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Abstract 

In the Cloud Computing model, the computing resources are provided as a service in an on-demand and dynamic 
fashion. Efficient and flexible resource management is among the current research issues in the cloud computing 
context. We present in this paper a study focusing on the dynamic behavior of the scheduling functionality of an IaaS 
cloud built using OpenStack. Resorting to the principles of Design of Experiment (DOE), we use a screening design 
applied on a small-scale private Cloud in order to explore OpenStack Compute Scheduler. We present and discuss in 
this paper the main outcomes of an enhanced two-level fractional factorial balanced design and we outline our future 
work. 
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1. Introduction 

Cloud computing enables the provision of computing resources dynamically. A cloud is a large-scale 
distributed system which provides computing resources as a service. In this computing model, the services 
provided are generally classified into different levels such as   Infrastructure-as-a-Service (IaaS), 
Platform-as-a-Service (PaaS) and Software-as-a-service (SaaS) [3]. The Cloud computing model is 
implemented using virtualization as a key technology. In particular, virtualization enables to achieve a 
flexible and efficient resource usage and management [1] [2].   

Some open source cloud platforms are nowadays available and can be used to deploy private IaaS 
clouds. In order to undertake our research, we are using OpenStack [4]. We describe the architecture of 
OpenStack more details subsequently with a focus on its scheduling functionality, which is the main 
subject to our present study. 

Cloud computing presents several challenging research issues. These include, in particular, how to 
achieve an efficient, flexible and dynamic resource management at the IaaS level. In this context, we have 
undertaken an empirical study of the scheduling functionality in order to characterize its dynamic 
behavior. In this paper, we present the results of a Design of Experiment (DOE)-based screening 
experiment [5]. The objective of this experiment is to evaluate the OpenStack Scheduler behavior with the 
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aim at identifying the factors (i.e. the memory and the CPU cores assigned to a virtual machine (VM) and 
the memory and the number of cores on a physical node) and their interactions. We have achieved this 
using a two-level fractional factorial balanced with the resolution IV and four center points experimental 
design with no replication.  In order to carry out this experiment, we have introduced a lightweight 
extension to the architecture of the OpenStack. This extension is outlined in this paper. 

The remaining part of this paper is organized as follows. In Section 2, we present an overview of the 
software architecture of OpenStack. We present in Section 3 our OpenStack-based experimental IaaS 
Cloud and introduce our extension to enable the interaction with OpenStack Compute and its scheduler. 
We detail in Section 4 our DOE-based methodology. In Section 5 we present the main outcomes of the 
experiment. We discuss and interpret these outcomes in Section 6. We present a succinct overview of the 
related work in Section 7. Finally, we conclude our paper in Section 8. 

2. Openstack architecture 

The objective of open source project OpenStack is to build a "massively scalable cloud operating 
system" [4]. With elasticity and horizontal scalability in mind, all the OpenStack services and their 
components follow a shared-nothing, asynchronous messaging (local and queue-based) and distribute-
everything guidelines.  

 

(a) (b)  

Fig. 1 (a) OpenStack Main Services (b) Compute Service and the Underlying Platform. 

OpenStack is composed of seven main services which can be grouped into three principal areas: 
Communication, Storage, and Computation as depicted in Figure 1.a. These services are backed by two 
support services, namely Identity and Dashboard. Compute service manages the virtual disks and 
associated metadata in Image. Dashboard provides a web-based front-end to the Compute whereas 
Network provides virtual networking for Compute. Block Storage provides storage volumes for Compute. 
Image can store the actual virtual disk files in the Object Storage and all the services authenticate with 
Identity [4]. 

The Compute service consists of the following components as depicted in Figure 1.b: Web-based API 
ensures the command and control aspects of the computation, storage and networking. The component 
Queue brokers the interaction between the Compute service components, i.e., Volume, Network and 
Compute Controllers, Scheduler and API. Compute Controller manages the life-cycle of computing 
instances (i.e. VMs) on the nodes. The Network Controller manages the networking resources and the 
Volume Controller ensures the interaction between the instances and the Block Storage [4]. 
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Fig.2 Request Flow  

The underlying platform is composed of the middleware and the hardware as shown in Figure 1.b. The 
middleware includes several components such as Web-services, AMPQ, etc. These components are 
communicating using normalized protocols, such as RPC, IPC and http, and sharing the same hardware 
layer [4]. 

Once API receives user issued request for launching an instance (VM), it interprets this request and 
send it to the Queue that is providing messaging between all other components of Nova. After receiving 
the request for creating an instance, Scheduler decides which Node will get the instance according to the 
available resources (the amount of free memory and the number of available CPU on nodes) and the 
specification in the request (the memory and the number of CPU). The Queue dispatches this association 
between an instance and the Node to the Compute Controller which is launching the requested VM on 
one particular Node. This request flow is depicted in Figure 2.  

OpenStack Compute includes three types of Scheduler: Filter, Chance and Simple. Figure 3.a 
illustrates the dynamic of the Filter, which is a two-stage process that supports filtering and weighting 
using predefined costs (c1, c2, c3) and their associated weights(w1, w2, w3) in order to schedule the 
deployment of instances (i.e. VM) on some physical node. The Chance Scheduler chooses randomly an 
available node regardless of its characteristics while the Simple scheduler tries to find an available node 
with the least load. Both of the Chance and Simple schedulers are using only one common stage as 
depicted in Figure 3.b.  

 

(a)  (b)  

Fig. 3 (a) Filter Scheduler (b) Chance or Simple Scheduler 
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3. Experimental Private Cloud 

Our experimental private cloud is composed of six nodes of Athlon 64 X2 dual-core at 3 GHz with 4 
GB and 8 GB of RAM with the same size hard drives and dual gigabit NICs (one is dedicated to 
OpenStack traffic and the second one for management purposes). All the nodes are interconnected using a 
dedicated gigabit switch. We deployed Linux Ubuntu Server [6] with OpenStack [4]. The latter is 
configured using multiple-node mode using flat-DHCP networking. We apply the black-box testing 
approach [7] in a controlled environment with OpenStack Scheduler as the main component along with its 
supporting components: API, Queue, and Compute Controller. The main motivation for this is to observe 
the behavior of Scheduler which is shielded from any external influence. 

The experimentation test bed is composed of three distinct modules which are shown in Figure 3. The 
Request Generator automates the generation of user requests to the API component using constant and 
predefined rate. Each request specifies two parameters related to the instance: the amount of RAM and 
the number of CPU requested. The Scheduler Observer allows gathering of information about the 
Schedulers activity. The purpose of the Load Generator is to automate the process of generating a 
measurable and controlled memory and CPU load on the nodes. These modules constitute a lightweight 
extension to OpenStack Compute and enable the interaction with the System under Test. The latter is 
composed of the following Compu  components as shown in Figure 3: the Scheduler, the Compute 
Controller, the Queue and the API. Upon the reception of a request for launching an instance from 
Request Generator module, the API places it in Queue. The Scheduler handles the request using its 
parameters and the available resources on all available nodes. Then, it informs the Compute Controller to 
assign and deploy the instance on a specific node. 

 

 

Fig. 4 Extension and System under Test 

4. Design of Experiment 

Design of Experiment is a branch of applied statistic with well-established principles (such as factorial, 
randomization, blocking and replication) that aiming at maximizing the gathering of information about a 
system or process through using a formal set of tests without looking at it inner parts [5]. The aim of the 
screening type of experiment is to define the factors with significant effects on the responses. In our 
context, these factors are the amount of memory and the number of CPU cores assigned to virtual 
machine (VM) and the amount of memory and the number of cores on a physical node. 

We have achieved this using a two-level fractional factorial balanced with the resolution IV and four 
center points experimental design with no replication. The objective of our experimental design is to 
identify the most important factors while clearly separating them from their interactions as well as 
estimating if second-degree polynomial model could be appropriate later on. This design is generated 
using the R statistical environment [7] with 20 runs (i.e. test cycle). The same design is applied to Filter, 
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Chance and Simple schedulers. The level values are chosen in order to maximize the likelihood of 
identifying any causality links between the factors and responses. Table 1 shows their values in more 
details. We also note that VRAM and VCPU are characterizing Request Generator and the SCPU and 
SRAM, the Load Generator. 

Table 1 Factors and their definition 

Factor Name Description Min Mean Max 

A VRAM Amount of RAM allocated to VM (GB) 0.5 4 8 

B VCPU Number of CPU allocated to VM (GB) 0 2 4 

C SCPU small Number of CPU available on node with 2 core 0 1 2 

D SCPU large Number of CPU available on node with 4 core 0 2 4 

E SRAM small Amount of RAM available on node  with 4 GB (GB) 0 2 4 

F SRAM large Amount of RAM available on node  with 8 GB (GB) 0 4 8 

 
5. Results 

In the following presentation of the results (see Table 2 and Table 3), the factors and their interactions 
are sorted by importance in a decreasing order with the confidence level of 0.05 as a threshold. We did 
not need to apply any statistical transformation to the data and we note that the results are mostly coherent 
in both the Adjusted and Unadjusted models. 

Table 2 Responses and their confidence interval (p-value) 

Model Scheduler CPU small CPU large RAM small RAM large 

Adjusted Filter 0.0513 0.0092 0.0076 0.0091 

 Chance 0.0513 0.0092 0.0036 0.0013 

 Simple 0.0513 0.0092 0.1497 0.0028 

Adjusted Curvature Filter 0.4558 0.3589 0.0230 0.0134 

 Chance 0.4558 0.3589 0.0145 0.0009 

 Simple 0.4558 0.3589 0.8641 0.0025 

Unadjusted Filter 0.0427 0.0073 0.0236 0.0469 

 Chance 0.0427 0.0073 0.0213 0.0489 

 Simple 0.0427 0.0073 0.1296 0.0473 

Table 3 Importance of Factors and theirs combination in the Schedulers choice of node with corresponding R2 

Scheduler CPU small            
(R2) 

CPU large        
(R2) 

RAM small                       
(R2) 

RAM large                         
(R2) 

Filter A,B,C,E,AB,AE 
(0.5859) 

A,B,C,E,F,AC,BF 
(0.7460) 

A,B,E,AB,AE            
(0.5708) 

A, B, D, F,AB,AF,BD,BF 
(0.6865) 

Chance  A,B,C,E,AB,AE 
(0.5859) 

A,B,C,E,F,AC,BF 
(0.7460) 

A,B,C,E,F,AB,AF,BF,ABF 
(0.7812) 

A,B,D,E,F,AB,AF,BD,BF 
(0.6835) 

Simple A,B,C,E,AB,AE 
(0.5859) 

A,B,C,E,F,AC,BF 
(0.7460) 

A,B,BF                       
(0.3266) 

A,B,D,F,AB,AD,BD   
(0.6858) 
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Our first observation is that (I) all the OpenStack Scheduler types (i.e. Filter, Chance and Simple) have 

the same factors in the same order for the small and large number of CPU. In addition, (II) the amount of 
memory and the number of CPU are at the top of the list of factors in all responses for all the Schedulers 
types. Further, (III) in most cases, the factor interactions involve two factors. Finally, (IV), the behavior 
of Simple Scheduler is abnormal regarding the small amount of memory. 

The second observation, as it is shown in Table 3, is that in almost all cases, the R2 values are well 
above 50% except for small amount of memory for the Simple type of OpenStack scheduler. 

Our third observation, as shown in Table 3, is that the response for large RAM is directly linked with 
large numbers of CPU on host node for all the scheduler types. Also, the combination of virtual CPU and 
large number of CPU on node appears in all the types of schedulers for the nodes with large amount of 
memory. In addition, the factors involved in the case of Simple and Filter schedulers are mostly the same 
for large amount of memory. 

Our fourth observation is that for the nodes with small amount of RAM, there is a noticeable 
difference in the factors involved in comparison to large amount of memory. 

The last observation regards the factors interactions. The large amount of memory and large number of 
CPU are dominating the small ones with the ratio three to one. Comparing the memory to CPU, this ratio 
is two to one. 

6. Analysis and Discussion 

The part (I) of our first observation is the most striking outcome. Considering the fact that our 
component Scheduler Observer does not show any relevant information about the CPU utilization, this 
observation may suggest that OpenStack Scheduler decision making is not based on the CPU load. The 
amount of RAM and number of CPU associated with an instance are the most important factors. With 
respect to the interactions of these factors, the large amount of CPU and memory are clearly dominating 
the small amount and the CPU. 

Considering that all the main effects of certain factors are well defined and isolated from their 
interactions, we notice a large percentage of noise (see R2, which is a ratio between predicted (modeled) 
values and the observed (experimental) values, in Table 3) which needs further investigation to be 
thoroughly explained. Regarding the part (III) of the first observation, the single case of interaction 
involving three factors may be discarded because of the resolution IV design. 

In practical terms, the behavior of all types of Scheduler is of little difference with respect to the initial 
assignment of an instance. This finding corroborates the observation made by [8]. In addition, in the case 
of nodes with the large amount of RAM, the behavior of Simple and Filter Scheduler is almost the same. 

Our conservative design aims at facilitating the interpretation of the obtained experimental results. One 
alternative to this choice would include some statistical techniques, such as single-factor fold-over, to 
untangle some points mentioned above in the follow-up experiments.  

In the case of Filter Scheduler, all filters are by default and it may be interesting to study different 
filters combination and their relation with respect to the characteristics of the nodes. Our choice of KVM 
as a virtualization technology is motivated by the fact that the Linux kernel is serving as a hypervisor. 
This allowed carrying out load on the resources directly without the hypervisor.  

The usage profile data of private Cloud are unavailable publicly. As a consequence, we have adopted a 
constant rate for the generation of user requests. This has simplified the investigation but with a tradeoff 
that the requests arrival model is unrealistic. 
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7. Related Work 

We distinguish the following categories of research works related to our research. The first category 
revolves around the black-box approach [9], [10], [11]. The authors of [9] use this approach to identify 
the capacity of multi-tier application hosted on virtualized platforms while the authors of [10] employ this 
approach to investigate different parameters influencing applications running inside a VM.  In [11], the 
authors use a modified black- -time modeling and performance control of Web service 

 
The second category includes works focusing on the VM allocation strategy [12], [13], and [14].  The 

authors of [12] investigate the relationship between different categories of workloads on various virtual 
network configuration strategies. In [13], the authors propose and evaluate an application-centric energy-
aware strategy for VM allocation in order to maximize resource utilization and energy efficiency.  The 
authors of [14] use a probabilistic model for the same purpose but in the context of reallocation with 
simulated-based evaluation.  

With respect to the initial assignment of a VM in the context of Cloud, the authors of [8] undertake a 
simulation-based comparison of a set of 18 resource-allocation algorithms for large distributed systems.  

The category targeting the evaluation of the clouds scheduler includes data processing presented in 
[15] and [16]. In addition, the authors of [17] propose a survey and analysis of meta-scheduler and present 
in [18] a model to instantiate dynamically virtual machines considering the current job characteristics. 
The authors of [19] discuss how the OpenStack scheduler performance can be enhanced from its 
developer standpoints. 

Finally, OpenStack is attracting an interest in the cloud computing research community. The authors of 
[20] present a detailed comparison of features of OpenStack with another Cloud platform, OpenNebula. 
In [21], the authors identify some performance issues with previous version of OpenStack, namely Cactus 
and in [22] the authors propose a survey of Cloud offerings in term of IaaS, including OpenStack. 

8. Conclusion 

In this work, we investigate the Scheduler behavior in the context of small-scale private Cloud in a 
controlled environment using the principles, tools and methodology of Design of Experiment. In 
particular, we used a two-level fractional factorial balanced design with resolution IV enhanced by four 
center points. In order to achieve this, we introduced a lightweight extension to the OpenStack Compute 
service. This extension consists in three modules, a Load and Request Generators as well as a Scheduler 
Observer, which allowed us to carry out our experimentation on the Filter, Chance and Simple types of 
OpenStack Scheduler. The main findings of this experimentation suggest that (1) the 
making for the initial instance assignment does not depend on the CPU load; (2) the amount of RAM and 
number of CPU requested are the most important factors in initial assignment of instances to the nodes in 
all types of OpenStack Schedulers; (3) with respect to the factor interactions, the large amount of CPU 
and memory are clearly dominating the small ones. Finally, we notice a large percentage of noise in all 
experiments which is suggesting further investigation. 

Our plans for the future work include an enhancement of our current experimental methodology with 
techniques such as fold-over for further analysis of scheduler behavior as well as using our current design 
as a first step of Response-Surface Methodology [5]. Other venues include an enhancement to the 
Scheduler taking into consideration the dynamic state of CPU and memory load. The latter may require 

. Also, the experimental data may 
serve for comparing Scheduler behavior with different mathematical model. 
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