
Adaptation of Apriori to MapReduce to Build a Warehouse of Relations Between
Named Entities Across the Web

Jean-Daniel Cryans
Software engineering and IT Dept
École de technologie supérieure

Montreal, QC, Canada
Email: jdcryans@gmail.com

Sylvie Ratté
Software engineering and IT Dept
École de technologie supérieure

Montreal, QC, Canada
Email: Sylvie.Ratte@etsmtl.ca

Roger Champagne
Software engineering and IT Dept
École de technologie supérieure

Montreal, QC, Canada
Email: Roger.Champagne@etsmtl.ca

Abstract—The Semantic Web has made possible the use of
the Internet to extract useful content, a task that could neces-
sitate an infrastructure across the Web. With Hadoop, a free
implementation of the MapReduce programming paradigm
created by Google, we can treat these data reliably over
hundreds of servers. This article describes how the Apriori
algorithm was adapted to MapReduce in the search for
relations between entities to deal with thousands of Web pages
coming from RSS feeds daily. First, every feed is looked up five
times per day and each entry is registered in a database with
MapReduce. Second, the entries are read and their content
sent to the Web service OpenCalais for the detection of named
entities. For each Web page, the set of all itemsets found is
generated and stored in the database. Third, all generated sets,
from first to last, are counted and their support is registered.
Finally, various analytical tasks are executed to present the
relationships found. Our tests show that the third step, executed
over 3,000,000 sets, was 4.5 times faster using five servers than
using a single machine. This approach allows us to easily and
automatically distribute treatments on as many machines as
are available, and be able to process datasets that one server,
even a very powerful one, would not be able to manage alone.
Based on these findings, we can generalize that, with this great
scalability, processing more data would be faster, depending
on the number of servers used.

Keywords-web mining; association mining; Apriori algo-
rithm; MapReduce paradigm;

I. INTRODUCTION

Most of the data mining algorithms written during the last
decade have been designed to execute on a single computer.
In the Semantic Web era, it is becoming increasingly easy
to extract information from the Web, provided that we
can store these data which no longer reside on a single
machine. We must therefore find ways to parallelize the
processing on several machines, in order to increase both
storage capacity and treatment. This study proposes an
adaptation of the search algorithm Apriori to the MapReduce
programming paradigm to deal with news feeds to find the
relations between named entities. This new algorithm, called
AprioriMR, will use the knowledge contained on the Internet
to reveal links between cities, people, objects, monuments,
or other tangible concepts.

The rest of the article is organized as follows. Section II
explains the background of this research. Section III de-
scribes the objectives of the adaptation. Section IV presents
the tools used to obtain the data and process them. Section V
explains how data are processed and how the Apriori algo-
rithm was adapted. Section VI presents the results of the
study. Section 7 puts this study into perspective with respect
to other, similar proposals.

II. BACKGROUND

This study is part of the Semantic Web effort to make
information available to users and machines. In it, we seek
to more precisely extract the relationship between named
entities in news feeds. The news comes from companies
known for the quality of their content, such as newspapers
and television stations that publish text online. This is to
ensure: 1) that the news can be interpreted in a programmatic
way; and 2) that the news source is valid, and therefore that
the information published is correct. These properties are
discussed in more detail in Section IV.

As it is currently impossible to make useful queries on the
content stored only on the Web, we must do this on our own
infrastructure. The data for large numbers of pages cannot
be contained on a single machine, because their volume
easily exceeds the size of the largest hard disks. Even if
this were possible, the loss of that single machine would
make the content unavailable for a time. Furthermore, the
serial processing of these data would be limited by the speed
of the computer components. This is why software such
as Hadoop [1], which facilitates this type of processing,
have been designed. Hadoop provides a distributed file
system that can be used on more than a thousand machines
and an implementation of the MapReduce programming
paradigm [2], invented by Google, which allows data to be
processed reliably on these machines. XXX-COMMENT–
end the Section II with an evaluation on ’why’ [1] and [2]
are not enough; what is essentially missing and your work
fills in–COMMENT- IDEE-SR: At the time of writing no
implementation of Apriori within Hadoop exists. While the



itemset counting is trivial in Map/Reduce, the real challenge
of the algorithm is in the candidate selection implementation.
XXX

At the end of the study, the system created should be
able to take a named entity and find other entities that are
very closely linked to it on the basis of Web content. This
will necessarily lead to the disambiguation of entities (the
word apple, for example, can refer to a fruit, a computer
company, or a multimedia corporation). From there, it will
also be possible to determine the strength of the relationships
between several entities.

III. OBJECTIVES

This study has three objectives: 1) to adapt the Apriori
learning algorithm of association rules [3] to the MapReduce
paradigm [4]; 2) to apply the OpenCalais Web service [9] to
a large number of articles from the Internet in a distributed
manner; and 3) to evaluate the database HBASE [8] in a
batch processing environment, as a warehouse capable of
responding to requests in real time.

Adapting the Apriori algorithm to MapReduce is neces-
sary to deal with sets of transactions that cannot be stored in
RAM on a single computer. This adjustment will help treat
millions of items from the Web several times a day and
obtain results equivalent to those of the original algorithm.
Since Apriori is not designed to run on a cluster of machines,
we must first demonstrate whether or not this is feasible. It
should also be mentioned that the MapReduce framework
imposes a minimum cost in terms of time for each exe-
cution. Consequently, we must determine the performance
loss caused by the use of MapReduce on data that can be
processed on a single machine.

Furthermore, the feasibility of using OpenCalais for very
large sets of articles must be shown, because this is the tool
used to find the named entities. We must then be able to
send tens of thousands of articles per day to this Web service
and not be constrained by the response time, which is more
than one second. In other words, a method must be properly
designed to use OpenCalais in a distributed manner.

HBASE is a database inspired largely by Bigtable [10],
which allows Google to store terabytes of structured data
in a scalable way. However, it does not offer a means of
interaction with the SQL database language, as it is not
relational, but it is nevertheless compatible with MapReduce.
We must then validate that HBASE will be able to store
millions of articles from the Web along with the itemsets
that will be extracted. In addition, we must ensure that we
can quickly retrieve specific information despite the lack of
relationships between tables, in order to serve a website and
deal with batch processing simultaneously.

IV. DATA AND SOFTWARE

The first source of data for this study was the thousands
of RSS feeds of newspapers and television stations which

<rdf:Description rdf:about=
"http://d.opencalais.com/comphash-1/
64136b2b-cb4e-36ac-9f32-f58f4c1f1c8a">

<rdf:type rdf:resource=
"http://sopencalais.com/1/type/

em/e/Company" />
<c:name>British Airways </c:name>
<c:nationality>British</c:nationality>

</rdf:Description>

Figure 1. Example of a resource in RDF format

publish articles online. Each RSS feed contains a series of
recent articles that are described by title, abstract, first lines
of the text, date, and, sometimes, attached files (images,
etc.). Each item in an RSS feed then refers directly or
indirectly to an HTML page containing an article described
by a title, subtitle, and text, but also by general elements of
each site (menus, advertising, and links to related articles).

The use of RSS feeds has several advantages. First, the
use of a Web crawler, which is often difficult to configure, is
no longer necessary, since it only takes one library to read
the RSS and another to give the HTML of a URL. Also,
it helps to have a high level of control over which pages
will be covered, because, without a proper and expensive
configuration, crawlers such as Nutch [11] and Heritrix [12],
have to analyze both images and link forms, recovering a
large number of pages in the process that have no value in
the search for well-written articles and valid content.

The second data source is OpenCalais, a Web service
which makes it possible to find named entities in a text.
The result is presented by default as a Resource Descrip-
tion Framework (RDF) developed by the W3C to describe
resources that come from the Web.

For example, the resource

http://d.opencalais.com/er/geo/city/
ralg-geo1/b3719a18-c511-51a8-b3f9-
f8480b3b6e48.html

is a reference to the City of New York in the United States.
An RDF response contains many resources, as shown in

Figure 1, where British Airways has a URI, a name, a type,
and a nationality. It attributes change depending on the type
of response.

Using OpenCalais allows us to respond easily to the
problem of recognition of named entities, but there are
several constraints. First, articles sent to the service cannot
have more than 100,000 characters, otherwise an error is
returned. Second, a maximum of 40,000 queries per day and
four requests per second can be sent to the service. Third,
the submitted texts must be very well built (title, subtitle,
and text) so that the service is able to detect entities. This
is because the emphasis is on accuracy and not on recall.



Despite these limitations, it is much more economical to use
OpenCalais than to develop our own library for named entity
detection.

The choice of Apache Hadoop (which contains an im-
plementation of MapReduce and a distributed file system)
and HBASE is justified by the high level of scalability
and availability they offer. It thus becomes possible to
store several terabytes of data and process them easily
and reliably, since the software stack is resistant to engine
failures and mistakes. The versions we used were Hadoop
0.19.1 and HBASE 0.19.3.

A cluster of ten computers was used to store data with
Hadoop and HBASE. The master node was composed of a
processor running at 1.8 GHz, with 2 GB of RAM and two
disks as mirrors. The other nine slave nodes had the same
processor and 1 GB of memory, with two 80 GB disks used
independently by the distributed file system, for a total of
approximately 1 TO. A cluster of five computers (each with
a 2.4 GHz processor and 1 GB of memory) was used to
process the data with MapReduce. The master process of
MapReduce was on the same master node of the first cluster.
Such a configuration is not consistent with MapReduces
principle of proximity, because normally all slave processes
are found on all slave nodes. But, with one processor and
little memory, it is not possible to combine the processes
without competing for resources.

V. METHODS

Thanks to these tools and data sources, it is possible to
acquire data, as shown in Figure 2. Several times a day, the
following operations are performed in sequence.

1) First, a set of RSS feeds is analyzed to obtain the
URLs of new articles that will be saved in HBASE
with a label indicating that they are new and should
therefore be treated (see 1a and 1b in Figure 2).

2) The second task, associated with the Map phase,
consists of going through the HBASE table of all
articles to download the HTMLs of the new articles. It
then communicates with OpenCalais to get the RDF,
filter entities with a relevance index of 2 (which is
too low), and generate the set of all subsets of the
remaining entities (except the empty set), known as
the Powerset, which will be forwarded to the Reduce
phase. This last phase will record this new set of
itemsets in the table of articles and mark the page
as read. As the task is going through the full table
of items, it also notes the final number of articles
with itemsets, which will become the total number of
transactions (see 1a, 2b and 2c in Figure 2).
In order not to limit the reading speed of pages to
the number of servers (in this case, five), each Map
reads three pages at a time. After each page is read,
there is a down time of five seconds, as a courtesy to
the site analyzed. Moreover, since OpenCalais limits

Figure 2. Process Data Acquisition Process

the number of articles processed per second to four,
it is likely that one or more processes will receive
an error from the Web service. When this occurs, a
random waiting time of between 0.1 and 10 seconds
is observed before trying again, so as not to reproduce
the same problem indefinitely.

3) The third task in the Map phase reads the table of
articles and forwards each of the itemsets individually
to the Reduce phase, which will in turn obtain the
number of occurrences of each of the itemsets. Only
itemsets will be saved, the number of which, divided
by the total number of transactions, called support, is
greater than a predefined metric set when configuring
the task (see 3a and 3b in Figure 2).

4) Finally, several other tasks are performed to obtain
aggregates (see, in particular, Section VI), or to index
the data for a search engine (see 4 in Figure 2).

COMMENT– –COMMENT–RESPONSE? The pseudo-
code of our adaptation is presented below.

VI. RESULTS

The data acquisition task has been performed regularly
for a month on a growing number of RSS feeds, and has
produced more and more data every day. At the time of writ-
ing, about 1,500 feeds are cycled every day, which helped
to analyze more than 100,000 web pages. Approximately
20% of the pages covered were either unavailable (HTTP
400 or 503 errors, for example) or available, but too small
or too big, or their encoding was not well specified. From
these pages, over 50,000 named entities were discovered and
the number of itemsets not filtered reached more than 3
million. The disk space required to contain these data is
approximately 30 GB uncompressed, but replicated three
times, so the total space required is about 90 GB. Two data
computers failed during testing, but this had no impact on
the results.

The adaptation of the Apriori algorithm to MapReduce to
make the processing task extensible was verified by running
the third step of the method on a different number of



Figure 3. Execution time (sec) of stage 3, according to the number of
machines

machines, from one to five. The number of machines in the
data cluster was not changed, as this would have influenced
the maximum flow. Between each run, HBASE was rebooted
to clear statements in memory and in order to benefit from
the same optimizations of the Sun Java Virtual Machine
each time. The Map number was established at 40 for all
treatments and the Reduce number was equivalent to the
number of machines. The results are shown in Figure 3. We
can see that moving from one to five machines reduces the
execution time by a factor of 4.5. This is because each Map
can draw information from one machine at a time, which
leaves the rest of the cluster data dormant.

The reason why the execution with five machines is not
exactly five times faster is the quality of the data distribution
in HBASE: it can easily happen that two Maps are using the
same data machine at the same time, inducing a slowdown.
The Reduce phase with a single machine is also faster,
because it resides on a virtual machine and discovers the
location of the data only once. When using five machines,
each of them must find where to place the data in HBASE.

The experiment demonstrates that it is indeed possible to
use OpenCalais in a Web-crawling task, but we must be able
to handle the errors returned. As described in Section V, it
is useless to resend our requests directly to the Web service
immediately, or to wait for a fixed period of time prior
to doing so. It is best to choose a random time between
shipments. Another issue is the occurrence of unexpected
errors. Sometimes, for example, after several attempts, the
service does not respond within the maximum period of
15 seconds, while other pages are handled at the same
time without a problem on other servers. In addition to the
random wait, experience shows that we must also perform
a maximum number of sends and then give up, in order not
to lose too much time on the treatment of a single page.

The final validation was to ensure that HBASE was able
to contain millions of elements in addition to being able
to respond to requests despite the lack of a relationship
between tables and a different data model, while dealing

with batch processing. With millions of elements, we tried
to filter none of the itemset at the third stage, and therefore
to write the 3 million items in an HBASE table. While
the treatment was successful, it took much longer, and had
the disadvantage of slowing down the analytical tasks that
followed. The first task to run at that point was the detection
of the itemsets with the largest supports for each cardinality
(from one to twelve). To do this, the Map phase would cover
the itemset table in full. Its execution time is approximately
25% higher for about 130 times more elements, which is
normal, given that scanning an HBASE table usually takes
less than a millisecond per line. Despite these additional
data, the website developed in [7] is not slower, since each
request, which is performed by a row key and a column key,
is very fast, no matter how many rows are involved (one to
a billion), because of its distributed model maps.

VII. DISCUSSION

Our work is similar to that of [5], whose algorithm
processes uncertain data flows. Flows are characterized by a
number of transactions containing items, and must be treated
immediately because they are no longer available for reuse.
In addition, items are not distributed evenly in each stream,
which means that an item that is uncommon at one moment
may become very common later on. Uncertain data are
characterized by an existential uncertainty that indicates the
degree of certainty that each item will be in each transaction,
which is not the case for typical transactional databases
where this uncertainty does not exist. Their flows for data
distribution resembles in a way to our RSS stream, since
it is uneven, the difference being that we keep the stream
available so that it is always possible to process it again.
Since it is not necessary to provide a limited-stream window
to users, all the available information is used. The existential
uncertainty is almost identical to the degree of relevance
provided by OpenCalais: if an entity is not relevant to the
article, it is probably part of the noise that surrounds it. At
this time, the support calculation does not take into account
the relevance of the entities, because we think that, beyond a
certain level, confidence is sufficient to include the entity. In
addition, levels of support are so low that filtering them with
the help of this probability would only reduce their number
still more.

COMMENT–It should be considered to mention rela-
tionship to other studies investigating distributed approach
to Apriori algorithm. Cristian Aflori and Mitica Craus:
Grid implementation of the Apriori algorithm, Advances in
Engineering Software, Volume 38, Issue 5, May 2007, Pages
295-300–COMMENT

The work of Dean and Ghemawat [4] on MapReduce
at Google shows that a software framework for distributed
processing over thousands of machines is feasible and can
be reliable. The paradigm allows for parallel treatment of
different domains without resorting to complicated logic.



The Map phase of each task takes as input a set of keys and
values on which treatment will be performed to create other
keys and other values. When this phase is completed, all
values are grouped according to their key. These groupings
are then forwarded to the Reduce phase, which performs
further processing to create other keys and values. Each
Map/Reduce phase is separated into sub-tasks distributed on
the machines of the cluster, and, if one of them is missing,
its sub-tasks are automatically redirected to other machines
in a transparent manner. It is also possible to make further
adjustments to MapReduce, such as writing directly into a
compatible database (Bigtable at Google, or HBASE in Open
Source).

The use of this paradigm can easily make a serialized
processing task extensible. Since the Map/Reduce writing
tasks are not dependent on the number of machines, the same
code can be used on five or a thousand machines. In order
to process documents on the Web, it is very advantageous
to adapt Apriori. The tasks described in this study are
consistent with the model described in [4]. The distribution
potential is used to read multiple feeds simultaneously on
multiple machines.

VIII. CONCLUSION

Adapting the Apriori algorithm to MapReduce is a valid
solution to the problem posed by the amount of data to be
processed on the Web. The use of a cluster of machines to
distribute the treatment has helped to optimize RSS stream-
mining, and allows the complete processing of multiple
streams (reading the articles and sending them to Open-
Calais). MapReduce also achieved very rapid association-
mining between named entities in a sample of 3 million
itemsets stored in HBASE, and could handle even more data.
Moreover, if, at some point, the treatments become too long,
it will be possible to add new resources without modifying
the algorithm. This study serves as the basis for the dynamic
website developed in [7], which takes the processed data and
presents it to users. Future work could focus on cleaning up
Web pages to remove advertising and static content (such
as a menus) to improve the detection of entities. A window
like the one proposed by Leung and Hao [5] could also be
used to present only current and up-to-date information.

REFERENCES

[1] A. Bialecki, A. Murthy, C. Douglas, D. Cutting, D. Das,
D. Borthakur, E. Soztutar, A. Gates, J. Kellerman, M. Konar,
N. Daley, O. Natkovich, O. O’Malley, P. Hunt, M. Stack,
C. Taton, and T. White. (2009) Hadoop core. [Online]. Avail-
able: ”http://hadoop.apache.org/core/”, 2010/15/01.

[2] H.C. Yang, A. Dasdan, R.-L. Hsiao, and D. Parker, “Map-
reduce-merge: simplified relational data processing on large
clusters,” in ACM SIGMOD International Conference on Man-
agement of Data, 2007, pp. 1029 – 1040.

[3] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” in ACM
SIGMOD International Conference on Management of Data,
1993, pp. 207 – 216.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, no. 1, 2008,
pp. 107–113.

[5] C. Leung, and B. Hao, “Mining of Frequent Itemsets from
Streams of Uncertain Data,” in IEEE International Conference
on Data Engineering, 2009, pp. 1663–1670.

[6] C. Aflori and M. Craus. “Grid implementation of the Apriori
algorithm,” in Advances in Engineering Software, Vol 38, 2007,
pp. 295–300.

[7] J.-D. Cryans, “Prototypage d’un engin de recherche de rela-
tions entre des entités nommées,” Projet de fin d’études, École
de technologie supérieure, 2009, pp. 1663–1670.

[8] N. Joffe, J.-D. Cryans, B. Duxbury, J. Kellerman, A. Purtell,
M. Stack, and R. Rawson. (2009) Hbase. [Online]. Available:
”http://hbase.org”, 2010/15/01.

[9] OpenCalais. (2009) OpenCalais Web Service. [Online]. Avail-
able: ”http://www.opencalais.com”, 2010/15/01.

[10] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans-
actions on Computer Systems (TOCS), vol. 26, no. 2, 2008,
Article 4.

[11] A. Bialecki, M. Cafarella, J. Charron, D. Cutting, O. Gospod-
netić, D. Güney, P. Kosiorowski, D. Kubes, C.A. Mattmann,
S. Siren, and J. Xing. (2009) Lucene Nutch. [Online]. Avail-
able: ”http://lucene.apache.org/nutch/”, 2010/15/01.

[12] Multiple authors (2009) Heritrix crawler. [Online]. Available:
”http://crawler.archive.org/”, 2010/15/01.


