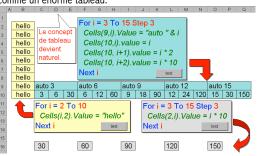
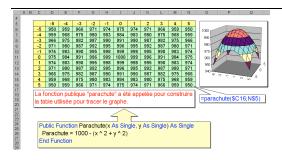
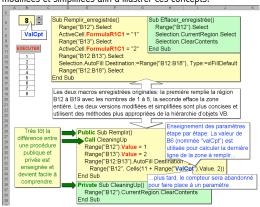

Enseigner la programmation

Utiliser l'interface « visuel »


Nous utilisons Excel dans nos cours d'introduction à la programmation pour enseigner, de manière visuelle, les instructions simples telles que l'assignation, les structures conditionnelles et itératives.


Les structures conditionnelles peuvent être illustrées grâce à des exemples visuels comme ici en utilisant des boutons radio.

L'illustration des boucles nous permet d'introduire de manière naturelle les tableaux puisque toute feuille de calcul peut être vue comme un énorme tableau.



Il devient simple de montrer la différence entre « fonction » et « procédure ». Les fonctions publiques sont d'ailleurs directement accessibles en Excel.

Utiliser le mécanisme d'enregistrement

Le mécanisme d'enregistrement des macros nous permet d'illustrer efficacement ce que signifie la modularité, les hiérarchies d'objets et les paramètres. Ici, deux macros préalablement enregistrées ont été modifiées et simplifiées afin d'illustrer ces concepts.

Utiliser l'interface « gratuit »

Afin d'amener progressivement les étudiants à construire leurs propres dialogues, la barre d'outils « formulaire » est d'abord utilisée. Plus tard, de vrais dialogues sont construits en Visual Basic afin d'interagir avec l'environnement. L'exemple ci-dessous illustre ces deux manières de capturer les paramètres d'un jeu de dés.

Sites Web utiles:

- www.seg.etsmtl.ca/INF100/
 Le site Web site de ce cours de programmation à l'ÉTS.
- www.seg.etsmtl.ca/sylvie/ Mon site Web personnel.
- SunSITE.univie.ac.at/Spreadsite/
 Contient plusieurs informations sur l'utilisation des logiciels comme Excel en mathématiques et statistiques.
- www.stanford.edu/~savage/software.htm
 Logiciel d'analyse en Excel. Ce package propose des ajouts
 Excel permettant de réaliser : des simulations Monte Carlo, des
 simulations discrètes, des arbres de décisions, des chaînes de
 Markov, des optimisations variées. Voir également :
 www.AnalyCorp.com/software.htm
- www.BMSLtd.co.uk/Excel/Default.htm
 La page de Stephen Bullen. Un catalogue d'exemples.
- www.xylem.demon.co.uk/excel.htm
 Présente comment utiliser Excel pour enseigner les
 mathématiques.
- www.mathsnet.net/excel.html
 Un autre catalogue d'exemples.
 www.cs.helsinki.fi/research/aaps/excel/
- Des visualisations informatiques en Excel.
- www.mathtools.net/Applications/Electronics/Excel/ www.mathtools.net/Applications/Physics/Excel/
 Des applications en électronique et en physique.
- www.mapleapps.com/categories/data_analysis_stats/data/htm l/genfitm6xl.html Generalized Weighted Non-Linear Regression Using the Levenberg-Marquardt Method III: Maple 6 Package Used in MS®- Excel 2000.
- home.earthlink.net/~patglenn/ct.html
 Le site de "Car Test", un agréable logiciel proposé par Patrick
 Glenn. Il a gracieusement accepté de partager ses bases de données avec moi lors de la réalisation du projet 3 de la page suivante.

Contact

Sylvie Ratté

École de technologie supérieure 1100, Notre-Dame Ouest Montréal, QC Canada H3C 1K3 Les avantages d'un interface « visuel » et « gratuit » pour la simulation discrète

Sylvie Ratté, Ph.D. École de technologie supérieure

sylvie.ratte@etsmtl.ca

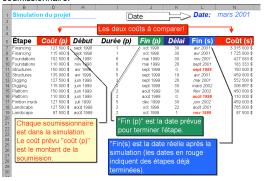
8 mai 2003

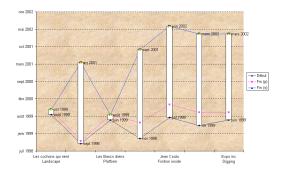
Montréal, QC Conférence FITIC, 2003

Quelques projets de simulation

Projet 1

Choisir parmi des soumissionnaires grâce à une simulation


Le but de ce projet était de construire un système permettant de choisir les meilleures compagnies parmi un ensemble de soumissions concernant un projet de construction. Dans la première partie, les étudiants devaient construire les interfaces facilitant la description d'un projet et la gestion des soumissions pour chaque étape. Chaque projet était sauvegardé dans un fichier séparé où le système de simulation pouvait le récupérer. La description complète d'un projet de construction comprenait le nom du projet, la description de chaque étape de construction (nom, durée, unité temporelle, date de début) et une liste de soumissionnaires sur ces étapes. La figure suivante illustre l'ensemble des soumissionnaires sur un projet de construction spécifique, le stade des Expos.


La simulation est réalisée avec l'ensemble des soumissionnaires. Pour rendre le tout plus intéressant, une probabilité de délai

25 - years 25 + employees

(calculée à partir du nombre d'années d'expérience du directeur et le nombre d'employés de la compagnie) est associée à chaque soumissionnaire.

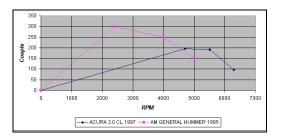
Sur la base des résultats obtenus suite à la simulation, un graphe est automatiquement construit illustrant les dates de début et de fin prévue et simulée de chaque étape.

Projet 2 Simulation d'un processus de fabrication

Le but de ce projet était de construire un système simulant un processus de fabrication où l'inventaire des pièces doit être conservé au-dessus d'un seuil critique. Dans la première partie, les étudiants devaient construire un interface permettant de gérer la facturation. Chaque commande d'un client est conservée dans une liste incluse dans le système général tandis que chaque facture générée est conservée dans un fichier Excel séparé. Dans la deuxième partie, une simulation du processus de fabrication devait être réalisée. À cette fin, toutes les informations concernant l'élaboration de chaque produit étaient conservées sur une feuille distincte.

٩	В	С	D	E	F	G H				
	Temps nécessaire pour ajuster chaque									
	Processing piè	pièce afin de fabriquer le produit.								
	time	5	4	3	6					
	Product	Piece A	Piece B	Piece C	Piece D					
	R-375			2	7					
	S-213		8	1 _	7					
	IR14	4		1		Nombre de pièces				
	Nova 25	10	9	5		qui entre dans la				
	Nova 15	10	7	4	9	abrication du				
	IR28	5		2	F	produit.				

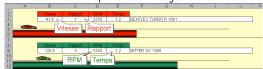
L'inventaire de toutes les pièces était conservé sur une autre feuille. Il contient les informations régulant le processus de fabrication.


А В	С	D	E	F	G	Н	
Description	Pièce A	Pièce B	Pièce C	Pièce D	L	a "quantité en	
Type de contenant	boîte	camion	unité	boîte	s	tock" ne peux	
Quté par contenant	10	22	1	18	d	lescendre sous le	
Prix par contenant	18,00\$	150,00\$	45,00 \$	75,00 \$	"	seuil critique". Si	
Prix unitaire	1,80\$	6,82 \$	45,00 \$	4,17 \$	u	ine telle situation	
Quantité en stock	155	236	467	476	= s	e produit, une	
Nombre de contenants	16	4	146	10	C	ommande est	
Délai de livraison	100	50	75	80	(== a	utomatiquement	
Seuil critique	149	92	59	121	— е	ffectuée	
Écart de livraison	12	5	16	8	_ _		
Quantité à commander	160	88	146	180	—		
Lorsqu'une commande pour une pièce est effectuée, la "quantité à commander" est celle indiquée ici. La date de réception est calculée selon une loi uniforme utilisant le "délai de livraison" (comme moyenne) et "l'écart de livraison" spécifié.							

La simulation permet de visualiser le processus de fabrication (réception d'une pièce, commande d'un produit) et l'état de l'inventaire. Deux types de simulation étaient disponibles. La première simulait la fabrication de tous les produits présents dans la feuille des commandes afin de calculer, pour chaque client, une date de livraison prévue. La seconde était régulée par la fréquence des commandes des client. Dans les deux cas, la simulation était utilisée pour ajuster et tester soit la valeur des seuils critique dans l'inventaire soit la quantité à commander à chaque fois.

Projet 3 Simulation d'une course sur un quart de mile

L'objectif ici était de simuler, pour deux à cinq voiture, une course sur un quart de mile. Une base de donnée a été récupérée sur Internet (voir la section « site Web utiles ») contenant des données utiles concernant 918 voitures (couple, puissance, pneus, etc.). Dans la première partie, les étudiants devaient construire un interface permettant de comparer les courbes de puissance et de couple entre des pairs de voitures.


Puisque les informations sont incomplètes (des tests avec l'aide d'un dynamomètre devraient être réalisés pour obtenir les vraies courbes), nous avons utilisé un petit truc afin d'obtenir des courbes acceptables.

RPM	HP	Couple
Max Couple RPM	Couple * RPM 5250	Max Couple
Max HP RPM	Max HP	HP * 5250 RPM
Ligne rouge	Couple * RPM 5250	0.5 * Max Couple

La course peut commencer. Chaque voiture peut d'abord être optimisée afin de choisir le meilleur point de changement de vitesse ou encore, l'utilisateur peut choisir d'effectuer les changements au RPM correspondant à la puissance maximale ou à la ligne rouge.

Pendant la course, les voitures et les valeurs du RPM (représentées ici par barres de couleur) peuvent être visualisées. La vitesse actuelle de chaque voiture était également illustrée.

La boucle de simulation pour une voiture ressemble à ceci:

If la voiture n'est pas arrivée

If le RPM est supérieur à la ligne rouge Mettre l'accélération à zéro et le RPM à la ligne rouge

Else

Trouver l'accélération A

EndIf

Évaluer la nouvelle vitesse $V_{i+1} = V_i + A \ x \ \Delta t$ If le RPM est > que le pt de chang. de vitesse

Changer de vitesse (si cela est possible!)

EndIf

Soit la nouvelle vitesse, trouver le nouveau RPM Mettre à jour la position de la voiture en tenant compte de la distance parcourue durant Δt sec.

EndIf

Autres simulations

- Une ligne d'assemblage sur laquelle des machines doivent être remplacées
- Des transactions financières sur lesquelles on applique une taxe Tobin.

