|yK) =
p(ik,y

K)

p(yK)
∝ p(ik,yK), (9)

We now define the following
αk(ik)= p(y0, y1, . . . , yk−1, ik), (10)
βk(ik)= p(yk, yk+1, . . . , yK−1|ik), (11)

δk(yk, ik, ik+1)= p(ik+1, yk|ik)=p(ik+1|ik)f(yk|ik),(12)

where αk(ik) and βk(ik) are termed as the forward and
backward filters, and δk(yk, ik, ik+1) represents the branch
metric of the trellis diagram, as shown in Fig. 3. Using (10)
and (11), the probability p(ik,yK) in (9) can be written as

p(ik,y
K) = p(y0, y1, . . . , yk−1, ik)p(yk, yk+1, . . . , yK−1|ik),

= αk(ik)βk(ik). (13)

where the first equality comes from the Markov property.
Then, the noise state can be expressed as

îk =

{
G if Lik ≥ 0
B if Lik < 0

(14)

where Lik is the log-likelihood ratio (LLR) and îk represents
the hard decision of the impulsive noise state at time epoch k.
For this, the LLR values at the receiver can be computed by

Lik = ln

{
αk(ik = G)βk(ik = G)

αk(ik = B)βk(ik = B)

}
. (15)

Accordingly, the forward and backward filters can be com-
puted recursively as

αk+1(ik+1) =
∑
ik

αk(ik)δk(yk, ik, ik+1),

βk(ik) =
∑
ik+1

βk+1(ik+1)δk(yk, ik, ik+1), (16)

where the filters recursions are initialized with α0(i0=m)=
πm, and βK(iK=m)=1.

C. Sample-by-Sample State Detection

We next consider a state detection algorithm called sample-
by-sample state detection scheme. Although aware of the im-
pulsive noise state, it neglects the inherent noise memory. For
such a scenario, it is assumed that γ = 1 in the state detection
process, which corresponds to the Bernoulli-Gaussian noise
[10] instead of TSMG noise. Under this approximation, the

above recursive MAP-based noise state detector simplifies to
a memoryless detector and the probability of having a state can
be computed from the probability, p(ik|yk) = p(ik)f(yk|ik).
Using this, the LLR values are obtained as

Lik = ln

{
πGf(yk|ik = G)

πBf(yk|ik = B)

}
. (17)

Where f(yk|ik=m)=fG(yk; 0,σ
2
s+σ

2
m). From the LLR values,

the receiver then determines the noise states according to (14).

D. AWGN Scenario

This is the simplest estimation technique since it is blind
to the noise states for the estimation process. Under this
consideration, the OBE ŝk(yk) of sk given yk can be obtained
as

ŝk(yk) =
σ2
s

σ2
s + σ2

n

yk. (18)

where σ2
n =

∑
m∈(G,B) πmσ

2
m denotes the variance of n.

E. Complexity Discussion

It is worth to point out that, despite having a better perfor-
mance, the complexity of the proposed MAP-based MMSE
estimation scheme grows exponentially with the frame length,
due to the implementation of the BCJR algorithm, while
it grows linearly in case of symbol-by-symbol estimation
schemes [11]. However, in Section VI we show that the
potential performance gain of this scheme justifies the increase
in complexity, which makes this receiver suitable for reliable
communication scenarios. On the other hand, if we only
consider the forward recursions of the BCJR algorithm, then
the complexity problem will probably be reduced with a
compromise in its performance. Hence, this scheme exhibits
a performance/complexity trade-off.

V. PERFORMANCE ANALYSIS

The performance of this scheme is evaluated in terms of
distortion or MSE and it can be obtained by

D ≡ E
{
(sk−ŝk)2

}
=

∫
s

∫
y

(sk−ŝk(yk))2 f(s, y)dsdy, (19)

However, the closed form expression of the integrals in
(19) is mathematically intractable which makes it difficult to
analytically investigate the MSE. As a result, approximating
its bounds remain an alternative solution to evaluate the
performance of our proposed scheme. In this vein, a lower
bound (LB) is obtained under the hypothetical assumption
that there is no uncertainty about the state ik, i.e., the genie
condition. The LB (DLB) under this consideration can be
obtained as

DLB =
∑

m∈(G,B)

πm

(
σ2
s −

σ4
s

σ2
s + σ2

m

)
. (20)

To derive the upper bound (DUB), we invoke the LMMSE
estimator since this latter obtains the smallest MSE among all
the estimators which are linear in the observations [1]. The
MSE of the LMMSE estimator for this scheme is

DUB = σ2
s −

σ4
s

σ2
s + σ2

n

. (21)



4

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

SNR [dB]

M
S

E
 [

d
B

]

 

 

MSE-Lower Bound

MSE-Upper Bound

MSE-Genie-Sim.

MSE-MAP-Sim.

MSE-MAP-forward-Sim.

MSE-Sample-by-sample-Sim.

MSE-AWGN-Sim
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Fig. 5. MSE performances of different estimation techniques against the
SNR. It is assumed that πB = 0.1 with γ = 1, R = 100 for the memoryless
channel, and γ = 1, R = 1 in case of AWGN channel.

VI. NUMERICAL RESULTS

In this section, we simulate the MSE performances of
the proposed scenario to confirm the analytical results. It is
required to estimate the source parameter sk, which is modeled
as a Gaussian random variable, with variance σ2

s = 1. Also, the
impulsive noise that corrupts the source signal is characterized
by the parameters πB = 0.1, γ = 100, and R = 100 [7]. The
MSE performances are calculated against average SNR. Here,
the average SNR is defined as SNR= σ2

s/σ
2
n.

Fig. 4 shows the simulated MSE performances of different
estimation techniques. The simulated MSE performances are
obtained by calculating the sample means of (sk− ŝk(yk))2
using 2 × 105 frames with K=103 samples of each frame.
In Fig. 4, the simulation result attained under genie aided
estimation perfectly matches the lower bound is well dis-
played. However, the genie detection is practically infeasible.
Interestingly, from the figure, it is also observed that the
proposed MAP-based MMSE estimator almost approaches the
performance of genie aided scheme and performs significantly
better than the conventional schemes. It obtains a minimum
SNR gain of around 8 dB over the LMMSE estimator and
around 5 dB over the sample-by-sample estimator, at the
expense of a higher complexity, due to the BCJR algorithm.
Moreover, by considering the forward recursions of the BCJR
algorithm, a tight performance gap with the original scheme
is observed, while the complexity problem is reduced. This
confirms that significant performance gains can be obtained
when the noise memory is utilized in the estimation process.
In addition, simpler sample-by-sample-based estimator still
exhibits better performance than the LMMSE scheme, by uti-

lizing the impulsive noise statistics in the estimation process.
Finally, the LMMSE leads to the worst performances.
Fig. 5 also shows the simulated MSE performances of different
estimation techniques. The essence of plotting Fig. 5 is to
visualize how the proposed MAP-based MMSE estimator be-
haves over the memoryless and AWGN channel. From Fig. 5,
it can be inferred that both the MAP-based and sample-by-
sample-based estimations show the same performance, when
we consider γ = 1 in the noise process. These results confirm
that the optimal MAP detector simplifies to the memoryless
detector when the considered impulsive noise is memoryless.
Again, the LMMSE estimator attains around 5 dB worse
performance over them in these impulsive environments, in
low SNR region. Finally, the three estimators obviously exhibit
the same performance over AWGN channel.

VII. CONCLUSION

In this letter, we have provided the necessary theoretical
foundation for optimal Bayesian estimation of a scalar Gaus-
sian source, in the presence of bursty impulsive noise. It
is shown that the presence of bursty impulsive noise makes
the input-output characteristics of MMSE OBE non-linear. To
combat the effect of non-linearity, we have proposed a novel
estimation technique based on detecting the unobservable
states of the noise process. The simulation results confirmed
that the proposed MAP-based Bayesian MMSE estimator
outperforms the various MMSE estimators employing mem-
oryless estimation. Noteworthy, the proposed estimator can
be easily adapted to any Gaussian source estimation in the
presence of any Gaussian mixture noise with memory. Future
extension of this work may include deriving the exact closed
form expression for the MSE.
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