

A Novel Discrete Wavelet Domain Error-Based Image Quality Metric with Enhanced Perceptual Performance

Authors:

Soroosh Rezazadeh, Stéphane Coulombe

AGENDA

1. Introduction to error-based visual quality assessment

- Full-reference image quality assessment
- Error-based quality metrics

2. The Proposed Method

- Quality calculation framework
- Description of computation steps
- Computational complexity of the algorithm

3. Experimental Results

- Image database
- Video database

4. Conclusion

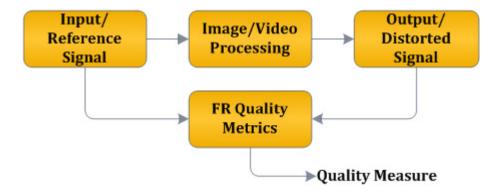
1. Introduction to Error-Based Visual Quality Assessment

le génie pour l'industrie

ICSAP 2011

Full-Reference Image Quality Assessment

- Image quality assessment strategies:
 - ☐ Subjectively by human viewers
 - ☐ Objectively by mathematical models



- > Full-reference (FR) quality assessment of image signals:
 - ☐ Bottom-up (error-based) approach:
 - Perceptual quality scores are estimated by quantifying the visibility of errors:
 PSNR, WSNR, NQM, and VSNR
 - ☐ Top-down approach:
 - The whole HVS is considered as a black box and its input/output relationship is of interest: SSIM, and VIF
 - higher prediction accuracy, but high computational complexity

Error-Based Quality Metrics

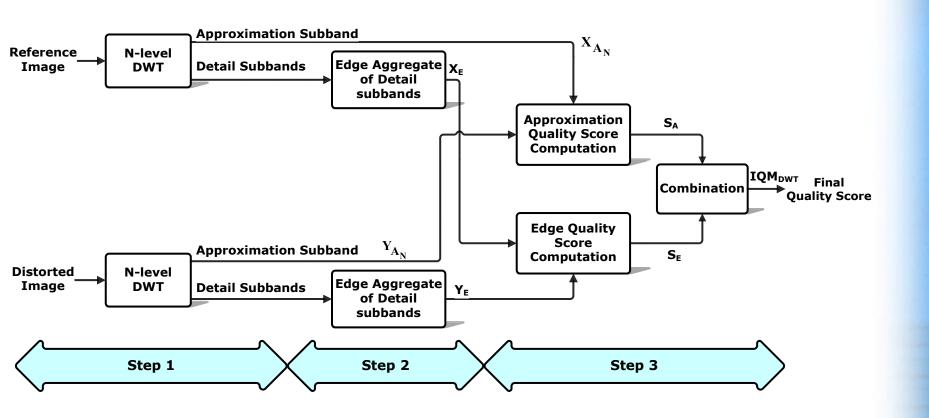
- **▶** Peak Signal-to-Noise Ratio (PSNR):
 - ☐ Most commonly used image and video quality metric
 - o PSNR (MSE) is simple, parameter free, and has a clear physical meaning
 - ☐ PSNR does not accurately reflect the perceived image/video quality
 - A large gain in PSNR may result in a small improvement in visual quality
- Disadvantages of Error-based Metrics (such as WSNR, and VSNR):
 - ☐ Accurate quality prediction techniques need to extract HVS parameters or image statistics
 - high computational complexity
 - ☐ HVS is a complex system and the sensitivity of the HVS to different scales or subbands is not completely known to us
 - * effective combining of various subbands distortions into a final score is difficult
 - **♣** A simpler approach, but a carefully designed one, may achieve accuracy close to that of the complex methods

2. The Proposed Method

le génie pour l'industrie

ICSAP 2011

The Proposed Quality Calculation Framework



Computation Steps: Wavelet Decomposition

- > Step 1: N-level wavelet decomposition using Haar wavelet filter
 - ☐ Haar basis is used because of simplicity and symmetry
 - ☐ Good performance ⇒ the Haar wavelet provides more accurate quality scores than other wavelet bases
- > For an image of size H×W:
 - ☐ Peak response frequency of HVS is at about 3 cpd

$$N = \max\left(0, round\left(\log_2\left(\frac{min(H, W)}{(344/k)}\right)\right)\right)$$

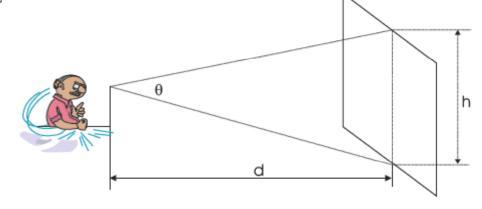
N = the required decomposition levels

H = height of the image (pixels)

W= width of the image (pi

h = display height

d = viewing distance = kh



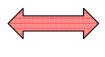
Computation Steps: Edge Map Definition

- > Step 2: the edge map (estimate) of image $X \Leftrightarrow X_E(m,n) = \sum_{k=1}^{N} X_{E,k}(m,n)$
 - $oldsymbol{\square}$ $\mathbf{X}_{E,L}$ is the image edge map at the decomposition level L

$$\mathbf{X}_{\mathrm{E,L}}(m,n) = \begin{cases} \sqrt{\mu \cdot \left(\mathbf{X}_{\mathrm{H_{L}}}(m,n)\right)^{2} + \lambda \left(\mathbf{X}_{\mathrm{V_{L}}}(m,n)\right)^{2} + \psi \left(\mathbf{X}_{\mathrm{D_{L}}}(m,n)\right)^{2}} & \text{if} & \mathrm{L} = \mathrm{N} \\ \sqrt{\mu \cdot \left(\mathbf{X}_{\mathrm{H_{L},A_{\mathrm{N-L}}}}(m,n)\right)^{2} + \lambda \left(\mathbf{X}_{\mathrm{V_{L},A_{\mathrm{N-L}}}}(m,n)\right)^{2} + \psi \left(\mathbf{X}_{\mathrm{D_{L},A_{\mathrm{N-L}}}}(m,n)\right)^{2}} & \text{if} & \mathrm{L} < \mathrm{N} \end{cases}$$

$$\mu + \lambda + \psi = 1$$

The wavelet subbands for a two-level decomposed image (N=2)



 $\mathbf{X}_{\mathrm{H_2}}, \mathbf{X}_{\mathrm{V_2}}$, and $\mathbf{X}_{\mathrm{D_2}}$ (blue boxes) $\Rightarrow \mathbf{X}_{\mathrm{E,2}}$

 $\mathbf{X}_{\mathrm{H_{I},A_{I}}}, \mathbf{X}_{\mathrm{V_{I},A_{I}}}, \text{and } \mathbf{X}_{\mathrm{D_{I},A_{I}}} \text{ (green boxes)} \Rightarrow \mathbf{X}_{\mathrm{E,1}}$

\mathbf{X}_{A_2}	$\mathbf{X}_{\mathrm{H}_2}$	$\mathbf{X}_{\mathrm{H}_{1},\mathrm{A}_{1}}$	$\mathbf{X}_{\mathrm{H}_{1},\mathrm{H}_{1}}$
$\mathbf{X}_{ ext{V}_2}$	$\mathbf{X}_{\mathrm{D}_2}$	$\mathbf{X}_{\mathrm{H}_{1},\mathrm{V}_{1}}$	$\mathbf{X}_{\mathrm{H}_{1},\mathrm{D}_{1}}$
$\mathbf{X}_{ ext{V}_1, ext{A}_1}$	$\mathbf{X}_{ ext{V}_1, ext{H}_1}$	$\mathbf{X}_{\mathrm{D}_{\mathrm{l}},\mathrm{A}_{\mathrm{l}}}$	$\mathbf{X}_{\mathrm{D}_{\!1},\mathrm{H}_{\!1}}$
$\mathbf{X}_{ ext{V}_1, ext{V}_1}$	$\mathbf{X}_{\mathrm{V_{l}},\mathrm{D_{l}}}$	$\mathbf{X}_{\mathrm{D}_{\mathrm{I}},\mathrm{V}_{\mathrm{I}}}$	$\mathbf{X}_{\mathrm{D}_{\mathrm{I}},\mathrm{D}_{\mathrm{I}}}$

Computation Steps: The Final Quality Score

➤ the HVS is more sensitive to the horizontal and vertical subbands and less sensitive to the diagonal one

$$\mu = \lambda = 4.5 \psi \implies \begin{cases} \mu = \lambda = 0.45 \\ \psi = 0.10 \end{cases}$$

 \triangleright Step 3: approximation quality score S_A , and edge quality score S_E

$$S_{A} = PSNR(\mathbf{X}_{A_{N}}, \mathbf{Y}_{A_{N}})$$
$$S_{E} = PSNR(\mathbf{X}_{E}, \mathbf{Y}_{E})$$

▶ IQM_{DWT}: overall quality score between images **X** and **Y**

$$IQM_{DWT}(\mathbf{X}, \mathbf{Y}) = \beta \cdot S_{A} + (1 - \beta) \cdot S_{E}$$
$$0 < \beta \le 1$$

- ☐ the approximation subband contains the main content of image
 - \circ β should be close to 1 to give the approximation quality score greater importance
- \square We will set β to 0.85 in our simulations

Computational Complexity of the Algorithm

- > PSNR calculation needs 3 operations per input pixel:
 - ☐ 1 addition, 1 subtraction, and 1 multiplication
- Obtaining a desired image subband using the Haar wavelet needs one operation per input pixel
 - the second level approximation subband, we need to perform 15 additions and 1 division for every $4\times4=16$ neighboring pixels \Rightarrow 1 operation per input pixel
- $ightharpoonup S_A$ calculation needs $2+(3/4^N)$ operations per input pixel $(N \ge 1)$
 - \square S_A is much more accurate than the PSNR in predicting quality scores (while less complex)
 - \square C++ implementation \Rightarrow S_A is more than 50 times faster than SSIM
- \triangleright considering the square root as \underline{s} operations:

#of operations per input pixel
$$(S_E) = 2N \cdot \left(3 + \frac{8+s}{4^N}\right) + \frac{3}{4^N} = 3 \cdot \left(2N + \frac{1 + \frac{1}{3}N(16+2s)}{4^N}\right)$$

- \Box for Intel processor architectures: $s \approx 30$
 - \circ At a typical N=2, the complexity of S_E is about 7.24 times that of the PSNR
- \Box C++ implementation \Rightarrow SSIM is approximately 115 times more complex than the PSNR
- \square S_E is most effective for certain distortions, like fast fading channel distortion

3. Experimental Results

ÉT le génie pour l'industrie

ICSAP 2011

Simulation Results for Image Database

- ➤ Performance evaluation carried out on <u>LIVE Image Quality Assessment Database</u>
 Release 2: 779 distorted images and 5 types of distortions
- Performance measures adopted:
 - \square Pearson correlation coefficients (LCC) \Rightarrow prediction accuracy
 - \square Root mean square error (RMSE) \Rightarrow prediction consistency
 - \square Spearman rank order correlation coefficient (ROCC) \Rightarrow prediction monotonicity
 - Kendall rank correlation coefficient (KRCC) ⇒ association or statistical dependence
 - O Nonlinear regression between DMOS and output values of models before calculating performance measures
 - \Box A two-tailed *F*-test on the residual differences between the models predictions and the DMOS
 - o $F > F_{critical}$ or $F < 1/F_{critical}$: residuals of one quality metric are statistically distinguishable from the residuals of another quality metric
 - o significance level $\alpha = 0.05 \Rightarrow F_{critical} = 1.151$ for 779 images
- Comparison with other metrics :
 - ☐ PSNR, spatial mean SSIM, autoscale version of SSIM, and WSNR
 - \square Viewing distance ratio k=3, based on the database experimental setup

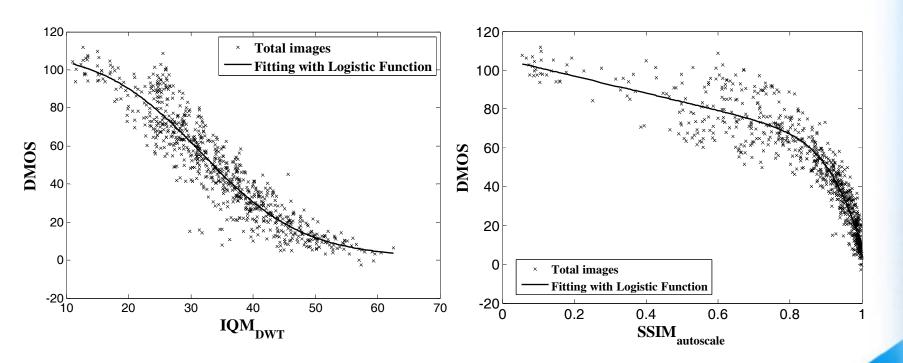
Simulation Results for the Image Database

- ➤ The IQM_{DWT} generally outperforms the PSNR and SSIM_{spatial}, and is slightly better than the WSNR for all types of distortion
- ➤ The performance of IQM_{DWT} is close to SSIM_{autoscale}, especially if it is considered separately for JPEG, JPEG2000, and Gaussian noise distortions

MODEL	LCC	RMSE	SRCC	KRCC	Residual Variance	F statistic
SSIM _{spatial}	0.9038	11.6907	0.9104	0.7311	136.8492	1.3556
SSIM _{autoscale}	0.9446	8.9673	0.9479	0.7963	80.4888	0.7973
WSNR	0.9211	10.6353	0.9240	0.7613	113.2543	1.1219
PSNR	0.8700	13.4717	0.8754	0.6861	181.7198	1.8001
S _A	0.9288	10.1224	0.9307	0.7723	102.5939	1.0163
IQM_{DWT} (β =0.85)	0.9300	10.0409	0.9325	0.7731	100.9495	1

Simulation Results: Scatter Plots

- ➤ Scatter plots of DMOS versus model prediction for all 779 distorted images
 - ☐ The SSIM_{autoscale} prediction scores are mostly concentrated between 0.8 and 1
 - lacktriangle The IQM_{DWT} quality prediction scores are scattered nearly monotonically along the plot



Simulation Results for the Video Database

- ➤ Performance of our algorithm tested on the LIVE Video Quality Database
 - ☐ 150 distorted videos and four distortion types:
 - MPEG-2 and H.264 compressions, transmission of H.264 bitstreams through IP networks and through wireless networks
- The performance of IQM_{DWT} is close to SSIM and much better than the conventional PSNR

MODEL	LCC	RMSE	SRCC	KRCC	Residual Variance	F statistic
SSIM _{spatial}	0.5429	9.2186	0.5251	0.3605	85.5527	1.3918
SSIM _{autoscale}	0.7052	7.7827	0.6947	0.5110	60.9765	0.9920
WSNR	0.6706	8.1431	0.6373	0.4553	66.7555	1.0860
PSNR	0.5486	9.1776	0.5233	0.3665	84.7942	1.3795
S _A	0.6875	7.9710	0.6574	0.4689	63.9640	1.0406
IQM _{DWT} (β=0.85)	0.7024	7.8139	0.6793	0.4863	61.4669	1

4. Conclusion

le génie pour l'industrie

17

Conclusion

- A simple DWT-based metric to accurately calculate the image quality (in dB)
 - □ excellent trade-off between accuracy and computational complexity
 - ☐ the proposed algorithm does not use any HVS parameter
- ➤ A proposed formula to calculate the required level of wavelet decomposition at a desired viewing distance
- Our proposed method was tested on two well-known databases
 - our method predicts quality scores more accurately than the conventional PSNR and is competitive with SSIM
- An analysis of our method shows that it has the potential for calculating quality with lower complexity than the PSNR
- The proposed method can be used efficiently in real-time applications
 - obtaining accurate quality in decibels with low computational complexity

THANKS FOR YOUR ATTENTION

Error-Based Quality Metrics

- Peak Signal-to-Noise Ratio (PSNR):
 - Most commonly used image and video quality metric
 - PSNR (MSE) is simple, parameter free, and has a clear physical meaning
 - PSNR does not accurately reflect the perceived image/video quality
 - A large gain in PSNR may result in a small improvement in visual quality

$$PSNR(\mathbf{X}, \mathbf{Y}) = 10 \cdot log_{10} \left(\frac{\mathbf{X}_{max}^2}{MSE(\mathbf{X}, \mathbf{Y})} \right)$$

$$PSNR(\mathbf{X}, \mathbf{Y}) = 10 \cdot log_{10} \left(\frac{\mathbf{X}_{max}^{2}}{MSE(\mathbf{X}, \mathbf{Y})} \right) , MSE(\mathbf{X}, \mathbf{Y}) = \frac{1}{N_{P}} \cdot \sum_{m,n} (\mathbf{X}(m, n) - \mathbf{Y}(m, n))^{2}$$

X&Y: reference and distorted images , N_p : # of pixels in each of the images

- Weighted SNR (WSNR):
 - Calculates quality in decibels (dB)
 - Works in the Fourier transform domain for HVS modeling
 - Uses the contrast sensitivity function (CSF) as the weighting function to weight the Fourier transforms of the error image
 - CSF is a linear spatially invariant approximation to the HVS
 - Its computational complexity is high

Error-Based Quality Metrics

Visual	SNR	(VSNR)) :
			,

- ☐ After preprocessing, both reference and error images are wavelet decomposed
- ☐ Five levels of wavelet decomposition by using 9/7 biorthogonal filters
- ☐ The contrast detection threshold is computed for each subband to assess the detectability of the distortions
- □ VSNR attempts to capture a mid-level property of the HVS known as global precedence

Disadvantages of Error-based Metrics:

- Accurate quality prediction techniques need to extract HVS parameters or image statistics
 - high computational complexity
- ☐ HVS is a complex system and the sensitivity of the HVS to different scales or subbands is not completely known to us
 - effective combining of various subbands distortions into a final score is difficult
- A simpler approach, but a carefully designed one, may achieve accuracy close to that of the complex methods

The Proposed Algorithm Examples: Lena 256×256

JPEG compressed QF=95

JPEG compressed QF=5

$$PSNR = 43.1060$$

$$PSNR = 24.9582$$

$$IQM_{DWT} = 51.3717 \quad \langle \underline{\qquad 25.5884 \text{ dB}} \rangle$$

$$IQM_{DWT} = 25.7833$$

$$SSIM_{autoscale} = 0.9831$$

$$SSIM_{autoscale} = 0.6766$$

The Proposed Algorithm Examples: Lena 256×256

3×3 Averaging



9×9 Averaging

$$PSNR = 28.6065$$

$$PSNR = 23.0127$$

$$IQM_{DWT} = 31.7243 \quad \Leftarrow 8.5202 \text{ dB}$$

$$IQM_{DWT} = 23.2041$$

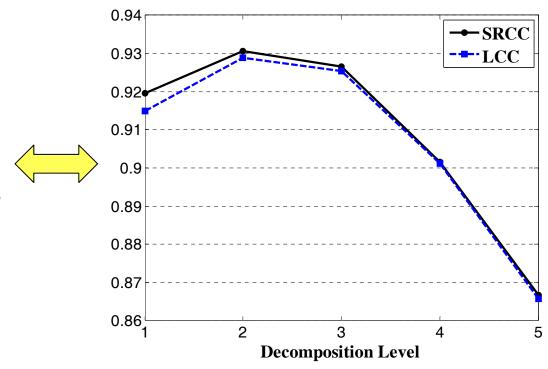
$$SSIM_{autoscale} = 0.8582$$

$$SSIM_{autoscale} = 0.6216$$

of Decomposition Levels (N) Verification

- The image approximation subband plays the major role in our algorithm
 - \Box the decomposition level N should maximize the prediction accuracy of the approximation quality index S_A

LCC and SRCC between the DMOS and S_A prediction values for various decomposition levels



➤ The theoretical value of N according to the proposed formula is N=2

of Decomposition Levels (N) Verification

SRCC values for individual types of image distortion in the LIVE image database

Distortion	PSNR	IQM_{DWT} $N=2,$ $\beta=0.84$	IQM_{DWT} $N=3,$ $\beta=0.64$
JPEG	0.8812	0.9647	0.9742
JPEG2000	0.8951	0.9493	0.9585
GWN	0.9853	0.9820	0.9795
GBlur	0.7812	0.9228	0.9097
FF	0.8904	0.9012	0.8841
All Data	0.8754	0.9324	0.9334

- ➤ The theoretical value of N according to the proposed formula is N=2
- β = 0.84 for N=2, and β = 0.64 for N=3 globally minimize the RMSE for IQM_{DWT}
 - Since N=2 is the appropriate decomposition level, we choose β =0.85 for simplicity in the final step
- \triangleright Small variations of β do not alter the performance notably

