FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

The electrochemical and mechanical behavior of bulk and porous superelastic Ti-Zr-based alloys for biomedical applications

Downloads

Downloads per month over past year

Zhukova, Yulia, Korobkova, Anastasia, Dubinskiy, Sergey, Pustov, Yury, Konopatsky, Anton, Podgorny, Dmitry, Filonov, Mikhail, Prokoshkin, Sergey et Brailovski, Vladimir. 2019. « The electrochemical and mechanical behavior of bulk and porous superelastic Ti-Zr-based alloys for biomedical applications ». Materials, vol. 12, nº 15.

[img]
Preview
PDF
Brailovski V 2019 19531.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (3MB) | Preview

Abstract

Titanium alloys are well recognized as appropriate materials for biomedical implants. These devices are designed to operate in quite aggressive human body media, so it is important to study the corrosion and electrochemical behavior of the novel materials alongside the underlying chemical and structural features. In the present study, the prospective Ti‒Zr-based superelastic alloys (Ti-18Zr-14Nb, Ti-18Zr-15Nb, Ti-18Zr-13Nb-1Ta, atom %) were analyzed in terms of their phase composition, functional mechanical properties, the composition and structure of surface oxide films, and the corresponding corrosion and electrochemical behavior in Hanks’ simulated biological solution. The electrochemical parameters of the Ti-18Zr-14Nb material in bulk and foam states were also compared. The results show a significant difference in the functional performance of the studied materials, with different composition and structure states. In particular, the positive effect of the thermomechanical treatment regime, leading to the formation of a favorable microstructure on the corrosion resistance, has been revealed. In general, the Ti-18Zr-15Nb alloy exhibits the optimum combination of functional characteristics in Hanks’ solution, while the Ti-18Zr-13Nb-1Ta alloy shows the highest resistance to the corrosion environment. The Ti-18Zr-14Nb-based foam material exhibits slightly lower passivation kinetics as compared to its bulk equivalent.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Brailovski, Vladimir
Affiliation: Génie mécanique
Date Deposited: 04 Oct 2019 18:43
Last Modified: 18 Nov 2019 20:08
URI: https://espace2.etsmtl.ca/id/eprint/19531

Actions (login required)

View Item View Item