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Abstract
Finding optimal compression levels for diagnostic imaging is not an easy task. Significant 
compressibility variations exist between modalities, but little is known about compressibility 
variations within modalities. Moreover, compressibility is affected by acquisition parameters. In 
this study, we evaluate the compressibility of thousands of CT slices acquired with different slice
thicknesses, exposures, reconstruction filters, slice collimations and pitches. We demonstrate 
that exposure, slice thickness and reconstruction filters have a significant impact on image 
compressibility due to an increased high frequency content and a lower acquisition signal-to-
noise ratio. We also show that compression ratio is not a good fidelity measure. Therefore, 
guidelines based on compression ratio should ideally be replaced with other compression 
measures better correlated with image fidelity. Value of interest (VOI) transformations also affect
the perception of quality. We have studied the effect of value of interest transformation and 
found significant masking of artifacts when window is widened.

Keywords: Image Compression, Image Artifact, Image Quality, Image Visualization, JPEG2000, 
Computed Tomography, Exposure, Slice Thickness, Filter Type

Introduction
We reasonably expect instant access to a wealth of information. With Internet and cloud 
computing, we are also used to very efficient collaboration mobile applications. But healthcare 
information exchange is very slowly following this trend. Patients’ records are still commonly 
handled manually and spread across multiple institutions. As a result, records are not readily 
available or are incomplete; patients may be required to repeat exams, which causes treatment 
delays and reduces productivity.

Being aware of the financial and health implications, many authorities around the world started 
laying groundwork for Electronic Health Record (EHR) that will be universally accessible, readily
available and contain information relevant to all aspects of patient care: demographics, contact 
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information, allergies, intolerances, laboratory results, diagnostic imaging, pharmacological and 
immunological profiles, etc. Achieving this will require tremendous resources. In Canada, for 
instance, the cost of providing a pan-Canadian Electronic Health Record for each one of its       
35 million citizens is expected to be over 3.5$ billion [1].

The implementation of high capacity redundant data centers and the deployment of robust 
network infrastructures are some of the factors that contribute to such high costs. This is mostly 
due the vast amount of data produced every day by modern diagnostic imaging devices. For 
instance, computed tomography (CT) can generate image stacks containing thousands of slices
that can weigh more than a gigabyte. Moreover, these images need to be archived for a very 
long time, usually until the patient's death, and remain readily available throughout his/her life.

This issue can be mitigated with the use of data compression. Images can be losslessly 
compressed by up to two-thirds. Compressing to a greater extend is desirable to further reduce 
bandwidth and storage requirements, but lossy compression introduces artifacts and distortions 
that, depending on their levels, can alter diagnostic accuracy and may interfere with image 
processing techniques used in computer aided diagnostic applications[2].

Estimating the impacts of these distortions is very difficult. Images with seemingly similar 
characteristics that are compressed using identical compression parameters can result in very 
different reconstruction fidelity; some can preserve all their diagnostic qualities while others may
become completely unusable. Because of liability issues raised by possible diagnostic errors 
caused by lossy compression, radiologists generally are not inclined to use compression 
techniques that would produce visually lossy results [3]. Compression guidelines were 
introduced to enable the use of lossy compression, but variations [4, 5] in image compressibility 
suggest that broad guidelines allow only for conservative and suboptimal compression.

The term fidelity is used throughout this paper to quantify the accuracy of the reconstruction. On
the other hand, image quality depends on the subjective perception of an observer and his/her 
ability to perform a specific task. Image quality can also be improved with image processing 
techniques. 

Most research on this topic was aimed at finding the maximum safe compression ratios for a 
given modality or organ in order to propose guidelines for practitioners. Conversely, our 
objective with this paper is to identify and raise awareness on the limitations inherent to the 
reliance on compression ratios to characterize image fidelity. To achieve this, we will study the 
impact of image content and five acquisition parameters on the compressibility of the computed 
tomography of a lung phantom and we will show that those factors are more closely related to 
fidelity than the compression ratio itself. We will also investigate the relation between CT 
acquisition parameters and noise in addition to analyzing how they affect fidelity after 
compression. Finally, we will examine the effects of different value of interest (VOI)  
transformations commonly used to adapt the high dynamic range of medical images to the 
limited range of most displays.
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Previous work
In 2006, a survey of radiologists’ opinions on compression [3] revealed that lossy compression 
was already used in the United States for both primary readings and clinical reviews, while 
Canadian institutions remained much more cautious about irreversible compression. In the US, 
two radiologists out of five reported using lossy compression before primary reading and all 
reported using lossy compression for clinical reviews. The compression ratios that they used 
ranged between 2.5:1 and 10:1 for CT and up to 20:1 for computed radiography. Comparatively,
only three Canadian radiologists out of six reported using lossy compression at all and only one 
reported using compression before primary reading. Furthermore, two of them declared using 
compression ratios between 2.5:1 and 4:1, which are effectively, or very close to, lossless 
levels. Almost every radiologist expressed concerns regarding litigations that could emerge from
incorrect diagnostic based on lossy compressed images and all were aware that images from 
different modalities require different compression ratios. In view of that, most radiology 
departments from the United States had conducted their own tests to establish visually lossless 
compression ratios with the assumption that imperceptible distortions cannot impair diagnostic 
accuracy in any way.

This task of finding visually lossless compression thresholds is usually done by asking trained 
radiologists whether pairs of unaltered and compressed images are identical. These studies are 
structured as a two-alternative forced choice (2AFC) experiments where observers can either 
examine both images side-by-side or alternate between both images to determine if the 
distortion is perceivable or not. This exercise is repeated with many images compressed at 
different compression ratios to find a visually lossless threshold for a given modality and/or 
organ system. Images compressed with compression ratios below this threshold are then 
assumed diagnostically lossless. Interestingly, while performing these experiments some 
researchers [6–8] noticed that when radiologists could perceive differences between both 
images they often preferred the compressed version. A possible explanation for this is that when
compression ratios are increased beyond visually lossless thresholds, acquisition noise is 
significantly attenuated before the signal itself. This is supported in [8, 9] by the absence of 
structures in difference images from visually lossy image pairs indicating that noise is likely lost 
before any diagnostically important information. This suggest that it might be desirable to 
compress diagnostic images beyond visually lossless levels.

The impacts of compressibility differences between different modalities on image fidelity are 
widely known [2, 3, 9], but as variations within the same modalities are not as widely 
acknowledged, guidelines are often only defined on a modality basis. However, these variations 
can be fairly significant. As an example, tomographic images of the chest walls are far less 
tolerant to compression than those of the lung [5] and thinner slice thicknesses are known to 
have adverse effects on compressibility [10]. Because of this, recommendations from the 
Canadian Association of Radiologists (CAR) specify different compression ratios for different 
anatomical regions and CT scans are divided in six subtypes (angiography, body, chest, 
musculoskeletal, neuroradiology and pediatric) each with different compression ratios. However,
these recommendations ignore key acquisition parameters that may have substantial impacts 
on compression such as reconstruction kernel [9] and slice thickness [11] that are known to 
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reduce compressibility. Researchers in [9] observed a relationship between compressibility and 
the relative importance of the energy of the lower subbands in the wavelet domain. Because 
acquisition parameters are linked to lower subbands energy levels, they concluded that 
compression ratio recommendations should not be developed on a modality or organ system 
basis. Compressibility variations within images have also been observed in [12] with regional 
difference between lungs, chest wall and mediastinum. Interestingly, they noted that while lung 
had lower peak signal-to-noise ratio (PSNR) it had higher perceptual rating. More recently they 
have tried [13] to predict the perceived image quality using only parameters extracted from 
DICOM headers and found that compression ratio and slice thickness are the two best 
predictors. Unfortunately, they have limited their model to these two variables even if other 
parameters are known to be correlated to compressibility.

In an effort to foster the use of image compression in diagnostic imaging applications, 
researchers conducted a large scale pan-Canadian study [14] on irreversible compression for 
medical applications. It involved one hundred staff radiologists analyzing images from several 
modalities. Images were compressed using multiple compression ratio and each pair was rated 
using a six point scale. Diagnostic accuracy was also evaluated by requiring radiologists to 
examine images of known pathologies. As a result, guidelines based on compression ratio were 
proposed for computed radiography, computed tomography, ultrasound and magnetic 
resonance, but the effects of acquisition parameters were ignored and slice thickness for CT 
scans were restricted to 2.5 mm and higher. This work resulted in the recommendations on 
irreversible compression [15] that have been published by the Canadian Association of 
Radiologists (CAR) and that are used today in Canada.

Recommendations like those from well established organizations are essential, but compression
ratio, on which these ratios are usually based, is poorly correlated with image fidelity [3] 
because deterioration levels depend highly on image information [16] and noise [17]. The CAR 
acknowledged this by providing different guidelines for different scenarios, but it is still only a 
coarse approximation and image fidelity cannot be guaranteed for a given compression ratio. 
Therefore, fidelity metrics should be used instead of compression rate in medical application 
[16]. Furthermore, differences in coder implementations [5] can produce different results even 
when using identical target compression ratio. Most JPEG2000 coders use the mean squared 
error to regulate compression, but this is not a requirement of the standard, which is completely 
open to other implementations that could produce completely different outcomes [18]. Moreover,
different codec vendors use different compression ratio definitions, either based on stored or 
allocated bits, resulting in 25% differences [19]. The CAR doesn't specify which definition should
be used with its recommendations and, even if they did, radiologists would probably be unaware
of implementation used by their software. Because of all theses factors, standardization of 
image quality or fidelity measurement and compression parameters for clinical applications is 
desirable [20].

Another issue specific to medical imaging  is the high dynamic range. Diagnostic images usually
have more than 255 (8 bits) gray levels. Visualization systems cannot display such a wide 
range, but these images can be dynamically adapted using value of interest transforms (VOI) 
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[21] that can be manipulated by the clinician in order to explore a different gray scale window. 
Papers such as [4, 11, 22, 23] on diagnostic image quality have used fixed values of interest for 
their evaluation. However, diagnosis may require unpredictable settings [3] and a narrower 
window make distortions more apparent while a wide widow can mask them. Observers should 
be allowed to freely modify [14] the value of interest setting as they would in their practice, 
otherwise their observation may be skewed. Another options is to allow customization within a 
reasonable range as in [24, 25]. Imposing a lower limit on window width eliminates the case 
where a single and otherwise invisible artifact is amplified and becomes obvious because the 
window width is narrower than the display range.

Methodology
As stated above, the existence of significant compressibility differences between imaging 
modalities and the variations due to noise levels are well known. However, to our knowledge, 
the impact of CT acquisition parameters, analysed individually, has never been thoroughly 
studied. This is the gap that this experiment seeks to demonstrate.

Data
Our objective is to study two challenges related to diagnostic image compression: the 
compressibility variations in computed tomography caused by different acquisition parameters 
and the impact of window width on the perception of compression artifacts. We have restricted 
our study to computed tomography because it is known to be poorly compressible and 
generates an increasing amount of data. To achieve that objective, multiple series of the same 
region of the same subject, acquired with different acquisition parameters, are needed.

Acquisition parameters are available from each image DICOM header. However, different 
implementations inconsistently report these parameters. Exposure, for instance, is not 
consistently reported across different devices and reconstruction filters may not have any direct 
equivalent for different hardware configurations. Moreover, the field of view and subject size, 
when not kept constant, make comparative evaluation very difficult. For example, when the field 
of view is increased for a specific subject, the easily compressible black background fills a larger
image region resulting in increased compressibility. For these reasons, we used multiples series
of the same subject acquired with the same equipment to ensure that acquisition parameters 
are consistently reported.

Fortunately, the National Cancer Institute made many diagnostic image collections publicly 
available to encourage and support cancer research through their Cancer Imaging Archive 
project. One of these collection, labeled “Phantom FDA“ [26], perfectly fits the requirements of 
our experiment. It was developed in an effort to evaluate the effects of acquisition parameters 
on the accuracy of automated lung nodule size estimation algorithms used in computer aided 
diagnostic solutions. To meet their requirements, the researchers repeatedly scanned an 
anthropomorphic thoracic phantom with synthetic lung nodules using different acquisition 
parameters. These parameters are presented in Table 1. Parameters include five slice 
thicknesses varying from 0.8 mm to 5 mm, three effective exposures from 25 mAs to 200 mAs, 
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two slice collimation configurations, two different pitches and two types of reconstruction filter. 
Two different nodule layouts were made available through the Cancer Imaging Archive and we 
have selected all series, each with a different parameter combination, of the nodule layout 
labeled  ‘2’. That is 23,767 individual images across 72 series. Slice thickness depends on slice 
collimation and only 3 mm thick slices can be acquired with both collimator configurations. All 
series were acquired using a Philips 16-row scanner (Mx8000 IDT, Philips Healthcare, Andover ,
MA) and precautions were taken to preserve a constant positioning of the phantom between 
acquisitions. Figure 1 shows six images of the phantom with their slice locations displayed in the
upper left corner. The scanned area spans about 30 cm with the slice location ranging from 90 
mm to 389 mm. Slices were acquired with a slice overlap of 50%; the thinnest acquisitions (0.8 
mm) had a spacing of 0.4 mm and contained 750 images while the thickest (5 mm) series had a
slice spacing of 2.5 mm and contained only 120 slices.

Compression
We have compressed each image with JPEG2000 using multiple compression ratios including: 
lossless, 4:1, 5:1, 6:1, 8:1, 10:1, 15:1 and 30:1. The wide range of compression ratios covers 
ratios that are normally used, except for 30:1 which is twice the CAR recommended ratio for CT.
Our compression ratio is calculated using allocated file size including headers; the codec used 
is an open source JPEG2000 implementation [27]. The software was able to compress high 
dynamic range images.

Fidelity evaluation
The fidelity of every compressed image is evaluated : 1) using maximum absolute difference; 2) 
Mean Squared Error (MSE); 3) peak signal-to-noise ratio (PSNR). Maximum absolute 
differences is the absolute difference of the most altered pixel by the compression process.
MSE is computed with 

MSE = 1/(MN) ΣiΣj[ I0(i,j) – Ic(i,j) ]2

where I0 is the original image and Ic is the compressed image.

PSNR is computed with
PSNR = 20 log( Irange / sqrt(MSE) )

where Irange is the range of the signal, therefore PSNR is the ratio of signal to noise in 

decibels. We have calculated the range of the signal in all images and found it to be 1600. 
Although bit allocated was 16 and bits stored was 12 suggesting a dynamic range of 4096, we 
have used 1600 for Irange to compute PSNR values.

Compressibility evaluation
Compressibility can be evaluated by:

1. Observing the file size after lossless compression compared to the uncompressed file 
size

2. Comparing the relative image fidelity of the two different compressed images with the 
same compression ratio.
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With the first measure, if one image has a smaller file size, we can conclude that it is more 
compressible. With the second measure, if one image has a higher PSNR or conversely a lower
MSE than another one, we can also conclude that it is more compressible.

Most JPEG2000 coder are designed to minimize MSE (maximize PSNR) for a target 
compression ratio specified. As a result, both proposed measures are equivalent. This is 
illustrated in Figure 2: the PSNR of all 23,767 images compressed at 4:1, 5:1, 8:1, 15:1 and 
30:1 plotted against their respective lossless file size. The relation is linear except for images 
compressed at 4:1 with lossless file size below 128 kilobytes because these images could have 
been compressed losslessly using reversible filter banks. Naturally, fidelity decreases for a 
given ratio when  the lossless file size increases.

Statistical analysis
In order to evaluate the impact of each acquisition parameter on compressibility, we have used 
the "R" software [28] to perform statistical analysis and to fit models. Fitted models are 

evaluated with the coefficient of determination (R2), root mean squared prediction error (PE) 
and Pearson correlation coefficient (CC).

A linear regression was performed between PSNR of images compressed at 8:1 and their 

corresponding lossless file sizes. The model is extremely well fitted (R2:0.99, PE:0.13dB, 
CC:0.99) indicating that both PSNR at fixed Compression ratio and lossless file size can be 
used interchangeably to estimate compressibility.

Results

Impacts of image content
From Figure 2 we note that:

1. for a specific compression ratio, compressibility varies for more than 20dB for different 
images, suggesting that this variation is due to image content

2. for a given image, the fidelity decreases by only 3dB when compression ratio is 
decreased from 6:1 to 8:1 or from 8:1 to 15:1 or from 15:1 to 30:1.

This suggests that image content, defined by slice location and acquisition parameters, has a 
more significant impact on image fidelity than compression ratios.

Figure 2 shows that 15% of images compressed at 15:1 (point b) have a fidelity lower than the 
median of those compressed at 30:1 (point a); likewise 4% of those compressed at 8:1 (point c) 
have a lower fidelity than the median of those compressed. In other words, images with lossless
file sizes smaller than 155 kilobytes, compressed at 30:1, are less degraded than images with 
lossless file sizes larger than 190 kilobytes, compressed at 8:1.
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Figure 3 shows the size of each losslessly compressed image, plotted against slice location, for 
all 23,767 images. Each series is displayed using a curve with different gray levels. Series are 
acquired with different acquisition parameters. Compressibility variations between series are 
very important. For the same slice location and subject; the average lossless file size was 
116kB in the best case and 193kB in the worst case, a 66% difference.

Compressibility variations along the subject are also apparent. Every series exhibits a similar 
behavior with respect to slice location and adjacent images from the same series have  similar 
compressibility.

The maximum absolute difference between the original and compressed images for the most 
damaged pixel, is displayed in Figure 4. With images compressed at 15:1 the maximum 
absolute error varies by a factor of ten; 10% (above point b) of the images compressed at 15:1 
and 4% of the images compressed at 8:1 (not shown) have higher maximum absolute error than
the median of those compressed 30:1 (point a).

Impacts of acquisition parameters

Impacts on prediction
We have shown that the image content as well as the acquisition parameters have a significant 
impact on compressibility without identifying which one of the acquisition parameters has the 
most significant impact. In the dataset that was used, five parameters were varied between 
each acquisition; our objective here is to study the impact of each acquisition parameter, such 
as exposure. We have grouped the images in subsets of equal exposure. In our case, we have 
three groups of images: 1) acquired with 25 mAs, 2) acquired with 100 mAs and 3) acquired 
with 200 mAs. For each group of images, we have measured the file size. We show in Figure 5 
where the boxes are centered at the mean and extend between the 25th and 75th percentiles.

When exposure increases from 25 mAs to 100 mAs, the boxes do not overlap. This suggests 
that exposure has a definitive impact on compressibility. When exposure increases, the file size 
decreases and compressibility increases.

Images have been grouped into subsets of equal thicknesses; boxplots for thicknesses of 
0.8mm 1.5mm 2mm 3mm 5mm are shown in Figure 5b. It is clear than when thickness 
increases, so does compressibility.

Images where divided in two groups according to filter type : medium and detail. Images 
processed with the “medium” filter contains less noise but has lower spatial resolution. It is clear
from Figure 5c that compressibility is increased with the use of the “median” filter.

Images are separated in two subsets according to slice collimation: 16x0.75 mm and 16x1.5 
mm. Figure 5d suggests that when slice collimation is decreased, compressibility increases. 
Finally, images are separated in two groups according to pitch: 0.9 mm and 1.2 mm. Figure 5e 
suggest that pitch has no effect on compressibility.
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Figures 5a to 5e show boxplots on the impact of each one of these five parameters on lossless 
file size. These plots clearly indicate that there is a link between exposure, thickness, filter type, 
slice collimation and compressibility. Pitch, on the other hand, seems to have little effect. In fact, 
z-testing indicates that the means of both groups are statistically identical and that pitch doesn't 
have any statistically significant impact on compressibility. This may appear counterintuitive and 
it will be discussed later. 

Impacts on fidelity
Figure 6 shows histograms of PSNR differences between images at the same location taken 
from two series acquired while varying one single parameter. The reference series was acquired
with an exposure of 200 mAs, a slice thickness of 5 mm and a medium filter. This series 
corresponds to the best possible compressibility in our dataset. Figure 6a shows the impact on 
compressibility when reducing exposure from 200 mAs to 100 mAs (dark gray), and from 200 
mAs to 25 mAs (light gray). Figure 6b shows the impact on compressibility when reducing 
thickness from 5 mm  to 3 mm, from 5 mm to 2 mm, from 5 mm to 1, and from 5 mm to 0.8 mm. 
Figure 6c shows the impact on compressibility when changing the filter from detail to medium.

With this dataset, we observe the following:

1. 7 dB reduction in fidelity when exposure is reduced from 200 mAs to 25 mAs; 2dB 
reduction when exposure is reduced from 200 mAs to 100 mAs

2. 7 dB reduction in fidelity when slice thickness is reduced from 5 mm to 0.8 mm; 3dB 
reduction when thickness is reduced from 5 mm to 2 mm; and 5 dB reduction when 
thickness is reduced from 5 mm to 1.5 mm;

3. 2.5 dB reduction in fidelity when detail filter is used instead of medium filter.

Relative importance of each parameter
To evaluate the relative importance of each acquisition parameter on compressibility, we have 
fitted a quadratic model to predict the PSNR of images compressed at 8:1 using following 
equation :
PSNR ~ Bi + Bf * Filter + Bc * Collimation + Be * Exposure 

+ Bt * Thick + Be2 * Exposure2 + Bt2 * Thick2

Because each acquisition parameter does not have the same distribution in terms of average 
and standard deviation, we have normalized each beta variable in eq. 1 by subtracting its mean 
and dividing by its standard deviation. Using normalized predictor, the quadratic model can be 
represented according to the beta coefficients shown in Table 2. The model is a well fitted model

with a coefficient of determination (R2) of .94, a prediction error of 1.05dB and a Pearson 
correlation coefficient of 0.97. Beta values provide an estimation of the relative importance of 
each parameter. Moreover, when considering only images located between slice location 150 
mm and 300 mm, the quadratic model is even better, cutting prediction errors by half.
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Be and Bt, being larger, suggest that exposure and thickness have the most significant impact 

on compressibility, followed by filter type and slice collimation. Because of the bias introduced 
by the covariance between predictors [29], other methods were developed to evaluate the 

contribution of each predictor to R2. By using the proportional marginal variance decomposition 
(PMVD) [30], we have found 53% of the prediction in provided by exposure, 34% from slice 
thickness and 13% from filter type. We have also found that slice collimation has no effect on 
compressibility by itself. The covariance between collimation and slice thickness is high 
because collimation of 16x0.75 mm has been used to acquire series with slice thicknesses of .8 
mm, 1.5 mm and 3 mm; likewise collimation of 16x1.5 mm has been used only with thicknesses 
of 2 mm, 3 mm and 5 mm.

We have fitted another model that includes compression ratio as a predictor, in order to 
compare the impact of compression ratios with other acquisition parameters. To fit the model, 
we have considered compression ratios that are usually used with CT images: 6:1, 8:1, 10:1 
and 15:1. We added two terms for compression ratio to eq. 1; one linear and one quadratic.

Analyzing each predictors relative importance with PMVD, we found that compression ratio can 
only explain 28% of the PSNR variations while exposure explains 38%, slice thickness 25% and
filter type 9%. Therefore, with this dataset, acquisition parameters affect the compression fidelity
significantly, more so than compression ratio.

Impacts of noise
Exposure and slice thickness are directly related to noise in computed tomography. Noise is a 
key factor in image compression. Noisy images are hard to compress because they produce 
many small uncorrelated coefficients in high frequency wavelet sub-bands.

In our experiment, noise was estimated for each series by calculating the variance within a 
uniform region of the first slice. This uniform region of 208 by 94 pixels represents an area of the
phantom molded in urethane with a constant Hounsfield unit value. Noise alone is a fair 

predictor (R2:0.85, PE:7.3kB) of image compressibility and it is much more accurate than any 
other single predictor. Using exposure, thickness, filter type and slice collimation to predict noise

yields a good fit (R2:0.90, CC:0.95). PMVD reveals that exposure explains 67% of noise in our 
highly controlled model, slice thickness 27% and filter type 6%.

Noise was added as a predictor to the quadratic model in eq. 1. The quality of the model was 
not significantly improved because noise and the other predictors are highly correlated. 
Commonality analysis [29] is used to identify the unique contribution of every single parameters 

and the common contribution of every possible combinations of parameters to R2. It provides 
separate measures for the explained variances of each individual parameter as well as 
measures for the shared variance of all combinations of parameters. It is mostly useful when the
regression contains significant multicollinearity and suppressions as is the case with this model. 

Commonality analysis measures always sums to R2 which is .92 in this case. Table 3 shows 
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each contribution in percentage of R2. Exposure, slice thickness, filter type and noise each 
uniquely accounts for less than 5% of the compressibility variance, while noise and exposure 
commonly account for 45%, noise and slice thickness for 26%, and noise and filter type for 8%. 
Slice collimation has no effect on compressibility, but is highly co-dependent on slice thickness. 
Noise, slice collimation, and slice thickness together account for 15% of the total variance.

Impacts of window/level transform on image fidelity
Image visualization requires a “window and level” transformation in order to select parts of the 
pixel dynamic range to display. Standard ranges of values of interest (VOI) are defined for 
specific tasks and anatomical regions. CT values are shifted and scaled to create presentation 
values (p-values) that fit the dynamic range of the display. These different VOI settings affect the
image fidelity by masking coding artifacts. To illustrate this phenomenon, three common VOI 
settings were used to transform CT values into p-values : 1) abdomen, centered on 60 
Hounsfield Unit (HU) with a window width of 400 HU; 2) lung, centered on -500 HU spanning 
1500 HU; 3) bone, centered on 750 HU and spanning 3500 HU. Figure 7 show the PSNR 

computed on the p-values plotted against lossless file size. The display range (Irange) 

considered was 256. When abdomen is displayed with 256 gray levels, distortions are 
attenuated by a factor of 1.5. In that case, a CT value difference of 3 would show up as a p-
value difference of 2. On the other hand, distortions that occur outside this range, where HU 
values are clamped to either 0 or 255, would  become completely invisible. The window width 
used to visualize lung is large, more than six times the display range. Only large distortions can 
be noticed. The bone window is even larger, 14 times the display range. Consequently, 
distortions are significantly masked. Therefore, narrow windows can accentuate distortions 
while wide windows can significantly underestimate them. This should be carefully considered 
when designing metrics or observer-based fidelity studies.

Discussion
Our results have shown that noise is a key factor in image compressibility. The quantum noise 
found in computed tomography images is governed by the Poisson statistic law and the signal-
to-noise ratio (SNR) is proportional to the squared root of N, the number of photons [5]. With all 
other acquisition parameters kept constant, the number of photons generated by the X-Ray 
source is directly proportional to current and time product, in milliampere second, called 
exposure. Increasing this parameter by a factor of two causes a 41% increase in SNR. This 
relation holds for slice thickness as well since the number of photons reaching the X-ray 
detectors is directly proportional to the detector size. Because of noise, compressibility is 
increased with exposure and slice thickness. Moreover, high frequency details in the image are 
harder to compress and are attenuated by the averaging over a larger region along the z axis, 
which increases with slice thickness.

In multi-slice CT scanners, the pitch is defined as the table feed for each complete revolution of 
the X-ray detectors and source. A pitch of one indicates a table feed equivalent to the width of 
the detector array. If speed or coverage is needed, images can be reconstructed with less than 
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a full rotation, resulting in pitches higher than one. Conversely, slices reconstructed with pitches 
lower than one are reconstructed with more than one revolution [21], resulting in increased 
exposure. Consequently, with all other parameters kept constant, the number of photons 
emitted per slice is inversely proportional to the pitch. Therefore, increasing the pitch introduces 
more noise and reduces compressibility. However, multi-slice scanner manufacturers usually 
use an alternative definition of exposure that takes pitch into account : effective exposure. 
Effective exposure, or mAs per slice, allows radiologists to estimate acquisition signal-to-noise 
ratio with fewer parameters. As a result, to keep effective current constant in our experiment, the
X-ray tube current was increased by 30% when the pitch was increased from 0.9 to 1.2.

Reconstruction filters are not standard across manufacturers. However, detail filters usually 
accentuate high frequencies while increasing noise. CT images of bones have high contrast and
can benefit from sharper fine details without suffering from significant increase in noise levels. 
On the other hand, soft tissues have lower contrast and it is preferable to attenuate noise using 
a medium filter in spite of lower spatial resolution [21]. Therefore, detail and medium filters are 
commonly called bone and soft tissue filters. Images acquired using detail filters are less 
compressible because of increased high frequency details.

Conclusion
Producing compression guidelines for medical applications is not an easy task. Many factors 
affect the overall fidelity of compressed images. Coding algorithms and compression ratios are 
obviously important factors but other parameters can also have significant impacts on image 
fidelity and, consequently,  diagnostic quality. Our study showed that image content as well as 
acquisition parameters significantly affect image compressibility of computed tomography.

Exposure appears to be the most significant parameter as it accounted for about half of the 
compressibility variations, followed by slice thickness and filter type. Noise is known to be poorly
compressible and all three parameters are directly related to noise levels of the acquired image.
Smaller slice thicknesses and detail filter type are also associated with higher spatial resolution 
and higher frequency content; they therefore present additional challenges for image 
compression. Slice collimation and pitch did not have any effect on compressibility. Pitch did not 
impact noise levels and therefore compressibility because it was taken into account in the 
effective exposure parameter.

Visualization transformations such as window and level scaling can significantly alter the 
perception of quality. Great care is needed while choosing VOI parameters during comparative 
study on image quality. Moreover, compression metrics that take into account noise and gray 
scale transformations would be more suitable for medical image compression.

Finally, in light of on the body of literature, the experiment and the discussion presented in this 
paper, we recommend that rate based guidelines be phased out in favor quality based 
guidelines. Future work includes proposing fidelity metrics other than global PSNR to control the
quantification step during lossy compression.  
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Illustration 1: Image content relative to slice 
location. The number displayed in the upper left 
corner of the image indicates the slice location.
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Illustration 2: PSNR of lossy compressed image plotted against lossless file size. Each 
point represents the PSNR of an image compressed at a specific lossy compression 
ratio. This PSNR is plotted against the lossless size of that image. PSNR is directly 
correlated to the lossless compression image size.
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Illustration 3: Lossless file size shown with respect to slice location. Each curve 
represent one series. Two consecutive images from the same series have very similar 
compressibility. For a specific series/curve, compressibility varies with slice location. 
Between location 150 and 300 compression is best because noise is less.
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Illustration 4: Maximum absolute difference of lossy compressed image plotted against 
lossless file size.
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Illustration 5: Boxplots using all 23,676 images. Boxes are located at median, extend 
from the 25th to the 75th percentiles, and whiskers extend to the most extreme data 
points that were not considered outliers.
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Illustration 6: The reference series was acquired with an exposure of 200 mAs, slice 
thickness of 5 mm and medium filter. This series correspond to the best possible 
compressibility in our dataset. A) show the impact on compressibility when reducing 
exposure from 200 mAs to 100   mAs (dark gray) and from 200 mAs to 25 mAs (light 
gray) on compressibility. B) shows the impact on compressibility when reducing 
thickness from 5 mm  to 3 mm, from 5 mm to 2 mm, from 5 mm to 1 and from 5 mm to 8
mm. C) shows the impact on compressibility when changing from detail to medium filter.



21

Illustration 7: Each point represents the PSNR computed on presentation values 
obtained after applying the grayscale window transform against the lossess file size for 
a specific image. Image displayed with abdomen window have shows lower fidelity 
while those presented with the bone VOI appears to have higher fidelity.



Table 1

Parameter Values
Slice thickness (mm)   0.8, 1.5 , 2, 3, 5 
Effective dose (mAs)   25, 100, 200 
Filter type            detail, medium                     
Slice collimation (mm) 16x0.75, 16x1.50
Pitch (mm) 0.9, 1.2
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Table 2

Beta coefficient values 
Intercept (Bi) 0.44

Exposure (Be) 0.73

Slice Thickness (Bt) 0.68

Filter Type (Bf) -0.34

Slice Collimation (Bc) -0.05

Exposure2 (Be
2) -0.31

Slice Thickness2 (Bt
2) -0.13 
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Table 3

 Total
Unique to Exposure 3.36
Unique to Thickness 3.63
Unique to Collimation 0.27
Unique to Filter type  4.81
Unique to Noise 5.37
Thickness and exposure -2.23
Thickness and Collimation 2.26
Exposure and Filter type -2.18
Noise and Exposure 45.46 
Noise and Thickness 11.25
Noise and Filter type 8.27
Noise, Thickness and Collimation 15.02
Noise, Exposure and Thickness  1.36
Exposure, Thickness and Filter type 2.27
Exposure, Filter Type and Noise 2.20
Total 100.00
Note: entries with small contribution (<1%) were removed.
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