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Abstract - Image registration is a fundamental task in many 
image processing applications. In this paper, we estimate the 
translation, rotation, and scaling parameters between a 
reference image and a distorted image in order to register 
them. We use the ratio of means to estimate the scaling factor, 
the Radon transform to estimate the rotation angle, and the 
fast Fourier transform (FFT) to estimate global spatial shifts. 
Experimental results show that our proposed method can 
estimate the transformation parameters very accurately. 
Furthermore, our method performs very well in noisy 
environments.  

Keywords: Translation-invariant; rotation-invariant; scale-
invariant; image registration; Radon transform; FFT. 

 

I. Introduction 

Image registration is a very important task in applications 
such as medical imaging, automatic target recognition, 
image quality assessment, etc. Keller et al. [1] used 
pseudo-polar-based estimation of large translations, 
rotations, and scalings in images. Wolberg and Zokai [2] 
also worked on robust image registration by using the log-
polar transform. Varghese and Wang [3] used the Fourier 
transform to estimate global spatial shifts. Reddy and 
Chatterji [4] proposed an FFT-based technique for 
translation, rotation and scale-invariant image registration. 
Jafari-Khouzani and Soltanian-Zadeh [5] applied the 
Radon transform to orientation estimation for rotation 
invariant texture analysis. De Castro and Morandi [6] 
developed an image registration method for translated and 
rotated images using finite Fourier transforms. However, 
this method fails in the presence of scale change. Wei et al. 
[7] estimated the image rotation angle by using 
interpolation-related spectral signatures with application to 
blind detection of image forgery. Lowe [8] proposed a 
distinctive image feature approach for scale-invariant key 
point extraction and registration (SIFT), and Bay et al. [9] 
developed the SURF: Speeded Up Robust Feature, which 
was claimed to be faster than SIFT.  
 
      In this paper, we propose a new image registration 
method. We use the ratio of means to estimate the scaling 
factor between the reference and distorted images, the 
Radon transform to estimate the rotation angle between the 
two images, and the 2D FFT to estimate the global spatial 
shifts (translation). Experimental results show that our 

proposed method performs very well for the tested images 
and with the LIVE image quality assessment database 
release 2 [11]. In addition, it works very well in noisy 
environments. 

      The rest of this paper is organized as follows. Section 
II proposes a new method for estimating the translation, 
rotation, and scaling parameters between the reference 
image and the distorted image in order to register them. 
Section III conducts certain experiments in order to show 
the advantages of the proposed method over existing 
methods appearing in the literature. Finally, Section IV 
draws the conclusions of this paper. 

II. Proposed Method 

In this paper, we propose a new image registration method 
by means of the Radon transform and the FFT. Let image Y 
be the rotated, and scaled version of image X. If X and Y do 
not have the same number of pixels, then we pad zeros 
around the smaller image. The Fourier transform of images 
X and Y, each of size M×N, are: 
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In the polar coordinate system, their magnitudes are related 
as (see [4] for details): 

||),/(||1||),(|| 0221 θθθ −= arF
a

rF  

where a is the scaling factor (horizontally and vertically) 
and θ0 is the rotation angle between the two images, and 

22 nmr +=  

)/(tan 1 mn−=θ . 

Therefore, we can obtain the scaling factor: 
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We can obtain the scaling factor a without computing the 
2D FFT of images X and Y, since 
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Now, consider that Y is translated as well as rotated and 
scaled. The approach used to compute the scaling factor a 
will still hold. We create a mask image: Y0(m,n)=1 if 
Y(m,n)>τ; and Y0(m,n)=0, otherwise. In this paper, we have 
chosen τ=40. We calculate the centroid (cr,cc) of Y0 as: 
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We move Y(cr,cc) to the center of image Y and denote the 
new image as: 

)2/,2/(),(1 NcnMcmYnmY cr +−+−= . 

where ],1[ Mm∈  and ],1[ Nn∈ . If 
)2/,2/( NcnMcm cr +−+−  is outside the index range 

],1[ M ],1[ N× , we set .0),(1 =nmY  We can then use the 
calculated scaling factor a to resize the image Y1 such that it 
has the same scale as the image X in order to estimate the 
rotation angle. Let us denote it as Y2(m,n)=Y1(m/a,n/a). 

     The rotation angle 0θ between the reference image X and 
the normalized image Y2 can be obtained using the Radon 
transform. The Radon transform of a 2D discrete function 
A(x,y) is defined as [14]: 

dxdyyxryxArR
x y
∫ ∫ −−= )sincos(),(),( θθδθ  

where δ() is the Dirac delta function. As pointed in [14], for 
modern applications it is important to have a discrete 2D 
Radon transform, which has been the object of attention of 
many authors over the last twenty years. Until recently, the 
Radon transform lacked a coherent discrete definition for 
2D discrete images, which is algebraically exact, invertible, 
and rapidly computable. Therefore, the authors of [14] 
defined a notion of 2D discrete Radon transforms for 
discrete 2D images, which is based on summations along 

lines of absolute slope less than 1. Values at non-grid 
locations are defined using trigonometric interpolation on a 
zero-padded grid. They proved that their definition provides 
a faithful description of the continuum, as it converges to 
the continuous Radon transform as the discretization step 
approaches zero. More details about the discrete Radon 
transform can be found in [14].  According to [14], we can 
perform the discrete Radon transform of X and Y2, denoted 
as ),(1 θrR  and ),(2 θrR , respectively, where both of them 
are of size K×L. We know that ),(1 θrR  and ),(2 θrR  are the 
same, except for the circular shift along the θ  direction, 
i.e., ),(),( 012 θθθ += rRrR . We can use the circular cross-
correlation to calculate 0θ , but it is time-consuming, with a 
computational complexity of )( 2KLO . This is because for 
every row of R1 and R2, we need to circularly shift R2 and 
then calculate the cross-correlation between the two rows. 
This has a computational complexity of O(L2). Since we 
have K rows in total, the total computational complexity is 

)( 2KLO . 
 
      We briefly state the definition of the cross-correlation 
and its fast implementation here. The cross-correlation 
between two discrete real-valued functions of f[n] and g[n] 
is [12]: 
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The convolution between f[n] and g[n] is [13]: 
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The cross-correlation of function f[n] and g[n] is equivalent 
to the convolution of h[n]= f [−n])  and g[n]:  
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Analogous to the convolution theorem, the cross-correlation 
satisfies: 
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where FFT denotes the fast Fourier transform, conj the 
complex conjugate, and the dot means component-wise 
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multiplication. By taking the inverse FFT, we can obtain a 
fast implementation of gf ∗ . 

      Based on the above discussion, we use the fast cross-
correlation to find 0θ , which has a computational 

complexity of )log( LKLO . Let us denote the mth row of R1 
and R2 as r1(n) and r2(n), respectively, where ],1[ Ln∈ .  We 

are looking for the offset for which the cross-correlation is 
maximum, i.e. for which the two rows r1(n) and r2(n) match 
the most. We perform 1D forward FFT on r1(n) and r2(n),  

and calculate )())(()( 213 rFFTrFFTconjur •= , where . is the 

component-wise product. We then apply the 1D inverse 
FFT to )(3 ur , i.e., ))(()( 34 urIFFTnr = . We find the location 

index )(* mθ  of the maximum value on every row of the 
obtained r4(n),i.e., )(max)(* 41

nrm
Ln≤≤

−=θ . We take the median 

of these maximum values as ))(*(0 mmedian θθ = . We can 

then rotate the image Y1 for 
0θ−  degrees in order to 

compensate for the orientation difference. 

       For translation, we choose the global motion 
compensation (MC) method proposed in [3], which is a 
simple, fast, and reliable method, providing integer pixel 
precision. Let ),(3 nmY be the image that has already been 
compensated for scaling and rotation, and X(m,n) the 
reference image. Also,  
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Then, we can define the fast cross-correlation function as:  

)),()),(((),( 212 vuFvuFconjIFFTnmkFC •= , 

where 2IFFT  is the inverse 2D Fourier transform, conj the 

complex conjugate, •  the component-wise product. The 
estimated motion vector is given as: 

),(maxarg),(
),(

nmknm FC
nm

optopt = . 

Figs. 1-3 show the original image, its distorted version, and 
the images registered by the proposed method, SURF, and 
SIFT with noise standard deviation σn=10, 50 and 100, 
respectively. It can be seen that at σn=100, both SURF and 

SIFT fail, but our proposed method works very well in this 
case. In addition, with scaling factor a=0.5, all three 
methods generate good registration (see Fig. 4). However, 
with scaling factor a=0.1, both SURF and SIFT fail, 
whereas our proposed method works very well (see Fig. 5). 
     Noise is an undesirable phenomenon occuring during 
image capture that randomly varies the luminance or color 
intensity of its pixels. In this paper, we only consider 
Gaussian white noise because it is among the few most 
commonly occurring types of noise, and we leave other 
types of noise to our future research. For Gaussian white 
noise,  its power within a given bandwidth is independent 
of frequency, where the probability of a particular 
amplitude follows a Gaussian distribution. Salt-and-pepper 
noise has dark pixels in bright regions and bright pixels in 
dark regions. Shot noise has a root-mean-square value 
proportional to the square root of the image intensity, and 
the noise at different pixels are independent of one another. 
Shot noise has a Poisson distribution, which is usually 
similar to Gaussian distribution. Quantization noise has an 
approximately uniform distribution and it is signal 
independent if other noise sources are big. Other types of 
noise include atmospheric noise, background noise, 
Brownian noise, burst noise, cosmic noise, flicker noise, 
grey noise, jitter, Johnson–Nyquist noise, and pink noise.  

        We only distort the second image by adding Gaussian 
white noise. If both images are corrupted by Gaussian white 
noise, then the estimated parameters between the two 
images will remain the same. This is due to the fact that 
Gaussian white noise has zero mean and the Radon 
transform is robust to this kind of noise. In addition, the 
spatial shifts between the two images are robust to noise as 
well [3]. 
 
       The computational complexity of the proposed method 
in this paper is compared with two existing methods. In 
paper [4], the authors propose a technique to estimate  
translation, rotation, and scaling parameters. Their method 
uses 6 forward 2D FFT and 6 inverse 2D FFT, which is 
time-consuming and error-prone. In this paper, we use the 
ratio of means to estimate the scaling factor, and the Radon 
transform to estimate the rotation angle between the 
reference and distorted images. The Radon transform of an 
image can be carried out with constant time O(1) on a 
reconfigurable mesh [10], or at most, at a complexity of a 
2D FFT [5]. We then utilize the 2D FFT to obtain global 
spatial shifts [3]. Our method will use only 3 forward 2D 
FFT, 2 inverse 2D FFT and 2 Radon transforms. Therefore, 
we can conclude that our proposed method should be faster 
than the technique given in [4]. In [6], the authors propose 
an image registration method, which requires 180 inverse 
2D FFT. Also, their method fails if a scale change is 
present. Conversely, our proposed method works well in 
the presence of scale changes, and its computational 
complexity is much less than that of [6].  



	
  
	
  

     The following are the major advantages of our proposed 
method in this paper over existing methods. Our method 
performs very well in noisy environments, whereas existing 
methods such as [8] and [9] will fail if the noise level is too 
high. In addition, our method is fast in terms of 
computational complexity O(MN log(MN)+KL log(L)), 
where the input images are of size M×N and the Radon 
image is of size K×L. Furthermore, our method can 
estimate all three parameters (translation, rotation, and 
scaling), whereas most existing methods only calculate one 
or two parameters [5], [7]. Experimental results conducted 
in the next section show that our proposed method is 
feasible in registering images, especially in noisy 
environments. 

III. Experimental Results 
 

We performed some experiments on 512×512 Barbara and 
Lena images, and used the LIVE Image Quality Assessment 
Database Release 2 [11], which consists of 779 distorted 
images derived from 29 original images using five types of 
distortions. The distortions include JPEG compression, 
JPEG2000 compression, Gaussian white noise (GWN), 
Gaussian blurring (GBlur), and the Rayleigh fast fading 
(FF) channel model. We performed experiments on all 779 
distorted images in the LIVE image database. We used 
Matlab code for our proposed method in this paper. 
 
      Tables 1 and 2 give the experimental results for the 
Lena and Barbara images with translation, rotation, and 
scaling distortion, and with added noise. In both tables, our 
estimated parameters are very close to the input distortion 
parameters that produced the distorted images. In addition, 
our proposed method performs very well in noisy 
environments, whereas at σn=100, SIFT fails to find 
matching key points and SURF does not generate accurate 
results for the Lena image.  

      It should be pointed out that the precision of the rotation 
angle in the proposed method depends on the number of 
points L. In our simulations, we have used L=180 sample 
points in the rotation angle of the Radon transform. 
Therefore the precision is 1 degree (equivalent to 0.0174 
radian). We can increase the accuracy by increasing the 
number of sample points, but this will increase the 
computational complexity. Therefore, there is a trade-off to 
make between parameter accuracy and computational 
complexity.  

      Table 3 tabulates the results when every distorted image 
in the LIVE database is further distorted by scaling factor 
0.9, rotation angle 0.1×180/π degrees, spatial shifts 4 pixels 
in the horizontal direction, and 4 pixels in the vertical 
direction, and Gaussin white noise. We take the mean of all 
estimated parameters as an estimated result for translation, 
rotation angle, and scaling factor. For this database, all 
three (the proposed, SIFT, and SURF) methods allow a 
good estimation of parameters when there is no noise 

added. Our proposed method performs better than SIFT and 
SURF when we add noise to the images in this database as 
shown in Table 3. For instance, for σn=50, the SURF 
method estimates the translation parameters to be (9,-5) 
while they should be (4,4). It also gives a totally wrong 
estimate of the scale parameter. For σn=100, SURF’s results 
are even worst and can’t estimate any of the parameters 
properly. For σn=100, the SIFT method has a larger 
estimation error for translation and rotation than the 
proposed method. 
 

Table 1. Matching results of a translated (4,4), rotated (0.1 radian), and 
scaled (0.9) Lena image with different noise levels 

Noise 
level 

Method Translation Rotation Scale 
Original (4,4) 0.1000 0.9000 

 
σn=0 

Proposed (4,4) 0.0873 0.8983 
SIFT (4,4) 0.1001 0.9000 
SURF (5,-5) 0.0979 0.9076 

 
σn=50 

Proposed (4,4) 0.0873 0.8982 
SIFT Fail Fail Fail 
SURF (4,5) 0.1091 0.9081 

 
σn=100 

Proposed (4,4) 0.0873 0.8981 
SIFT Fail Fail Fail 
SURF (27,20) 0.5684 1.8512 

 

Table 2. Matching results of a translated (4,4), rotated (0.1 radian), and 
scaled (0.9) Barbara image with different noise levels 

Noise 
level 

Method Translation Rotation Scale 
Original (4,4) 0.1000 0.9000 

 
σn=0 

Proposed (4,4) 0.0873 0.8983 
SIFT (4,4) 0.0998 0.9002 
SURF (4,4) 0.0969 0.8993 

 
σn=50 

Proposed (4,3) 0.0873 0.8982 
SIFT (5,4) 0.1042 0.9078 
SURF (4,4) 0.0989 0.8969 

 
σn=100 

Proposed (4,3) 0.0873 0.8979 
SIFT Fail Fail Fail 
SURF (4,4) 0.0935 0.8972 

 

Table 3. The overall estimated parameters for every already distorted 
image in the LIVE image database, which is further distorted by scaling 
factor 0.9, rotation angle 0.1×180/π degrees, spatial shifts 4 pixels in the 
horizontal direction, 4 pixels in the vertical direction, and different noise 

levels. 

Noise 
level 

Method Translation Rotation Scale 
Original (4,4) 0.1000 0.9000 

 
σn=0 

Proposed (4,4) 0.1047 0.8980 
SIFT (4,4) 0.1000 0.9002 
SURF (4,5) 0.0998 0.9010 

 
σn=50 

Proposed (3,4) 0.1047 0.8980 
SIFT (4,4) 0.0940 0.9037 
SURF (9,-5) 0.0813 1.45×1013 

 
σn=100 

Proposed (3,4) 0.1047 0.8981 
SIFT (5,3) 0.0887 0.9067 
SURF (23,-2) 0.0117 2.2×1014 

 



	
  
	
  

IV. Conclusions 

Image registration plays a very important role in a number 
of real-life applications. In this paper, we have proposed a 
new method to register reference and distorted images. 
Experimental results show that the proposed method 
performs very well for Barbara and Lena images, and with 
the LIVE Image Quality Assessment Database Release 2. 
In addition, our method works very well in noisy 
environments. 

      Even though the FFT and Radon transform have already 
been applied in image registration, this paper is different 
from them in the following ways. We calculate the scaling 
factor a as the ratio of the means of the two input images. 
Since Gaussian white noise has zero mean, the scaling 
factor a is invariant to the noise level. The rotation angle θ0 
between the two images is estimated by using the Radon 
transform and the FFT-based fast cross-correlation. 
Because the Radon transform is robust to Gaussian noise, 
we can obtain the rotation angle θ0 accurately even if there 
is noise in the images. The global shifts between the two 
images are also robust to Gaussian noise according to [3]. 
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Fig. 1. The original image, its distorted version (scale=0.8, rotation=0.2 radian, translation=(40,40), the noise standard deviation σn=10), 
and the images registered using the proposed method, SURF, and SIFT, respectively. It can be seen that all three methods work well for 

such big spatial shifts (40,40). 
 

 
Fig. 2. The original image, its distorted version (scale=0.8, rotation=0.2 radian, translation=(4,4), the noise standard deviation σn=50), and 

the images registered using the proposed method, SURF, and SIFT, respectively.  
 

 
Fig. 3. The original image, its distorted version (scale=0.8, rotation=0.2 radian, translation=(4,4), the noise standard deviation σn=100), 

and the images registered using the proposed method, SURF, and SIFT, respectively. It can be seen that both SURF and SIFT fail, but our 
proposed method works well in this case. 

 

 
Fig. 4. The original image, its distorted version (scale=0.5, rotation=0.2 radian, translation=(4,4), the noise standard deviation σn=10), and 

the images registered using the proposed method, SURF, and SIFT, respectively. With scaling factor of 0.5, all three methods perform 
well. 

 

 
Fig. 5. The original image, its distorted version (scale=0.1, rotation=0.2 radian, translation=(4,4), the noise standard deviation σn=10), and 

the images registered using the proposed method, SURF, and SIFT, respectively. With scaling factor of 0.1, our proposed method 
performs very well. However, both SURF and SIFT fail. 




