FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

New structural design concepts for large thermoplastic wind turbine blades using structural optimization techniques

Downloads

Downloads per month over past year

Forcier, Louis-Charles et Joncas, Simon. 2010. « New structural design concepts for large thermoplastic wind turbine blades using structural optimization techniques ». In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Orlando, FL, United states, April 12-15, 2010) Reston, VA : American Institute of Aeronautics and Astronautics Inc..
Compte des citations dans Scopus : 8.

[img]
Preview
PDF
Joncas S 2010 207 New structural design concepts for large.pdf - Accepted Version
Use licence: All rights reserved to copyright holder.

Download (1MB) | Preview

Abstract

This paper presents a structural optimization process for the design of large thermoplastic wind turbine blades. Previous work by one of the authors on topology optimization of a short section of a blade has shown that a structure with a box spar and ribs is optimal to minimize the compliance for a given amount of material. The optimization process presented in this paper consists of topology optimization on the inner half of a blade with the inner volume of the blade as the design domain. Result of this problem (number and position of shear webs and ribs) are then interpreted to build a shell model of the complete blade to perform composite size optimization based on a minimum mass objective subjected to constraints on deflection, composite strength and structural stability. Different blade models using ribs are then optimized and compared against conventional blade structure (spar box without ribs, single web without ribs). The use of ribs in wind turbine blade structures, which is more adapted to thermoplastic composite manufacturing, leads to slightly lighter blades than conventional blade structures.

Item Type: Conference proceeding
Additional Information: Identifiant de l'article: AIAA 2010-2578
Professor:
Professor
Joncas, Simon
Affiliation: Génie de la production automatisée
Date Deposited: 23 May 2012 17:55
Last Modified: 05 Feb 2019 21:11
URI: http://espace2.etsmtl.ca/id/eprint/207

Actions (login required)

View Item View Item