
Interoperability testing of integration profiles based on HL7 standard
version 3

Jean-François Pambrun and Rita Noumeir

Abstract— With the deployment of regional and national
Electronic Health Records, interoperability in healthcare has
become especially crucial. Interoperability requires the use of
standards such as the Health Level Seven (HL7), to enable
the communication of electronic health information between
heterogeneous systems. A framework for the implementation of
standards, such the one provided by Integrating the Healthcare
Enterprise (IHE), is also required to ensure semantic and
functional interoperability. Various types of testing are also
necessary: testing peers’ ability to exchange data, to extract
information from messages, and to react to the extracted
information. In this paper, we propose a web infrastructure for
interoperability testing of IHE profiles based on HL7 version
three; we present the system architecture and describe how it
can be extended to add new tests.

I. INTRODUCTION

Health level 7 (HL7) is an application level standard
related to electronic health information communication. For
the past few years, the third version (v3) of the standard
has been in development; it is based on web services and
xml messaging. HL7 covers most of the health information
exchange needs while digital imaging communication is
handled by the Digital Imaging and Communications in
Medicine (DICOM).

Standards are necessary to implement an Electronic Health
Record (EHR). EHR enables access to patients relevant
diagnostic information independently from the geographic
location of the point of access or the institution where the
information was initially gathered. It includes information
such as observations, laboratory results, imaging reports,
drugs, discharge summaries and allergies. EHR deployment
is expected to improve the quality of care by enabling access
to all relevant information at the diagnostic decision moment;
it is also expected to improve the efficacy and efficiency
of the overall healthcare system by improving productivity
and by reducing duplication of tests. EHR requires inter-
operability between various heterogeneous distributed sys-
tems; therefore standards are essential because they ensure
technical interoperability. However, semantic and functional
interoperability require the definition of a framework for
the implementation of standards. This lead to the creation
of the Integrating the Healthcare Enterprise (IHE) initiative.
IHE started in 1998 and was initially jointly sponsored by
the Radiological Society of North America (RSNA) and the

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada and by a grant from Canada Health Infoway.

J. Pambrun and R. Noumeir are with the Department of Electri-
cal Engineering, École de Technologie Supérieure, University of Que-
bec, 1100 Notre-Dame West, Montreal, Quebec, Canada, H3C 1K3
rita.noumeir@etsmtl.ca

Healthcare Information and Management Systems Society
(HIMSS). Currently, several other associations sponsor IHE
that has expanded over several clinical domains and who
benefits from broad international support. IHE follows an
approach where care providers identify key interoperability
problems they face, and where healthcare manufacturers and
information technology experts agree upon an implementa-
tion that uses established standards to provide a solution
for each identified interoperability problem. IHE integration
profiles are documented and are publicly available as part
of the IHE technical framework[1]. IHE’s first involvement
with HL7 v3 was with the IT Infrastructure Patient Identi-
fier Cross-Reference (PIX) and Patient Demographic Query
(PDQ) integration profiles.

Ensuring interoperability requires various types of testing:
testing peers ability to communicate and exchange data;
testing peers ability to parse and extract information from the
successfully exchanged messages; and testing peers ability to
react to the extracted information by changing information in
their systems or by influencing subsequent workflow actions.
Interoperability testing in healthcare is very new. To our
knowledge, it started in 1999 with the first IHE connect-
a-thon. It is a face-to face testing event where hundreds
of systems from various healthcare manufacturers test their
software implementation of IHE profiles by executing real
clinical scenarios. By putting in place this testing event, IHE
has been a pioneer in healthcare testing.

To prepare for the live-testing event, participants test their
implementation with a software-testing tool, beforehand.
This testing tool consists of documents and software that
simulates communication partners, in addition to providing
test data and test plans. Succeeding in all tests for a specific
actor in a specific integration profile is required to participate
in the face-to-face testing event, and to subsequently partic-
ipate in demonstrations. Several live-testing events are taken
place around the world every year. Even though IHE testing
early purpose was to support educational demonstrations,
its uniqueness, its technical team experience and the large
number of systems tested, have contributed to propel this
event to the level of the de-facto testing in healthcare.

In this paper we present the HL7 v3 testing software
used to test the IHE PIX and PDQ integration profiles. We
describe the software architecture and functionalities, and
discuss their extensibility and limitations.

II. OVERVIEW OF THE PIX AND PDQ ARCHITECTURE

A clinician may need patients diagnostic information that
was gathered in a different hospital. Because the same patient

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Authors' accepted manuscript of the article published in
Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine
http://dx.doi.org/10.1109/ITAB.2010.5687715



Fig. 1. The process flow of a PIX query.

Fig. 2. The process flow of a PDQ query.

is usually identified with different identifiers in various do-
mains, mapping all these identifiers together is needed. The
PIX integration profile addresses this need. A PIX consumer
can query a PIX manager with a patients identifier within
a specific domain and requests the patients identifier within
another domain. PIX Managers can also notify consumers
when a record has been merged. Those transactions are
based on HL7 v3 standard; they are respectively Get Patient
Identifier and Record Revised as depicted in Fig. 1.

On the other hand, the PDQ integration profile addresses
the need of querying for demographic information and
identifiers of a specific patient, knowing only a subset of
demographic information about that patient. For example,
a PDQ consumer issues a query to a PDQ supplier using
patients name and birth date, and asking for patients identi-
fiers. The query transaction is based on HL7 v3 standard; it is
Find Candidates Query as depicted in Fig. 2. Query Activate
Query Continues is used when multiple response messages
are necessary to retrieve all matching records.

III. COMMUNICATION INFRASTRUCTURE

HL7 v3 messages are encoded in XML and can be
sent using web services technologies. Therefore, each server
would implement a web service that is specified with a Web
Services Description Language file (WSDL) [2]. A WSDL
file describes every supported interaction including request
and response messages as well as the communication meth-
ods that can be handled by the endpoint. The XML message
is wrapped in a Simple Object Access Protocol (SOAP)
envelope and can be sent using a protocol such as HTTP.
The SOAP [3] envelope should also contain a standardized
web service addressing (WS-Addressing) segment that can
be used for routing.

IV. RELATED WORK

Testing can be either to validate conformance to stan-
dards or to validate interoperability. Conformance testing
can be seen as a prerequisite to interoperability but does
not guarantee it. Interoperability testing is a way to ensure
that different systems can co-operate to perform a specified

Fig. 3. Test case sequence diagram for Update Notification by a PIX
Manager

business sub-process. By exchanging messages that conform
to one or multiple standards, the co-operating systems react
to the received information by changing their internal data
or state, or by triggering actions or message exchanges with
the same peer or others.

The common approach to healthcare system testing is the
Upper-Lower Tester [4]. Using this approach, the system
under test communicates with a Lower Tester via a specific
communication protocol, and with the Upper Tester being the
user or the business application under test. This approach is
widely used but suffers from the lack of business level testing
that can be achieved with the actor based testing. An actor
is an application that has specific business responsibilities
and communicates with other actors according to constrained
messages that all cooperating actors agree on. Actor based
testing allows the construction of an environment that sim-
ulates the real operation environment in which the system
under test is expected to operate. Actor based testing requires
the business process to be specified in terms of profiles be-
tween actors. Our testing system is based on an actor testing
approach. Testing can take place at the communication level,
the content level by validating the content of messages, and
at the business level by validating that the system under
test has either changed its internal data or triggered data
exchange with other parties. IHE Mesa testing tools [5] is
based on actor testing. IHE Gazelle project, also an actor
based approach, is a multi-organization work in progress
effort that allows the testing of multiple systems.

Very few projects exist for interoperability testing in
healthcare. In [6], a test framework is proposed to design
and execute testing of HL7 communication, document, and
business layers. The business layer is described in terms
of scenarios that usually require the exchange of messages
between two actors. This framework enables the fast and
easy design of new tests.

V. IMPLEMENTATION

A. Test cases

The PIX and PDQ integration profiles define five actors:
PIX manager, PIX consumer, PDQ supplier, PDQ consumer,
and ID source. Each test case is designed to validate the



Fig. 4. System architecture.

interoperability of a specific actor, by testing specific trans-
action sequences, business logics, or functional behaviours.
To conduct the testing, the test software plays the roles of all
other actors that are required to perform certain tasks. For
instance, when testing partial name queries performed by a
PDQ supplier, the testing software plays the role of an ID
source by registering multiple patients, and then plays the
role of a PDQ consumer to perform a query.

All messages received from the system under test, includ-
ing the acknowledgement message, are analyzed for well
formed syntax and for content. This is possible because the
database of the system under test is populated by the testing
software since this later issues messages for the registration
of patients; therefore, the test designer knows exactly what
should be the content of a response message including the
error cases (e.g. unknown patient error, unknown domain).
Controlling the test data allows the validation of technical,
semantics and functional interoperability.

Test cases for PIX manager and PDQ supplier are more
complex and usually require multiple messages to validate
functional interoperability. One such example is the update
notification mechanism provided by a PIX manager. Figure
3 shows the interactions used to implement this specific test
case. It involves the following steps:

• The testing software registers patient John Smith in
domain A

• The testing software registers patient John Smith in
domain B with a different date of birth.

• The testing software queries for the patient’s identifier
in domain B; this should return no result as the demo-
graphics are incorrect in domain B.

• The testing software updates patient John Smith in
domain B; records from domain A and B should now
be matched.

• The system under test is expected to issue an update
notification indicating the ID of John Smith in domain
B.

B. Testing Software Architecture
Development was carried out using the JAVA program-

ming language because it can be used to build multi platform

applications and because the JAVA open source community
provides all the tools required to build web applications. The
software can be shipped as a simple Web Archive (.war) and
be used within the Tomcat[7] or Jetty[8] web containers. It
uses log4j[9] for logging, SOAP with Attachments API for
Java (SAAJ) [10] to produce and decode SOAP envelopes
and WS-addressing segments. Xerces[11] and Xalan[12] are
used as XML parser and XLST[13] processor respectively.

The complete architecture is presented in Fig. 4; it is
composed of the following blocks:

1) Tester’s console: A graphical users interface (GUI) that
uses a web browser and permits to select a test case, provides
test instructions and displays test results. It communicates
over the network via HTTP with the Web Server. This GUI
can run on the same machine as the server or the system
under test.

2) SUT: The system under test. It interacts with the SOAP
Endpoint over the network via HTTP.

3) Web Server: Built on JavaServer Page, it allows the
tester to select an actor to test, to select a test case, to read
instruction, to start the test and to review results. It uses the
HTML engine to generate the actor list, the test cases list
and the test description.

4) HTML Engine: Responsible for generating HTML
content from files describing actors and test cases. It uses
the Test Parser to generate test description pages based on
the content of the test.xml file located in the specific test
subfolders.

5) SOAP Endpoint: When a test has been started and
incoming messages are expected, the SOAP Endpoint Servlet
will listen for HL7 messages; a received message is passed
to the Test Manager. The Test Manager response is sent back
to the SUT.

6) Test Manager: The main component of the software.
When a test is active, the Test Manager receives the incoming
HL7 message from the SUT, validates it, and constructs
an appropriate response. It uses a Configuration module to
determine the response endpoint, the SOAP version to use,
and the disk location where to save the generated log files.
It relies on the Test Parser to get the list of the test steps, as



Fig. 5. File system architecture.

well as the incoming and outgoing messages that are required
to complete the test. Received messages are handed to the
Validation module. Errors are reported trough the Logger
module. XML templates with embedded style sheets are used
to generate response messages. They are stored within the
test case folders and the style sheets are used to fill dynamic
fields before responses are sent back to the client.

7) Validator: Analyses the received messages using XML
schemas and XSL style sheets to verify the messages syntax
and content. Schemas validation is performed by Xerces
parser while the message and SOAP envelope contents are
validated using the Xalan XSLT processor. Xalan allows
calling java code from a style sheet using the Xalan-Java
Extension enabling issue reporting directly to the Logger.

8) Config: Helper module to access settings from the
config.xml file.

9) Logger: Based on Apache Log4j that allows cus-
tomized logging with multiple levels (info, warn, error)
and provides output options ranging from console prints to
emails messages. This module receives info, warnings and
errors notifications from all other modules. Two new levels
were developed, HL7info and HL7error, to better represent
problematic issues with the received messages from the SUT.
All log levels are saved in an application log file. HL7info
and HL7error log levels contain interoperability issues; they
are saved in files specific to each test case. Logs are generated
in HTML and XML formats and contain the evaluation
results.

C. Adding a new test

We have implemented a simple mechanism to be able
to easily add or modify test cases without rebuilding the
software. Users are only required to modify files contained
within a ”test” folder located at the file system root of the
web application (Fig 5). The tester needs to select the actor
under test as well as a specific test case. To present the
list of actors to the tester, subfolders of the test folder are
automatically scanned and interpreted as actors. Subfolders
of each actor folder are interpreted as individual test cases.
The list of test case is automatically generated and presented

to the tester when an actor is selected. Each test case has a
mandatory test.xml file that serves two purposes: providing a
summary description of the test case along with instructions
intended for the tester of the SUT and describing the steps
needed by the system to complete the test. Moreover, each
test case has several XML and XSL files that provide a
specification of inbound and outbound messages along with
their validation style sheets.

VI. CONCLUSION

We have presented the functionalities and architecture of
a web application for testing interoperability in healthcare
based on the HL7 standard v3. The software tests technical,
semantic and functional interoperability of patient’s iden-
tifiers and demographics queries, as specified by the IHE
technical framework. It has been used by several healthcare
system manufacturers to test their implementations as a
prerequisite to their participation in IHE connect-a-thons. We
have also described how to extend the system in order to add
additional tests. The testing software is available from [14,
15] and can be used by system implementers to test their
implementations. It can also be used by site integrators to
verify and test the interoperability of their systems, or by
developers to understand specifications ambiguities, and to
resolve implementations difficulties.

REFERENCES

[1] IHE International. Patient Identifier Cross-Reference (PIX) and Patient
Demographic Query (PDQ) HL7 v3. 2009, [Online] Available at:
http://www.ihe.net/Technical Framework/upload/IHE ITI TF Supple-
ment PIX PDQ HL7v3 TI 2009-08-10.pdf, June 5, 2010

[2] Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, [Online] Available at: http://www.w3.org/TR/wsdl20/, June
5, 2010

[3] SOAP Version 1.2 Part 0: Primer (Second Edition), [Online] Available
at: http://www.w3.org/TR/soap12-part0/, June 5, 2010

[4] Gebase L., Snelick R., and Skall M., Conformance testing and inter-
operability: a case study in healthcare data exchange, Proceedings of
the 2008 International Conference on Software Engineering Research
& Practice, pp. 143-9, 2008

[5] MESA software, IHE Test Tools. [Online]. Available:
http://ihedoc.wustl.edu/mesasoftware/index.htm, April 1, 2010.

[6] Namli T., Aluc G., and Dogac A., An interoperability test framework
for HL7-based systems, IEEE Transactions on Information Technology
in Biomedicine, vol. 13, no. 3, pp. 389-99, May 2009

[7] Apache Tomcat, [Online] Available at: http://tomcat.apache.org/, June
5, 2010

[8] Mort Bay Jetty WebServer, [Online] Available at:
http://jetty.codehaus.org/jetty/, June 5, 2010

[9] Apache log4j, [Online] Available at:
http://logging.apache.org/log4j/index.html, June 5, 2010

[10] SAAJ Standard Implementation, [Online] Available at:
https://saaj.dev.java.net/, June 5, 2010

[11] Apache Xerces Java Parser, [Online] Available at:
http://xerces.apache.org/xerces-j/, June 5, 2010

[12] Apache xalan-java, [Online] Available at: http://xml.apache.org/xalan-
j/, June 5, 2010

[13] XSL Transformations (XSLT) Version 2.0, [Online] Available at:
http://www.w3.org/TR/xslt20/, June 5, 2010

[14] PIX/PDQ V3 Software, [Online] Available at: http://ihe.etsmtl.ca, June
5, 2010

[15] Testing tools source code of the Integrating the Healthcare Enterprise
(IHE) PIX and PDQ v3 Integration Profiles, [Online] Available at:
http://sourceforge.net/projects/ihe-pixpdqv3, June 5, 2010




