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Abstract—In the context of mobile Web conferencing, slide
documents are generally transcoded into JPEG format and
wrapped into a Web page prior to delivery. Given the diversity
of these devices and their networks, dynamically identifying
the optimal transcoding parameters is very challenging, as the
number of transcoding parameters combinations could be very
high. Current solutions use the resolution of the target mobile
device and a fixed quality factor as transcoding parameters.
However, this technique allows no control over the resulting file
size, which, if too large, might increase the delivery time and
negatively affect users’ experience. Another solution (content
selection) which leads to better quality consists in creating
several versions and, at delivery time, selecting the best one.
However, such a solution is computationally expensive. In
this paper, we propose a prediction-based framework which
computes near-optimal transcoding parameters dynamically
with far less computations. We propose five methods based
on this framework. The first predicts near-optimal transcoding
parameters, while the others improve their accuracy. From the
set of documents tested, two of the proposed methods reach
optimality 14% and 30% of the time, respectively. Moreover,
the average deviation from optimality for the proposed methods
varies from 6% to 3%, with a complexity varying from 1 to 5
transcoding operations.

Keywords-mobile Web conferencing; dynamic content adap-
tation; transcoding; quality of experience; JPEG.

I. INTRODUCTION

Professional documents, such as PowerPoint slides and
Word documents are widely used and shared between peers
in many Web conferencing and collaborative applications
(e.g., GoogleDocs and Zoho). This has been largely fa-
cilitated by the use of the Web as a content delivery
platform. Furthermore, the Web has allowed the holding of
meeting-conferences with slide decks shared and presented
synchronously to all participants, connected via their Web
browsers. In this regard, many solutions have been proposed
for PCs and laptops [1], [2]. However, when mobile phones
are considered in such meeting contexts, the content (slides)
must be adapted to meet the constraints (supported formats,
maximum resolution and file size) and environment (data
rate) of the target mobile phones [3]–[5]. As JPEG is

widely used and supported by mobile devices, professional
documents are generally transcoded into JPEG-based Web
pages, in which each page (or slide) is converted into a JPEG
image and wrapped into an XHTML skeleton page.

Professional document adaptation used in current products
is not device-independent; that is, documents are optimized
only for a few specific mobile devices [6], [7]. To reach a
wide variety of mobile devices, the straightforward solution
therefore consists in using the target mobile device’s reso-
lution in conjunction with a fixed quality factor (e.g., 80);
which we will call FQF, for fixed quality factor. Although
this technique provides good visual quality, it does not
consider the resulting file size. The fact though is that the
adapted content’s file size affects its delivery time, and
might thus increase the end-user’s waiting time. This can
be especially problematic when a high-resolution image is
delivered over a low bitrate network. In a meeting context,
the user may find himself waiting for slides while the presen-
ter is talking about them, which creates a serious usability
problem. JPEG parameters must therefore be optimized for
each mobile user, using a certain quality of experience
criterion considering visual quality and delivery time. A
good discussion, supported by real examples, of the selection
of the resolution and quality factor parameters of transcoded
JPEG images leading to near-optimal visual quality under a
file size constraint, can be found in [8].

An exhaustive adaptation solution, also called content
selection, to this problem would consist in creating, often
offline, several versions of the content using various combi-
nations of quality factor and scaling parameters [3]–[5]. At
delivery time, the best version providing the optimal user’s
experience, evaluated using a good quality of experience
metric, is selected to be delivered. Though this solution
provides the best experience, it also leads to high processing
complexity in generating all the versions, which further,
require a great deal of storage space. Its complexity and
performance depend on the granularity in use, which would
be 100 versions if 10 quality factor and 10 scaling parameter
values were selected.
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In this paper, we propose a prediction-based framework
which has the advantages of the two previously presented
approaches (exhaustive and FQF), but not their drawbacks.
This framework, which is based on quality and file size
predictors of JPEG images subject to changing their resolu-
tion and quality factor [8]–[10], enables us to identify near-
optimal (compared to the exhaustive method) transcoding
parameters at delivery time without performing exhaustive
transcodings. We present several methods based on this
framework. The first one, which is presented in [11], predicts
near-optimal transcoding parameters, while the others, are
variants of the first one, but with improved accuracy. Each
method offers an interesting compromise between perfor-
mance (how close it is to the optimal quality of experience)
and complexity (number of transcoding operations required).

We show that the quality of the content adapted using
this framework is near-optimal. From the set of documents
tested, two of the proposed methods reach optimality 14%
and 30% of the time, respectively. Further, the average
deviation from optimality for the proposed methods varies
from 6% to 3%, with a complexity varying from 1 to 5
transcoding operations, which makes them very appealing.

This paper is structured as follows. In section II, we
present the problem statement. In section III, we propose
metrics for evaluating the quality of experience. Section IV
details the proposed prediction-based framework as well as
various methods based on that framework. In section V,
we present the experimental setup used to validate the
proposed methods. The experimental results are presented
and discussed in section VI. Finally, section VII concludes
the paper.

II. PROBLEM STATEMENT

Let C be a professional document (e.g., PowerPoint or
Word document), which is normally composed of a set of
pages (or slides) ck. Formally, C can be written as follows:
C = {ck}nk=1, where n is the total number of pages that
compose C. For a given page ck, referred to here as the
original content, let W(ck) and H(ck) be its width and
height, in pixels, respectively.

To be rendered by the target mobile device, the original
content must be adapted. To achieve this, different transcod-
ing parameters values can be used for each page.

In the following, we will consider the adaptation of slides
decks into JPEG-based Web pages. The embedded JPEG
image’s quality and file size are affected mainly by two pa-
rameters: resolution and quality factor. Let P = {(z,QF )}
be the set of transcoding parameters couples that can be
used to adapt the original content, where 0 < z ≤ 1 and
0 < QF ≤ 100 are the scaling parameter (zoom) used to
adjust the resolution of the embedded JPEG image and its
target quality factor, respectively. In other words, the whole
slide is adapted into a Web page that contains only one JPEG

image; which is transcoded using the two parameters under
consideration, z and QF .

We define T as the transcoding operation that adapts the
original page ck (slide) into a JPEG-based Web page using
the transcoding parameters z and QF , as follows:

T : C × P → Cz,QF

ck × (z,QF ) 7→ cz,QFk

where Cz,QF is the set that contains all the possible adapted
content versions that can be created by T from C, using
all parameters from P . cz,QFk represents the adapted content
version of ck created using z and QF .

Let D be the target mobile device and W(D), H(D)
and S(D) be its maximum permissible image width, image
height and file size (in bits), respectively.

From the set of adapted content versions that can be
created from ck using T , only a subset can be rendered
by D. Let RDck be the set of transcoding parameters couples
that can be used to create these renderable versions:

RDck =
{

(z,QF ) | S(cz,QFk ) ≤ S(D) and

zW(ck) ≤ W(D) and zH(ck) ≤ H(D)
}

where S(cz,QFk ) is the file size of the adapted content
cz,QFk . Since there could be multiple transcoding parameters’
couples leading to versions renderable by D, the objective
is to compute the ones that maximize the user’s quality
of experience, which we denote here by Q

E
(cz,QFk , D),

and which will be defined in the next section. The optimal
parameter values are given by:(
z∗(ck, D),QF ∗(ck, D)

)
= arg max

(z,QF )∈RD
ck

Q
E

(cz,QFk , D) (1)

Note that there may be several solutions to (1). In this
case, the parameters leading to the best visual quality are
arbitrarily selected.

III. QUALITY OF EXPERIENCE EVALUATION

The quality of the delivered adapted content, as experi-
enced by the end-user, is determined by three elements [12]:

1) The quality of the content at the source, that is, the
quality of the adapted content before delivery.

2) The quality of service QoS, which is affected by the
delivery of the adapted content over the network.

3) The human perception regarding the adapted content.
The first and third elements express how the content is appre-
ciated visually (visual quality), while the second expresses
the impact of the total delivery time on the appreciation
of the content (transport quality). That is, the quality of
experience of the adapted content (Q

E
) can be expressed

by two factors: its visual quality (Q
V

) and transport quality
(Q

T
). Based on these two factors, we propose an evaluation

of the quality of experience Q
E

as follows:

Q
E

(cz,QFk , D) = Q
V

(cz,QFk )Q
T

(cz,QFk , D) (2)



where Q
V

(cz,QFk ) and Q
T

(cz,QFk , D) are limited to the in-
terval [0,1], and represent the visual quality and the transport
quality, respectively. As discussed in [11], we propose the
product of Q

V
and Q

T
, rather than the sum, to prevent large

disparities in Q
V

and Q
T

from being able to produce a high
Q

E
. Indeed, the product is more suitable in this context

than the sum, since Q
V

and Q
T

are not compensatory.
For instance, sending a very aggressively compressed JPEG
image will result in Q

T
≈ 1 (very lightweight image)

and Q
V
≈ 0 (very distorted image). In this case, the

sum will be close to 1 (which is misleading), while the
product will be close to 0, which is more reasonable. In
fact, before combining two or more attributes to get a single
measure that reflects the nature of the problem in context,
these attributes should first be classified into compensatory
and non-compensatory attributes. This helps identify the
attributes that can be summed (compensatory ones) from
the others. This aspect is widely studied in the marketing
and decision making fields [13], [14].

Although further research and validation are required
to establish a metric that accurately matches the user’s
experience, the proposed metric is adopted here to illustrate
the benefits of performing prediction-based dynamic con-
tent adaptation over existing methods. Similar benefits are
expected with other metrics which consider a compromise
between visual quality and delivery time.

A. Visual Quality Evaluation

Since the adapted content is a Web page that contains
a single JPEG image, the adapted content’s visual quality
corresponds to the visual quality of that JPEG image. We
have:

Q
V

(cz,QFk ) = Q
V

(Iz,QFk ) (3)

where Iz,QFk is the transcoded JPEG image that is embedded
in the adapted content (Web page) cz,QFk . It is created from
ck using the transcoding parameters z and QF . The visual
quality of the embedded image can be evaluated using a
full-reference objective metric such as PSNR or SSIM [15].

B. Transport Quality Evaluation

The second factor that affects the user’s quality of expe-
rience is the transport quality. The latter is affected by the
total delivery time, which is comprised of the time required
to perform the adaptation operation plus the time taken by
the adapted content to reach the target mobile device. The
total delivery time, Td, can be defined as:

Td
(
cz,QFk , D

)
=

S
(
cz,QFk

)
N

B
(D)

+N
L

(D) + S
L

(D) + T
L

(cz,QFk )
(4)

where:
• S

(
cz,QFk

)
is the file size in bits of cz,QFk .

Figure 1. Transport quality behaviour of a given user (α = 5s and
β = 10s)

• D is the target mobile device and N
B

(D) and N
L

(D)
are the bit-rate and the latency of the network to which
it is connected, respectively.

• S
L

(D) is the server latency. For a device D, it repre-
sents the time spent by the request in the server (e.g.,
in the queue) waiting to be processed. It is affected by
the performance of the server and the number of users’
requests waiting to be processed.

• T
L

(cz,QFk ) is the transcoding latency. It represents how
long the adaptation operation takes to complete. It
depends on the original content ck and the transcoding
parameters z and QF in use. It can be estimated based
on past transcoding operations. On high-end computers,
this value should be small.

The transport quality is inversely proportional to the total
delivery time. We propose its evaluation using a Z-shaped
built-in membership function (Zmf) [16]. This function
expresses the behaviour of the end-user’s appreciation of
(or frustration with) the adapted content as a function of its
waiting time. An example of such a behaviour is depicted
in Fig. 1. In fact, the appreciation or frustration varies from
one individual to another, which is why the values of α and
β (see Fig. 1) are used. The value of α expresses the period
of time during which the end-user is fully satisfied with the
response time. The appreciation is reduced to 50% when the
response time is at (α+β)/2 and when it reaches the value
of β, the appreciation falls to zero. Formally, we have:

Q
T

(cz,QFk , D) = Zmf(x, [α, β])

=


1, x ≤ α
1− 2

(
x−α
β−α

)2
, α ≤ x ≤ α+β

2

2
(
x−β
β−α

)2
, α+β2 ≤ x ≤ β

0, x ≥ β

(5)

where x = Td
(
cz,QFk , D

)
).

IV. PROPOSED METHODS AND MODELS

In this section, to solve (1), we present a prediction-
based framework that computes near-optimal transcoding
parameters compared to those that can be obtained by an
exhaustive method. This framework can be used by various
methods, with each having its specific performance and



complexity. The first method ,which is detailed in [11], is the
most basic and dynamically estimates near-optimal transcod-
ing parameters using predictors of transcoded JPEG image
quality and file size [8]–[10]. These estimated parameters
present some imprecisions, but represent a good starting
point on which the other proposed methods improve. These
methods are in fact variants of the first one, that improve
the accuracy but at the price of increased complexity.

A. Method 1 - Estimation

In this method [11], we estimate near-optimal transcoding
parameters dynamically, without performing any transcod-
ing operation in advance. Using the predicted quality of
transcoded JPEG images subject to change of resolution and
quality factor [8], we can estimate the visual quality of the
adapted content’s embedded image and consequently that
of the adapted content (see (3)). Also, for a given mobile
device D (when N

B
(D), N

L
(D) are known), we can use

the predicted relative file size of transcoded JPEG images
computed in [9], [10] to estimate the total delivery time
(see (4)) and the transport quality (see (5)). Thus, we can
estimate, for any set of parameters, the quality of experience
of each adapted content Q

E
(cz,QFk , D); so, by solving (1),

we can determine the near-optimal transcoding parameters.
Using the predictors tabulated in [8]–[10], we therefore can
estimate the resulting Q

E
(cz,QFk , D) associated with every

set of transcoding parameters and select the best parameters,
denoted z∗1(ck, D) and QF ∗1 (ck, D) (optimal parameters
using method 1).

Note that in this paper as well as in [8]–[10], quantized
values of z and QF were used instead of continuous ones
in order to limit the parameters space. That is, using a
granularity of ∆z = 0.1 and ∆QF = 10, the quantized
values of z and QF used were z̃ ∈ {0.1, 0.2, 0.3, . . . , 1}
and Q̃F ∈ {10, 20, 30, . . . , 100}, respectively. The solution
space thus consists of 100 distinct combinations of parame-
ters. With such a solution space, an exhaustive method would
perform 100 transcodings and select the best parameters
z∗(ck, D) and QF ∗(ck, D). With the proposed method 1,
instead, we estimate the optimal solution and perform a
single transcoding operation. Since the estimates are not
always accurate, other methods which improve on this one
can be used, and are presented in the following sub-sections.

B. Method 2 - Estimation and Interpolation

In this method, we use the estimated optimal transcoding
parameters z∗1(ck, D) and QF ∗1 (ck, D) and its estimated four
nearest neighbors. We let the solution space be continuous,
suppose that the optimal transcoding parameters are within
the region covered by these five points, and model the quality
of experience in this region by a bivariate quadratic function
defined as:

f(x, y) = ax2 + bx+ cy2 + dy + e (6)

where x and y represent z and QF in a continuous space,
respectively. The optimal point is where the gradient is null:

∂f

∂x
= 2ax+ b = 0,

∂f

∂y
= 2cy + d = 0 (7)

Using the estimated optimal point and its four estimated
nearest neighbors, we compute the coefficients a, b, c, d, and
e. Then, using (7), we compute the estimated interpolated
optimal transcoding parameters z∗I (ck, D) and QF ∗I (ck, D).
We expect the interpolated optimal point to be close to the
actual optimal. Two adapted contents are created using the
estimated and interpolated transcoding parameters, and the
better one is selected as the near-optimal adapted content
computed by this method. The optimal transcoding param-
eters obtained by this second method are thus:(

z∗2(ck, D),QF ∗2 (ck, D)
)

=

arg max
(z,QF )∈N 2

e

Q
E

(cz,QFk , D) (8)

with N 2
e =

{(
z∗1(ck, D), QF ∗1 (ck, D)

)
,(

z∗I (ck, D), QF ∗I (ck, D)
)} (9)

In terms of complexity, this method requires 2 transcodings.

C. Method 3 - Estimation and One-Step Diamond Search

In this method, we use the estimated optimal adapted con-
tent (from method 1) and its four nearest neighbors. Contrary
to method 2, these five points are transcoded versions rather
than merely estimated, and the best among them is selected.
The optimal transcoding parameters obtained by this third
method are thus:(

z∗3(ck, D),QF ∗3 (ck, D)
)

=

arg max
(z,QF )∈N 5

e

Q
E

(cz,QFk , D) (10)

where N 5
e is a set containing 5 elements: the estimated

optimal parameters and their four nearest neighbors. Thus:

N 5
e =

{(
z∗1(ck, D), QF ∗1 (ck, D)

)
,(

z∗1(ck, D)±∆z,QF ∗1 (ck, D)
)
,(

z∗1(ck, D), QF ∗1 (ck, D)±∆QF
)} (11)

Therefore, this method requires 5 transcoding operations.

D. Method 4 - Estimation and Two-Steps Diamond Search

In this method, we identify and create the estimated
optimal point and its four nearest neighbors (as we did
in method 3), and the optimal point is identified. If
the estimated optimal point computed by method 1 is
the same as the one computed by method 3, no fur-
ther processing is performed and the estimated opti-
mal parameters are

(
z∗3(ck, D), QF ∗3 (ck, D)

)
. Otherwise,(

z∗3(ck, D), QF ∗3 (ck, D)
)

is used as a starting point and we
identify and create its four nearest neighbors, one of which



was already created from method 3. The optimal one among
them becomes the optimal point computed by this method.
The optimal transcoding parameters obtained by this fourth
method are thus:(

z∗4(ck, D),QF ∗4 (ck, D)
)

=

arg max
(z,QF )∈N 5,8

e

Q
E

(cz,QFk , D) (12)

where N 5,8
e is the set of transcoding parameters used in this

method (their number is of 5 or 8). It is given by:

N 5,8
e = N 5

e ∪
{(
z∗3(ck, D)±∆z,QF ∗3 (ck, D)

)
,(

z∗3(ck, D), QF ∗3 (ck, D)±∆QF
)} (13)

The complexity of this method is either 5 or 8 transcoding
operations. We have 5 transcodings (N 5

e = N 5,8
e ) when(

z∗3(ck, D), QF ∗3 (ck, D)
)
=
(
z∗1(ck, D), QF ∗1 (ck, D)

)
, and 8

transcodings otherwise (N 5
e ⊂ N 5,8

e ).

E. Method 5 - Estimation and LRDU greedy search

In this method, we start from the estimated optimal point
from method 1 and explore its neighborhood, following
a given pattern, until convergence is reached (that is, the
Q

E
cannot be improved any further). We tested different

patterns and found that for the problem at hand, following
the LRDU (left-right-down-up) pattern improved the Q

E

significantly with the least number of transcodings compared
to other patterns. Before detailing the LRDU greedy search
method, let us review what are the left, right, down, and up
nearest neighbors of a given point. For instance, the nearest
neighbors of the estimated point of method 1 are given by:

Left neighbor:
(
z∗1(ck, D)−∆z,QF ∗1 (ck, D)

)
Right neighbor:

(
z∗1(ck, D) + ∆z,QF ∗1 (ck, D)

)
Up neighbor:

(
z∗1(ck, D), QF ∗1 (ck, D)−∆QF

)
Down neighbor:

(
z∗1(ck, D), QF ∗1 (ck, D) + ∆QF

)
The pseudo-code of the proposed LRDU greedy algorithm

is presented in Algorithm 1. As before, we start from the
estimated optimal point

(
z∗1(ck, D), QF ∗1 (ck, D)

)
. Then, we

verify whether the left neighbor provides a better solution. If
that is the case, we successively move to the left until there
is no further improvement. Otherwise, we verify whether
the right neighbor provides a better solution, and if so,
we successively move to the right until there is no further
improvement. The same process is then performed with the
down and up directions. Each time a new point is evaluated,
a new transcoding is performed. The optimal transcoding
parameters obtained by this fifth method are thus:(

z∗5(ck, D),QF ∗5 (ck, D)
)

=

arg max
(z,QF )∈NLRDU

e

Q
E

(cz,QFk , D) (14)

where NLRDU
e is the set of points evaluated in this method,

which can vary greatly, depending on ck and D.

1 function LRDU Search(ck, D)
2 begin
3 z ← z∗1(ck, D), QF ← QF ∗

1 (ck, D)

4 QE ← QE (cz,QF
k , D))

5 (z,QF,QE )← LR Search(ck, D, z,QF,QE )
6 (z,QF,QE )← DU Search(ck, D, z,QF,QE )
7 return (z,QF,QE )

end

8 function LR Search(ck, D, z,QF,QE )
9 begin

10 if QE (cz−∆z,QF
k , D)) > QE then

11 (z,QF,QE )← search(ck, D, z,QF,QE ,−1, 0)
else

12 if QE (cz+∆z,QF
k , D)) > QE then

13 (z,QF,QE )←
search(ck, D, z,QF,QE ,+1, 0)

end
end

14 return (z,QF,QE )
end

15 function DU Search(ck, D, z,QF,QE )
16 begin
17 if QE (cz,QF+∆QF

k , D)) > QE then
18 (z,QF,QE )← search(ck, D, z,QF,QE , 0,+1)

else
19 if QE (cz,QF−∆QF

k , D)) > QE then
20 (z,QF,QE )←

search(ck, D, z,QF,QE , 0,−1)
end

end
21 return (z,QF,QE )

end

22 function search(ck, D, zo, QFo,QE , λz, λQF )
23 begin
24 z ← zo + λz∆z, QF ← QFo + λQF ∆QF

25 while QE (cz,QF
k , D)) > QE do

26 QE ← QE (cz,QF
k , D)

27 z ← z + λz∆z, QF ← QF + λQF ∆QF
end

28 return (z,QF,QE )
end

Algorithm 1: LRDU greedy search pseudo-code

Theoretically, the number of transcoding operations can
be very high. However, in practice, experimental results
(see section VI) showed that the number of transcoding
operations was between 4 and 7 and, on average, was 5.2.
This is quite reasonable, since we took advantage of the
prediction of the estimated transcoding parameters, which
were very reliable. Unlike an exhaustive search, we start
from an estimated point that is relatively close to the optimal.
Thus, we are still in the same range of transcoding operations
as with previous methods.

V. EXPERIMENTAL SETUP

To demonstrate the effectiveness of the proposed dynamic
framework and methods, a set of 120 OpenOffice Impress



presentations were created. To this end, we created a Java-
based application that uses OpenOffice APIs (known under
the name of UNO) to create these Impress documents [17].
To facilitate the validation, each presentation document
was composed of one slide, with these slides themselves
composed of text-boxes and images, and their positions set
randomly. To span a wide variety of slide characteristics,
quantized values, representing the percentage of areas occu-
pied by images (I) and text-boxes (T ), were used as follows:

I ∈ {0%, 10%, 20%, . . . , 100%}
T ∈ {0%, 10%, 20%, . . . , 100%}

Let V be this set of slide documents.
We wanted to create a set of optimally adapted contents,

using an exhaustive method, to be used as references (ideal
targets to attain). These optimally adapted contents would
be used to evaluate the performance of various methods.
To that end, using the OpenOffice HTML filter (the JPEG-
based version), a set of Web pages were created by varying
the transcoding parameters values z̃ ∈ {0.1, 0.2, 0.3, . . . 1}
and Q̃F ∈ {10, 20, 30, . . . 100}. Let D be a target mobile
device with a resolution of 640 × 360, and connected to a
communication network characterized by: N

B
(D) = 50kbps

and N
L

(D) = 3ms. To compute the Q
E

of these adapted
contents, Q

V
and Q

T
were evaluated.

The adapted content visual quality, Q
V

, was computed
using SSIM [15]. To evaluate the quality of a transcoded
image, SSIM requires both the original image and its
transcoded version. In our case, we had a slide and not an
image. Therefore, for each slide, we created a JPEG image
using z = 1 and QF = 80 to be used as original images.
Moreover, to use SSIM, we needed to provide a resolution
at which the two images (original and transcoded) should be
scaled for comparison. Since the slides are to be rendered
on D and their default resolution, as rendered on PC by
OpenOffice, was 1058 × 794, the resolution to be used by
SSIM can be determined, following the methodology of [8],
by: min

(
640
1058 ,

360
794

)
≈ 45%. This suggests a comparison

of images at a resolution of 40% of the original image
resolution (z̃ = 0.4). Therefore, (3) becomes:

Q
V

(cz,QFk ) = SSIM0.4(I1,80k , Iz,QFk ) (15)

Note that, the SSIM index exhibits a highly non-linear
relationship with the MOS (Mean Opinion Score), which
represents a true measure of the human perception of image
quality [18]. Therefore, to address the third element regard-
ing the Q

E
design [12] (see section III), the computed SSIM

values were not used directly, but rather, were converted into
their corresponding continuous MOS values.

Now, we turn to the evaluation of the Q
T

and Q
E

of these
adapted contents. Let us suppose that the appreciation of the
end-user’s of this mobile phone regarding the waiting time
is determined by α = 5s and β = 10s (see Fig. 1) [19],
[20]. Since the file size prediction error in [9] can reach

15% and Q
E

is highly sensitive to the delivery time, we are
increasing the predicted file size by 15% to ensure that the
transcoded file size will not lead to drastically lower Q

T

than predicted (we sacrifice the quality slightly to ensure a
good Q

T
as it is much more sensitive to the file size). To

facilitate the validation, the values of S
L

(D) and T
L

(cz,QFk )
(see (4)) were set to zero. Thus, using these values and the
target mobile device’s characteristics (N

B
(D) and N

L
(D)),

the Q
T

and Q
E

of each adapted content, was computed,
using all possible parameters z̃ and Q̃F , and the optimal was
determined by solving (1). That is, for each original content
ck (slide), its optimal adapted version, using the exhaustive
method, was computed and stored in vector W ∗E,k defined,
as follows:

W ∗
E,k=

[
ck, z

∗(ck,D), QF ∗(ck,D),QE (c
z∗(ck,D),QF∗(ck,D)
k , D)

]
Besides, to show the behavior of the FQF (fixed quality

factor) method, we computed its transcoding parameters
using a fixed quality factor of 80 and a scaling parameter
of 0.4, which corresponds to the resolution of D. Again,
for each original content ck, we used these parameters to
create its corresponding adapted content, computed its Q

E

and stored all the information in a vector as follows:

W ∗FQF,k =
[
ck, 0.4, 80,Q

E
(c0.4,80k , D)

]
VI. EXPERIMENTAL RESULTS AND DISCUSSION

Using the proposed framework, for each method and for
each original content ck of the set V , the near-optimal
transcoding parameters were computed and used to create
their corresponding adapted content versions. For each of
these adapted contents, the Q

E
was computed. The data

obtained by each method was stored in its corresponding
vectors. For method i and content ck, we have:

W ∗i,k =
[
ck, z

∗
i,k, QF

∗
i,k,QE

(c
z∗i,k,QF

∗
i,k

k , D)
]

where z∗i,k = z∗i (ck, D) and QF ∗i,k = QF ∗i (ck, D).
For each slide ck, the near-optimal Q

E
obtained by each

method as well as those computed by the exhaustive (from
W ∗E,k) and FQF (from W ∗FQF,k) methods were plotted. To
make this visible, all the Q

E
obtained were sorted according

to those of the exhaustive method, as shown in Fig. 2. On
the whole, the proposed methods have a Q

E
close to that

of the exhaustive method. However, the Q
E

obtained by the
FQF method is very variable, and this is highly visible for
lower values of optimal Q

E
. FQF is especially problematic

for large documents and low network bitrates.
Now, to show the improvements brought by methods 2 to

5 over method 1, the relative gains in Q
E

were computed.
The gain for content ck and method i is computed as follows:

QE (c
z∗i (ck,D),QF∗

i (ck,D)

k ,D)−QE (c
z∗1 (ck,D),QF∗

1 (ck,D)

k ,D)

QE (c
z∗1 (ck,D),QF∗

1 (ck,D)

k , D)
×100%

The computed Q
E

relative gains were plotted as scattered
points, as depicted in Fig. 3. The sub-figures 3(a), 3(b), 3(c)



Figure 2. QE obtained by each method vs. that obtained by the exhaustive
and FQF methods. The slides are sorted according to the exhaustive QE

(a) (b)

(c) (d)
Figure 3. Obtained QE relative gains for methods 2, 3, 4, and 5 with
respect to method 1. (a) Method 2 - Estimation and interpolation, (b)
Method 3 - Estimation and one-step diamond search, (c) Method 4 -
Estimation and two-steps diamond search, (d) Method 5 - Estimation and
LRDU greedy search

and 3(d) show the QE relative gain obtained by methods
2, 3, 4 and 5, respectively. The diagonal line represents
the target relative gains, which were computed from the
computed optimal adapted contents (W ∗E,k). The scattered
points represent the different slides, and their positions
indicate the obtained relative gain vs. the target relative gain.

Another view that shows the number of documents
whose computed Q

E
was improved by the proposed meth-

ods is depicted in Fig. 4. To show this aspect graphi-
cally, the Q

E
range has been split into 10 bins ([0,0.1],

]0.1,02],. . . ,]0.9,1]), and the documents that are in the same
Q

E
bin were counted and their numbers plotted as a

histogram. The figure shows that, using the FQF method,
almost 25% of the documents are present in the first three
bins (poor image quality bins), while these bins are empty
for the other methods (ours in addition to the exhaustive
one). For the FQF method, unlike the other methods, there
is very few documents in the last bin (best image quality

Figure 4. Performance of each method by QE slices of 10%

bin). This is also visible in Fig. 2 for very low or very
high Q

E
. Besides, this figure shows a comparison between

the proposed methods in terms of accuracy compared to
the exhaustive method. Note that, except for method 4, the
higher the complexity of the method in use the higher the
accuracy (the number of documents in each bin gets closer
to that of the exhaustive method).

In Fig. 5, the percentage of average Q
E

obtained by
each method, compared to that obtained by the exhaustive
method, versus the average complexity of these methods,
are plotted. On average, the Q

E
obtained by method 1

(prediction only) is close to that obtained by the exhaustive
method (94%) and is even closer when the other methods
are used (from 94% to 97%). Method 5 reached 97%, which
is 3% far from optimality with a complexity of close to 5
operations.

Though the average improvement in Q
E

obtained by
methods 2 to 5 is relatively small, this figure hides the
fact that the obtained Q

E
follows that needed to reach the

optimal Q
E

. This is shown by Fig. 3, in which we see that
when the target’s relative gain is bigger, the improvement
obtained is also bigger; conversely, the average relative gain
is small because for some slides, the target gain is also small
as well. It is also justified by the fact that the Q

E
obtained

by method 1 is around 94%, which is already good. Fig. 3 is
very interesting as it shows that, using these methods, we can
reach the optimal Q

E
for a large number of slides, especially

using method 5 (the scattered points that are on the diagonal
line). Statistically speaking, from the set of documents V ,
14% and 29% of them reached optimality when methods 1
and 5 were used, respectively. Also, the average deviation
from optimality for the proposed methods ranged from 6%
to 3%, with a complexity varying from 1 to 5 transcoding
operations.

Lastly, note that the scenario presented in this paper
is rather conservative. From Fig. 2, we can see that the
delivery time is problematic for only about 33% of the
slides, where we see the FQF method performing very
poorly (obviously the transport is problematic since FQF
always yields good visual quality by setting QF = 80). If



Figure 5. Obtained average QE vs. average complexity

we used a scenario with a lower bit rate, the number of
problematic slides would increase for FQF and could easily
reach 100% with a low enough bit rate. This would make the
FQF method totally unusable. Of course, the opposite is also
true, if the bit rate is high enough, the method FQF would
provide excellent quality of experience. An advantage of the
proposed methods is that they perform as well as possible
under any circumstances. This is important as the bit rate
can vary significantly during a Web conference session.

VII. CONCLUSION

Dynamically identifying the optimal transcoding param-
eters in the context of slides documents adaptation is not
a straightforward task as the number of parameters combi-
nations could be very high. To tackle this problem, in this
paper, we proposed a dynamic framework composed of five
methods to estimate near-optimal transcoding parameters.
Each of the methods has its specific performance and
complexity. The methods were tested on the adaptation of
OpenOffice impress slides into JPEG-based Web pages.
The first method was based on the prediction of the quality
and file size of JPEG images subject to change of their
resolution and quality factor. It represents a good starting
point, but exhibits some imprecisions, which were improved
by the other four methods, which involve different lev-
els of accuracy and complexity (number of transcoding
operations). For some instances, the optimal transcoding
parameters were reached and for others, the accuracy was
improved significantly. Future work needs be conducted to
show the applicability of these methods in other use cases,
such as in the adaptation of slides into XHTML-based Web
pages, which are composed of text and images.
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