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 

Abstract— With ever-increasing traffic, the need more 

dynamic, flexible and autonomous optical networks is more 

important than ever. The availability of performance monitoring 

data makes it possible to leverage machine learning (ML) for fast 

quality of transmission (QoT) estimation and performance 

prediction of lightpaths in complex optical networks. In this 

work, we explore classifiers based on support vector machine 

(SVM) and artificial neural network (ANN) for QoT estimation 

of unestablished lightpaths. Using a synthetic knowledge base 

(KB), the classification accuracy of the ANN and SVM models 

decreased from 99%, with a complete feature set, to 85.03% and 

88.52%, respectively, with a reduced feature set. We also propose 

a Long Short-Term Memory (LSTM), an Encoder-Decoder 

LSTM and a Gated Recurrent Unit (GRU) models, trained with 

13-month field performance data, for lightpath signal-to-noise 

(SNR) prediction over forecast horizons up to 4 days. Positive R2 

values combined with low ( 0.285 dB) root mean square error 

(RMSE) indicated that the GRU model achieved slightly better 

predictions than the naive method for forecast horizons ranging 

from 1 to 96 hours, whereas the LSTM performed better over 24 

to 96-hour forecast horizons. The Encoder-Decoder LSTM model 

achieved the lowest R2 and the highest RMSE values (0.296 dB). 

Additional input data will be needed to improve the prediction 

accuracy of the LSTM and GRU models trained with single 

lightpath data. 

 
Index Terms— Artificial Neural Network, Gated Recurrent 

Unit, Long Short-Term Memory, Machine Learning, 

Performance Prediction, Quality of Transmission, Recurrent 

Neural Networks, Support Vector Machine. 

 

I. INTRODUCTION 

HE continuous traffic increase over the years has led to the 

deployment of wavelength-division multiplexing (WDM) 

optical systems with ever-increasing data rates, capacity 

and flexibility. Video and cloud applications, as well as 

emerging 5G and Internet of Things (IoT) applications call for 

even higher traffic volumes, heterogeneity and dynamicity in 

optical networks. This will make the potential impact of 

performance degradation and failure at the link and network 
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levels more severe and the need for flexible and autonomous 

network management more important than ever. The 

availability of transponders with monitoring capabilities 

makes it possible to leverage the potential of machine learning 

(ML) to design and manage increasingly heterogeneous, 

dynamic and complex optical networks in a software defined 

network (SDN) context. 

ML algorithms for optical networking applications have 

been explored in the last years [1]. ML-based methods such as 

K-nearest neighbours (K-NN), support vector machine (SVM) 

and random forest (RF) have been proposed for estimating the 

quality of transmission (QoT) of unestablished lightpaths [2]. 

A comparative study of ML-based lightpath classifiers 

realized with a synthetic knowledge base (KB) of 25,600 bit 

error rate (BER) instances generated using the Gaussian noise 

model has shown that SVM outperforms RF and K-NN in 

terms of class prediction’s accuracy [2]. A ML physical layer 

model (ML-PLM) trained with physical layer parameters and 

a ML model (ML-M) using monitoring metrics combined with 

analytically generated link-based features were found to 

achieve a very good accuracy with a relatively small training 

database [3]. ML-based methods have also been explored for 

predicting performance metrics such as the BER, signal-to-

noise ratio (SNR) or Q-factor for deployed lightpaths. 

Performance prediction would allow network operators to 

respond proactively to performance degradations or potential 

failures in optical networks. ML has also been proposed for 

predicting traffic matrix, optical path performance and 

equipment failure [4, 5]. A long short-term memory (LSTM) 

algorithm has been proposed to predict reconfigurable optical 

add-drop multiplexer (ROADM) network resource 

requirements 30 minutes in advance [6]. The proposed LSTM 

and Gated Recurrent Unit (GRU) models trained with field 

lightpath data for short-term SNR forecasting have produced 

promising results [7]. 

In [8], we obtained a 99.38% accuracy in estimating the 

QoT of unestablished lightpaths by using a SVM QoT 

estimator trained with 30,270 BER synthetic data instances. 

We also proposed a LSTM model, trained with 13 months of 

field BER data for one lightpath, for predicting the SNR of the 

lightpath over forecast horizons up to 24 hours. In this paper, 

we extend the work presented in [8] by investigating a new 

QoT estimator based on artificial neural network (ANN) and 

two new SNR prediction models based on LSTM and Gated 

Recurrent Unit (GRU). The two use cases considered in this 

study are shown in Fig. 1. In the first use case, QoT estimation 

of unestablished lightpaths using SVM and ANN, as well as a 

synthetic BER database, is performed. In the second use case, 

LSTM, Encoder-Decoder LSTM and GRU models trained
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Fig. 1.  ML in optical networking: overview of the two use cases considered in this study                                                                 

(WSS: wavelength selective switch; EDFA: Erbium-doped fiber amplifier; Enc-Dec: Encoder-Decoder) 

 

Table I Optical system and link parameters in the KB 

 

Parameter Value 

Link length 80 to 7500 km 

Span length 80, 100, 120, 150 km 

Number of spans 1 to 50 

Modulation format PM-BPSK, PM-QPSK,              

PM-16QAM, PM-64QAM 

Channel power -10 to 5 dBm 

Data rate 40, 50, 100 Gb/s 

Polarization-Multiplexed (PM); Binary Phase-Shift-Keying (BPSK); 

Quadrature Phase Shift Keying (QPSK); Quadrature Amplitude 

Modulation (QAM) 

 

 

 

Table II Fixed parameters values 

 

Parameter Value 

Fiber attenuation coefficient 0.2 dB/km 

Dispersion coefficient -21 (ps)2/km 

Nonlinear coefficient 1.3 W-1km-1 

Amplifier noise figure 5 dB 

Central frequency 193.1 THz 

Noise bandwidth 32 GHz 

Reference optical bandwidth 12.5 GHz 

Number of channels 9 

Baud rate 32 Gbaud 

 

 

with historical field performance data for one lightpath are 

used to predict the SNR for one lightpath over time horizons 

up to 4 days. 

The remainder of the document is organized as follows. The 

QoT estimation and SNR forecast use cases are presented in 

Section 2 and Section 3, respectively. Discussion and 

concluding remarks are included in Section 4. 

II. QOT ESTIMATION 

The QoT estimation use case is treated as follows. First, the 

synthetic KB is described. Second, the feature selection is 

presented, followed by the construction and evaluation of the 

SVM and ANN classifiers considered for QoT estimation of 

unestablished lightpaths.  

 

2.1  System Setup and data pre-processing 

The KB used for QoT estimation was built using the data 

generation tool based on the Gaussian noise model described 

in [2]. The tool allows for channel BER estimation as a 

function of the linear and nonlinear noise contributions, as 

well as signal and link characteristics. Table I lists the signal 

and lightpath characteristics, assuming uncompensated 

coherent optical links as shown in Fig. 1. Additional system 

and link parameters (listed in Table II) are required to estimate 

the channel BER. For the purpose of this study, these 

parameters were assigned fixed values and were not fed to the 

ML models. The resulting synthetic KB includes 38,400 

instances.  

 

2.1.1 Feature engineering 

The feasibility of using the Gaussian noise analytical model 

to estimate the QoT of a lightpath before establishment in a 

production network relies on the availability of all system and 

lightpath parameters listed in Tables I and II at the time of 

decision. In real-world scenarios, the link information (span 

length, span loss, link length, etc.) is often incomplete, 

inaccurate, or difficult to retrieve. In this context, ML could 

potentially be used to assist the QoT estimation process [9]. 

Furthermore, a synthetic KB includes bad QoT data which 

would be very difficult to get in the field.  

First, an analysis of the impact of the different features in 

the QoT estimation process was performed with the aim to 

reflect the parameters availability in real-world applications. 

For that purpose, the classification accuracy of the SVM QoT 

estimator was assessed considering each feature separately. 

Six models were generated using 10-fold cross validation. The 

bigger the impact of the feature on QoT estimation, the higher 

the classification accuracy will be. The results are shown in 

Fig. 2, the most important parameter is the link length, 

followed by the number of spans, the modulation format, the 

span length, the channel power and the data rate. 

Second, a Pearson correlation analysis performed on these 6 

features showed a correlation coefficient of 0.33 between the 

span length and the link length, and 0.93 between the number 

of spans and the link length. For the purpose of this study, the   
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           (a)                        (b)  

Fig. 3.  (a) Neuron: the main component of the ANN; (b) Optimal architecture of the ANN model 

 

 
Fig. 2.  Classification accuracy of the SVM QoT estimator 

obtained by considering one single feature 

 

spans of a given link are assumed to be of equal length. 

Therefore, the resulting four parameters used to build the QoT 

estimation classifiers are the link length, the number of spans, 

the channel power and the modulation format. In real-world 

scenarios where the spans are of variable length (except in 

submarine cable links), the choice of the four parameters 

would likely be different as the lightpath SNR depends on the 

longest span in a link. 

 

2.2 Construction of the QoT estimation models  

2.2.1 SVM model 

SVM is the first model considered for the binary 

classification of lightpaths into good or bad QoT in this study. 

This is a popular supervised learning method that constructs 

an optimal hyperplane as a decision surface with a maximized 

margin of separation between the two classes in the data. The 

optimal location of the decision surface is determined by using 

a small subset of the training observations, referred to as 

support vectors.  

SVM models were built using the four features resulting 

from the feature engineering performed in subsection 2.1.1. 

The hyperparameters optimization process was performed 

using a 80/20 split ratio for training and test datasets, 

respectively, and a 5-fold cross validation, with respective 

ranges for C and γ of [1 x 10-5, 1 x 105] and [1 x 10-5, 1 x 103].  
These are typical ranges for the two hyperparameters that 

decide the performance of the SVM model. The resulting 

SVM classifier was trained with the 30,720 instances as in 8. 

The optimum hyperparameters C and γ obtained with the 

Gaussian kernel, providing the best classification accuracy, are 

1x103 and 0.5102, respectively. These values are comparable 

to the ones obtained with the complete set of features (C = 

1x103, γ = 1.4) [8]. The SVM classifier was built using 

MATLAB R2018a and the LIBSVM library for SVM in [11]. 

        

2.2.2 ANN  model 

The ANN is proposed as the second model for QoT 

estimation. Its main component is the neuron where it 

computes an output f(x) value based on an input vector x, a set 

of weights w and a bias b as shown in Fig. 3(a). Combining 

multiple of these neurons on multiple layers increase the ANN 

capacity of model the data space and generally improve its 

estimation performance. To adjust the weights and biases of 

the ANN, it requires a learning phase through the observation 

of a training database. During that phase, the learning 

algorithm performs backpropagation to update the ANN 

parameters according to the estimation error [10].  

The KB was split into a training set and a test set with a 

80/20 ratio. Also, the training set is divided into a training set 

and a validation set. The latter serves as an evaluation set for 

the selection of hyperparameters such as the learning rate, the 

size of the layers and the number of layers. The ANN was 

trained with the Adam optimizer for mini batches of 512 

samples. Leaky ReLU was selected as the activation function 

of the neurons except for the last layer where it was designed 

with the sigmoid function. These activation functions were 

chosen based on their effectiveness demonstrated in numerous 

studies.  Furthermore, to account for the class imbalance in the 

KB, the weighted binary cross-entropy has been used as the 

loss function of the ANN. 

Evaluation of the ANN hyperparameters determined their 

values to consider for the final model design. The number of 

hidden layers was set to two, the size of the hidden layers was 

set to 512 neurons for the first hidden layer and 256 neurons 

for the second hidden layer and the learning rate was set to 

0.00074. This architecture was arbitrarily selected, whereas 

the number of hidden layers and their sizes were determined 

through a manual process using fixed ranges of values for both 

parameters. An automatic optimization process performed 

with the Tree-Structured Parzen Estimator and 50 different 

rate values allowed determining the optimal learning rate. For 

the number of hidden layers, up to four layers were evaluated 

with the first hidden layer set to 128 neurons and half the 

amount of the previous layer for subsequent hidden layers. For  
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Table III Confusion matrices of the SVM and ANN QoT estimators for different feature sets 

   Predicted “0” Predicted “1” 

All 6 features  

(link length, span length, number of spans, 

modulation format, channel power, data rate) 

ANN 
True “0” 5,855 14 

True “1” 20 1,791 

SVM 
True “0” 5,847 21 

True “1” 27 1,785 

Top 4 features 

(link length, number of spans, modulation 

format, channel power) 

ANN 
True “0” 5,336 565 

True “1” 26 1,753 

SVM 
True “0” 5,614 275 

True “1” 158 1,633 

Top 3 features 

(link length, number of spans, modulation 

format) 

ANN 
True “0” 4,941 960 

True “1” 190 1,589 

SVM 
True “0” 5,531 359 

True “1” 522 1,268 

 

Table IV QoT estimation accuracy and computation time of the SVM and ANN models for different feature sets 

 ANN SVM 

 Accuracy 
Computation 

time (ms)* Accuracy 
Computation 

time (ms)* 

All 6 features  

(link length, span length, number of spans, 

modulation format, channel power, data rate) 

99.56% 0.276 99.38% 3.45 

Top 4 features 

(link length, number of spans, modulation 

format, channel power) 

92.30% 0.214 93.30% 1.01 

Top 3 features 

(link length, number of spans, modulation 

format) 

85.03% 0.268 88.52% 0.935 

* The models were executed on a system with an Intel® Core ™ i5-8600K 3.6 GHz CPU, 16 GB RAM and a GTX 970 GPU. 

 

the size of the hidden layers, 64, 128, 256, 512 and 1024 

neurons for the first layer were tested with half of the amount 

of the previous layer for subsequent layers. The resulting 

ANN model is shown in Fig. 3(b). The size of the input vector 

is N and depends on the number of link features. The neural 

network output ŷ is the probability (ranging from 0 to 1) that 

the link has an acceptable QoT. Python 3 and the Pytorch 

package were used to build the ANN model. 

 

2.3 Evaluation of the QoT estimation models 

The estimation performance of the SVM and ANN models 

was evaluated with different sets of input features. The 

confusion matrices shown in Table III give a clear insight of 

true positive and true negative rates achieved with the SVM 

and ANN models over the test dataset for the different feature 

sets.  

As the number of bad QoT (76.67% of the KB) is higher 

than the number of good QoT, the recall and F1-score are used 

as performance metrics in addition to accuracy. These metrics 

determine the correctly predicted classes in the case of 

unequal class distribution. The classification accuracy and the 

computation time in making class predictions for the different 

classifiers implemented with SVM and ANN are also 

calculated as performance metrics and presented in Table IV. 

In this study, we did not focus on the training time, which can 

be very high, as we tried to measure how fast the proposed 

ML algorithms can estimate the QoT. No pre-processing has 

been performed on the data. Attributing higher costs to 

misclassifications was tested with the SVM as a class 

balancing method, but no significant improvement was 

observed in the classification results. 

The QoT estimation accuracy of the ANN model with the 

complete feature set is 99.56% with a recall and a F1-score of 

98.90% and 99.05% respectively. With the top four features, 

the accuracy decreased to 92.30%, the recall to 98.54% and 

the F1-score to 87.57%. Finally, with the top three features, 

the ANN obtained an accuracy of 85.03%, a recall of 89.32% 

and a F1-score of 73.43%. The SVM QoT estimator achieved 

classification accuracy of 99.38% and 98.50% and 98.66% for 

the F1-score and recall respectively with the complete feature 

set. For the top four features, the accuracy is 94.3% with 

91.18% and 88.29% for the recall and F1-score. Finally, for 

the top three features, the accuracy is 88.52% with 70.84% 

and 74.22% for the recall and F1-score respectively. 

The SVM QoT estimator shows better classification 

accuracy with reduced feature sets whereas the ANN classifier 

performs slightly better with the complete feature set. As for 

the computation time, the number of features does not affect

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on March 03,2020 at 18:23:52 UTC from IEEE Xplore.  Restrictions apply. 



0733-8724 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2020.2975179, Journal of
Lightwave Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

(a)              (b) 

Fig. 4.  (a) SNR vs. time; (b) PDF of SNR data 

 

Fig. 5.  RNN topologies of the SNR forecast models: a) LSTM b) GRU and c) Encoder-Decoder LSTM  

the ANN models whereas it shows drastic change between the 

two reduced sets and the complete set. 

III. SHORT-TERM SNR FORECAST 

In this section, the SNR forecast use case is presented as 

follows. First, the KB used in the experiment is described. 

Second, the SNR prediction models and their design choices 

are detailed. Finally, the prediction results of these models are 

shown and discussed. 

 

3.1 Construction of the SNR prediction models 

The KB used for performance prediction was constituted of 

field  performance monitoring (PM) data collected at a 15-min 

sampling rate over 13 months for a PM-QPSK channel at 100 

Gb/s in a 1,500-km production link of the CANARIE network. 

 The SNR observations computed from the raw BER data 

are shown in Fig. 4. The probability density function (PDF) of 

the series is shown in Fig. 4(b). During the observation period, 

the BER varied between 6.2 x 10-3 and 5 x 10-4 with a mean 

value of 9.32 x 10-4. It is interesting to note that the theoretical 

BER value calculated using the Gaussian noise model (~1 x 

10-4) is consistent with the observed BER values. An 

augmented Dickey-Fuller (ADF) test for unique root and a 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for trend 

stationarity were performed on the time series of PM data 

using built-in for ADF and KPSS tests, respectively).  The 

peak-to-peak functions in MATLAB (0.05 significance level) 

revealing that the time series was not stationary (p-values of 

0.62 and 0.01 amplitude of the 24-hour and 7-day seasonal 

components of the SNR time series (0.0275 dB and 0.0840 

dB, respectively) was found to be quite small. The 1,020 

missing data instances in the SNR time series (over 38,203 

instances) were replaced by average values observed over a 

30-day moving window. 

3.1.1 LSTM model 

The LSTM (Fig. 5(a)) is a type of recurrent neural network 

which can identify patterns in time series and use them to 

make predictions. LSTM models use structures called gates to 

control the cell states and a combination with the input 

information to determine the outputs. For each SNR value in 

the input sequence x of size N, the LSTM updates its internal 

states ht until it reaches the last value in the sequence (SNRt = 

N-1). At that time step, the LSTM produces an output y 

corresponding to the SNR forecast for a horizon of T hours 

(SNRt = N+T-1).  

The LSTM model, like the other models, was built with the 

aim to forecast the SNR change based on historical field data. 

For building the prediction models, the KB was split in the 

ratio 80/20, which corresponds to training and test datasets of 

10 and 3 months, respectively. A validation set, containing 

20% of the training set was used to determine the appropriate 

hyperparameters for each model. Thus, the other 

hyperparameters of the models, such as the learning rate, 

dropout rate, teacher forcing ratio and size of the hidden layer 

have been tested for different ranges ((0.00001, 0.000025 and 

0.00005), (0 and 0.2), (0, 0.25 and 0.5) and (256, 512), 
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Fig. 6.  Predicted vs. observed SNR: (a) 24-hour horizon; (b) 48-hour horizon; (c) 96-hour horizon                                           

(period of February 14th, 2018 to February 22nd, 2018 of the test set) 

 

 
                                    (a)                                (b) 

Fig. 7.  (a) RMSE vs. forecast horizon on the test set; (b) R2 vs. forecast horizon 

respectively) using the Root Mean Square Error (RMSE) as 

the performance metric. The validation phase allowed setting 

the learning rate to 0.00001, the size of the hidden layer to 256 

neurons, the dropout rate to 0.2 and the teacher forcing rate to 

0. The Keras package in Python 3 was used for building the 

LSTM model. 

3.1.2 Encoder-Decoder LSTM model 

For sequence-to-sequence prediction task where the input is 

a sequence of multiple values and the model output is also a 

sequence, one can use an encoder-decoder LSTM topology. 

First, the encoder LSTM (Fig. 5(c)) processes all the entries in 

the input sequence x and updates its internal states ht at each 

input time step. When it reaches the last input value (SNRt = N-

1), it produces an encoded vector containing the state of the 

gates and cells. Then, the decoder LSTM starts predicting each 

value for the output sequence y based on the encoded vector 

and passes its internal states ht to itself for the next prediction 

time step. The size of the prediction sequence y is T, the 

forecast horizon. Also, the input x of the decoding LSTM 

corresponds to the previous prediction except for the first 

predicting time step where it could be initialized to 0, a 

random value or the last value in the input sequence. For this 

work, the latter is selected.  
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To train the model, the KB was split in the ratio of 80/20 for 

the training and test sets with 20% of the training set being 

used for validation. The hyperparameters to be evaluated are 

observation window size, the learning rate, the size of the 

hidden layer, the dropout rate and the teacher forcing rate. At 

the validation phase, 0 was obtained for the last two 

hyperparameters, while the learning rate was set to 0.0005 and 

the size of the hidden layer to 512 neurons. Three learning rate 

values (0.00025, 0.0005 and 0.001) were evaluated. Learning 

rates typically range from 0 to 1. Generally, a low learning 

rate leads to longer convergence time to an acceptable 

validation score while a high learning rate might create 

instability during training and not converge. Thus, the goal 

was to select a value which produces a good validation score 

while not taking too long to converge. 

 

3.1.3 GRU model 

The GRU model works in the same way as the LSTM model 

(Fig. 5(b)). The difference resides in its internal states 

structure. It contains less gates for controlling the cell states 

thus it is less complex to implement and faster to run. The 

same training set and test set ratio was used for the GRU. 

Also, the LSTM hyperparameters evaluation process was 

applied to the GRU model. The dropout rate and the teacher 

forcing rate were set to 0 as in the validation process for the 

Encoder-Decoder LSTM model, while the learning rate and 

the size of the hidden layer were assigned to 0.00001 and 256 

neurons, respectively. The Keras package in Python 3 was 

used for building the GRU model.   

 

3.2 Evaluation of the SNR prediction models 

As in [7], the size of the observation window (i.e. the size of 

the SNR sequence used by the model to determine the next 

SNR value for a given forecast horizon) has a significant 

impact on the model performance. Thus, the lowest RMSE, 

determined for the range of observation windows of 24, 48 

and 96 hours, for each model was obtained with a 48-hour 

observation window during the validation phase except for the 

Encoder-Decoder LSTM where the lowest RMSE was 

obtained with a 96-hour observation. 

Three metrics were used to evaluate the performance of the 

models: the RMSE, the R2 and the computation time. The R2, 

in Fig. 7(b), was used to evaluate the model performance with 

respect to baseline model. The higher the value the better the 

model is to predict the future SNR values while a large 

negative score indicates that it is excessively worse than the 

naive method at predicting SNR values. A R2 score of 0 means 

that the model and the naive method has identical predicting 

performance. Moreover, the performance of the SNR 

prediction models was assessed for forecast horizons ranging 

from 1 to 96 hours and compared to a naive method assuming 

that the SNR at a given time is equal to the SNR at latest value 

in the observation window. The RMSE obtained for the entire 

test set are shown in Fig. 7(a).  

The RMSE increases as a function of the forecast horizon 

for all the models, as expected, with a maximum improvement 

of 0.022 dB at 96 hours for the LSTM over the naive method. 

Fig. 6 shows the observed SNR for three 192-hour periods 

in the test dataset for the period of February 14th, 2018 to 

February 22nd, 2018 as well as the predicted SNR for three 

different forecast horizons (24 hours, 48 hours and 96 hours). 

The objective was to determine if the SNR could be forecast 

with time scales of several hours.  

For the LSTM model, the R2 starts with -0.0148 at 1 hour 

and gradually improves with higher forecast horizon ending 

with a value of 0.1415 at 96 hours. With this network, it could 

outperform the baseline method for forecast of 24, 48 and 96 

hours. The LSTM was the best model among the tested 

models for forecasting at higher horizons with the highest R2 

and lowest RMSE values. It could not beat the naive method 

at lower horizons (1 hour to 12 hours). Also, in Fig. 6(a) and 

Fig 6(b), we see that the LSTM behave similarly to the naive 

method for the 24-hour and 48-hour forecast horizon. For 

longer term forecast, in Fig. 6(c), the LSTM prediction curve 

is slightly less distant from the observation curve than the 

other three models. This could partially explain why the 

LSTM has the lowest RMSE among the studied techniques. 

For the GRU model, the R2 values are mostly positive 

ranging from -0.0133 (4-hour prediction) to 0.0563 (96-hour 

prediction) indicating that it gets slightly more accurate 

prediction than the naive method except for a 4-hour horizon. 

Furthermore, the near zero GRU R2 scores show that it 

behaves similarly to the naive method by predicting a SNR 

value close to the most recent value in the observation 

window. As shown in Fig. 7(a), the GRU RMSE curve follows 

the naive RMSE curve closely. This behaviour can be seen in 

Fig. 6(a) and Fig. 6(b). However, in Fig. 6(c), the GRU 

prediction curve seems to adopt a different shape than the 

naive one after 120 hours (5 days), becoming slightly less 

distant from the observations. Despite these observations, the 

GRU prediction curves for the 24-hour and the 48-hour 

horizons seem to be the ones closest to the observed values 

curve. Overall, the GRU model was the best along all the 

horizons because it has the most positive R2 values. 

Finally, for the Encoder-Decoder LSTM, the R2 values 

range from -0.2688 (8-hour prediction) to 0.1112 (1-hour 

prediction). The Fig 7(b) shows that the Encoder-Decoder 

LSTM could slightly outperform the naive method for the 1-

hour and 48-hour forecast horizons. It mainly follows a similar 

behaviour as the naive method due to its R2 score mostly close 

to 0. Among all the tested models, the Encoder-Decoder 

LSTM obtained the worst results. However, it got the best 

performance at very short-term forecast (1 hour). As expected, 

due to its R2 mostly close to zero, we can see in Fig. 6 that, in 

all cases, the model follows the naive method prediction 

curve. 

As for the R2 score shown in Fig. 7(b), we can globally see 

that the GRU and LSTM have better performances compared 

to the naive method when predicting at higher horizons. The 

Encoder-Decoder LSTM does not show any R2 trend as its 

performance with respect to the baseline model seems mostly 

random. 

The models were executed on a system with an Intel® 

Core™ i5-8600K 3.6 GHz CPU, 16 GB RAM and a GTX 970 

GPU. The computation time for the encoder-decoder LSTM 

increases with the forecast horizon. It ranges from 17.8 ms to 

71.8 ms for forecasts of 1 to 96 hours. Meanwhile, the LSTM 

and GRU models computation time remained stable at around 

47.7 ms and 40.8 ms respectively. The Encoder-Decoder 
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LSTM computation time varies with the forecast horizon T 

because it requires the decoder to predict T values while the 

LSTM and GRU models only predict one value. 

IV. CONCLUSIONS 

In this work, we substantially extended our previous study 

by introducing additional ML methods for QoT estimation and 

SNR forecast of lightpaths. A feature engineering process was 

applied to the synthetic BER KB to reflect the parameters 

availability in production networks. We believe that the results 

obtained with the SVM and ANN QoT estimators with SVM 

and ANN techniques shows the potential of ML for fast and 

automated lightpath provisioning. However, the performance 

of QoT estimators still remains to be validated with field data. 

Furthermore, the Recall and F1-score values for the 

classification of the unbalanced BER data obtained with 

reduced feature sets show that this approach would be 

applicable with real field data. The Encoder-Decoder LSTM 

and GRU models have been explored along with the LSTM 

model for SNR forecasting based on 13-month historical field 

data for one lightpath, with the objective to show the potential 

of ML in performance prediction of established lightpaths, 

through the identification of pattern and seasonality in the 

field SNR data. Satisfactory forecast accuracy was achieved in 

a supervised learning context, especially with the LSTM and 

GRU, using a single lightpath field KB. 

Further work will focus on the optimization of the ML 

models with additional input data to search for complex 

patterns and periodicities in the SNR data that would allow 

forecasting the performance of established lightpaths with 

time scales of several hours, thus opening the way to proactive 

maintenance and network automation. 
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