LOW-COMPLEXITY COMPUTATION OF VISUAL INFORMATION FIDELITY IN THE DISCRETE WAVELET DOMAIN

Soroosh Rezazadeh, Stéphane Coulombe

École de technologie supérieure, Université du Québec, Montréal, Canada

INTRODUCTION

☐ Visual Information Fidelity (VIF)

- > VIF index is the most accurate image quality metric >The VIF index applies over-complete steerable pyramid decomposition to images, and exploits vector
- pyramid decomposition to images, and exploits vector Gaussian Scale Mixture (GSM) model of images for quality prediction
- ★ The computational complexity of VIF is very high (about 6.5 times the computation time of the SSIM index)

□ Proposed Method

- > Calculates VIF in the discrete wavelet domain using Haar wavelet
- > Applies the scalar GSM model of images
- ✓ Calculates quality with greater accuracy than that achieved by the original VIF index method (at about 5% of its computational complexity)

SCALAR GSM-BASED VIF

☐ Let *C* and *D* denote the RFs from the reference and distorted signals respectively:

$$C = \{C_i : i \in I\} = S \cdot U = \{S_i \cdot U_i : i \in I\}$$

$$D = \{D_i : i \in I\} = GC + V = \{g_iC_i \cdot + V_i : i \in I\}$$

- I: set of spatial indices for the RF; S: RF of positive scalars; V: a Gaussian scalar RF with mean zero and variance σ_u^2
- *G*: a deterministic scalar attenuation field; *V* is a stationary additive zero-mean Gaussian noise RF with variance σ_v^2

SCALAR GSM-BASED VIF (cont.)

 $\hfill\Box$ C^N : N elements from C and \hfill : the corresponding N elements from D

$$C^{N} = (C_{1}, C_{2}, ..., C_{N})$$
, $D^{N} = (D_{1}, D_{2}, ..., D_{N})$

 \Box Let \red{N} and $\red{N'}$ represent stationary white Gaussian noise RFs with variance σ_{u}^{2}

$$E = C + N$$
 . $F = D + N$

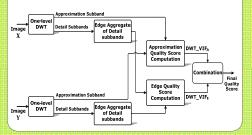
☐ Mutual information between C^N and E^N:

$$I(C^{N}; E^{N} | S^{N} = S^{N}) = I(C^{N}; E^{N} | S^{N}) = \frac{1}{2} \sum_{i=1}^{N} log_{2} \left(\frac{s_{i}^{2} \sigma_{U}^{2} + \sigma_{N}^{2}}{\sigma_{N}^{2}} \right)$$

- ☐ The reference image coefficients are assumed to have zero mean
- > s_i^2 can be estimated by localized sample variance
- $\triangleright \sigma_n^2$ can be assumed to be unity

$$VIF_{scalar} = \frac{I(C^{N}; F^{N} | S^{N})}{I(C^{N}; E^{N} | S^{N})} = \frac{\sum_{i=1}^{N} log_{2} \left(1 + \frac{g_{i}^{2} \sigma_{c_{i}}^{2}}{\sigma_{v}^{2} + \sigma_{N}^{2}}\right)}{\sum_{i=1}^{N} log_{2} \left(1 + \frac{\sigma_{c_{i}}^{2}}{\sigma_{N}^{2}}\right)}$$

THE PROPOSED APPROACH



DESCRIPTION OF THE APPROACH

- □ <u>Step 1</u>- Apply one-level discrete wavelet transform, using Haar wavelet filter, on both reference image **X** and distorted image **Y**
- □ <u>Step 2</u>- Form edge aggregate of detail subbands
 ➤ for image X: X_E and for image Y: Y_E

$$\mathbf{X}_{\rm F}(m,n) = \sqrt{0.45 \cdot \mathbf{X}_{\rm H}^2(m,n) + 0.45 \cdot \mathbf{X}_{\rm V}^2(m,n) + 0.1 \cdot \mathbf{X}_{\rm D}^2(m,n)}$$

□ Step 3- Calculate quality score between approximation subbands X_A and Y_A: DWT_VIF_A

$$DWT_VIF_A = \frac{\sum_{i=1}^{N} log_2 \left(1 + \frac{g_i^2 \sigma_{\mathbf{X}_{A,i}}^2}{\sigma_{V_i}^2 + \sigma_N^2} \right)}{\sum_{i=1}^{N} log_2 \left(1 + \frac{\sigma_{\mathbf{X}_{A,i}}^2}{\sigma_N^2} \right)} \quad , \quad g_i = \frac{\sigma_{\mathbf{X}_{A,i}, \mathbf{Y}_{A,i}}}{\sigma_{\mathbf{X}_{A,i}}^2 + \epsilon}$$
In our approach

$$\sigma_V^2 = \sigma_{\mathbf{v}_{\perp}}^2 - g_i \cdot \sigma_{\mathbf{x}_{\perp \perp} \mathbf{v}_{\perp}}$$
 $\sigma_N^2 = 5$, $\varepsilon = 10^{-20}$

- $\succ \sigma_{\mathbf{x}_{A,i},\mathbf{y}_{A,i}}$ is the covariance between image patches $\mathbf{x}_{A,i}$ and $\mathbf{y}_{A,i}$;
- > statistics are computed within a 3 3 Gaussian sliding window with a standard deviation of 1.5 samples, normalized to unit sum
- □ <u>Step 4</u>- Calculate quality score between image edge aggregates **X**_E and **Y**_E: *DWT_VIF*_E

$$DWT_VIF = \alpha \cdot DWT_VIF_A + (1 - \alpha) \cdot DWT_VIF_E$$

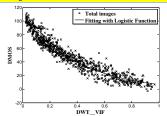
0 < \alpha \le 1

SIMULATIONS

- ☐ Performance of the proposed method is carried out on LIVE Image Quality Assessment Database Release 2
- ➤ 779 distorted images including 5 types of distortion ☐ To verify the models prediction accuracy:
- > Three performance metrics computed between DMOS and the objective model outputs after non-linear regression

RESULTS

Model	CC	ROCC	RMSE
PSNR	0.8701	0.8756	13.4685
Mean SSIM	0.9041	0.9104	11.6736
VIF	0.9593	0.9635	7.7122
DWT_VIF _E	0.9039	0.9161	11.6883
DWT_VIF _A	0.9649	0.9665	7.1763
DWT_VIF	0.9651	0.9671	7.1561



- Scatter plot of DMOS versus model prediction
- ☐ Daubechies 9/7 wavelet results in (for *DWT_VIF_A*):

 CC = 0.9470 , ROCC = 0.9455 , RMSE = 8.7806
- ☐ To verify the complexity of the proposed method:
- > The elapsed CPU time is measured in seconds
- > The SSIM index selected as benchmark
- > Quality metrics implemented in C/C++ language using OpenCV library
- > Five popular image sizes used for timing measurement

Image Size	SSIM	DWT_VIF _A	DWT_VIF _A SSIM
176×144	0.003465	0.000943	0.2722
320×240	0.010397	0.002698	0.2595
640×480	0.045733	0.011648	0.2547
1280×720	0.149188	0.039575	0.2653
1920×1080	0.336674	0.092802	0.2756