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Abstract— This study investigates overlap priors for varia-
tional tracking of the Left Ventricle (LV) in cardiac Magnetic
Resonance (MR) sequences. The method consists of evolving
two curves toward the LV endo- and epicardium boundaries.
We derive the curve evolution equations by minimizing two
functionals each containing an original overlap prior constraint.
The latter measures the conformity of the overlap between the
nonparametric (kernel-based) intensity distributions within the
three target regions–LV cavity, myocardium and background–to
a prior learned from a given segmentation of the first frame.
The Bhattacharyya coefficient is used as an overlap measure.
Different from existing intensity-driven constraints, the proposed
priors do not assume implicitly that the overlap between the
intensity distributions within different regions has to be minimal.
This prevents both the papillary muscles from being included
erroneously in the myocardium and the curves from spilling
into the background. Although neither geometric training nor
preprocessing were used,quantitative evaluation of the similari-
ties between automatic and independent manual segmentations
showed that the proposed method yields a competitive score in
comparison with existing methods. This allows more flexibility
in clinical use because our solution is based only on the current
intensity data, and consequently, the results are not bounded
to the characteristics, variability, and mathematical description
of a finite training set. We also demonstrateexperimentally that
the overlap measures are approximately constant over a cardiac
sequence, which allows to learn the overlap priors from a single
frame.

Index Terms— Left Ventricle tracking, cardiac Magnetic Res-
onance Images (cardiac MRI), variational image segmentation,
overlap priors, active contours, level sets.

I. I NTRODUCTION

Accurate tracking of the Left Ventricle (LV) endo- and
epicardium boundaries in 2D cardiac Magnetic Resonance
(MR) sequences is needed for the analysis and quantification
of the regional motion of the LV [44]. It plays an essential role
in the diagnosis of cardiovascular diseases related to localized
regions with movement abnormalities. The standardized my-
ocardial segmentation [43] suggests selecting representative
2D cardiac slices to generate 17 standardized LV segments
over which we can assess the regional wall motion abnor-
malities. This standardization is commonly used for regional
analysis of the LV function. Such analysis requires accurate LV
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tracking, which consists of segmenting each frame into three
target regions (objects): LV cavity, myocardium and back-
ground (refer to Fig. 3). Manual labeling is time-consuming.
Therefore, an automatic tracking is desired. Although an
impressive research effort has been devoted to this task [1]–
[9], [15]–[32], existing methods are still insufficiently flexible
for routine clinical use. Accurate LV tracking is acknowledged
as a difficult problem because of several reasons:

(a) A significant overlap exists between the intensity distri-
butions within the cardiac regions (cf. the typical example in
Fig. 3)
• The myocardium and the papillary muscles inside the

cavity are connected and have almost the same intensity (refer
to Fig. 3 e). In this connection, several studies have addressed
specifically the problems with the papillary muscles [9], [8].
• The LV cavity has an intensity distribution similar to the

right ventricle [25] (refer to Fig. 3 d).
(b) There are no boundaries between the epicardium and

some cardiac regions [25].
(c) The substantial variations in size, shape and intensity

between subjects, particularly those with pathological patterns,
makes geometric/photometric models hard to build from a
finite training set [7], [29].

Most of existing approaches to the LV tracking compute
a pixelwise correspondence between the current image (or
frame) and model distributions of photometric (intensity-
based) and geometric1 properties of the target objects. Model
distributions are generally learned from a training set, i.e.,
a finite set of hand-labeled images, and embedded in the
segmentation via two standard frameworks: variational active
contours/level-sets [34] (such as [1]–[3], [15]–[25]) and active
appearance/shape models [33] (such as [28]–[32]). In the
variational framework, the problem is commonly stated as
the minimization of a functional containing two constraints:
a geometric constraint which biases the solution toward a
specific geometric knowledge learned from a finite training
set and an intensity-driven constraint based on the Maximum
Likelihood (ML) principle [34]. The latter maximizes the
conditional probability of pixel intensity given the assumed
model distribution within each region. Unfortunately, a ML
intensity-driven constraint is sensitive to inaccuracies in es-
timating model distributions [10]. More importantly, it can
not incorporate information about theoverlap between the
intensity distributions within different regions. Based on the
evaluation of a pixelwise correspondence between the image

1Geometric properties include object shape, spatial position, and inter-
object spatial relations.
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and the models, ML intensity-driven constraints assumeim-
plicitly that the distribution overlap within different regions has
to be minimal. Such assumption is often violated in medical
images. For instance, the pixelwise information is misleading
in the case of the LV due to the “significant” (cf. the typical
example in Fig. 3) overlap between the distributions within
different cardiac regions. Consequently, the use of training-
based geometric constraints in conjunction with ML intensity-
driven constraints was inevitable to obtain satisfying results
[15]–[23]. Similar to variational level-set approaches, active
appearance/shape models compute a pixelwise correspondence
between the image and the models [40]. As we will show in
the experiments (section IV), embeddingglobal information
about the overlap between the intensity distributions within
the segmentation regions is important. In the current study, we
embedoverlap priors in variational image segmentation and
demonstrate the effectiveness and flexibility of the proposed
method in the context of the LV tracking.

We state the tracking of the endo- and epicardium bound-
aries in a cardiac MR sequence as the evolution of two active
curves. We derive the curve evolution equations by minimizing
two functionals each containing an original overlap prior.The
latter measures the conformity of the overlap between the
nonparametric(kernel-based) intensity distributions within the
three target regions–LV cavity, myocardium and background–
to a prior learned from a given segmentation of the first frame.
The Bhattacharyya coefficient is used as an overlap measure.
The contributions of this study are not only in the application
context but also in the scope of general-purpose segmentation.

A. The contributions of this study

1) The LV tracking context:In the application context, the
contributions of this study can be summarized as follows.

(a) Using only the current intensity data, i.e., even without a
geometric training, the proposed method still yields a competi-
tive segmentation score because the overlap priors preventboth
the papillary muscles from being included erroneously in the
myocardium and the curves from spilling into the background.
This allows more flexibility in clinical use, particularly when
dealing with abnormal subjects where the left ventricle un-
dergoes high and unseen (unexpected) geometric variations.
The overlap priors lead to a LV tracking which has several
advantages over existing methods:
• The results are not bounded to some geomet-

ric/photometric properties and variations learned from finite
training set.
• The proposed method is not prone to the practical difficul-

ties related to the choice of training set and the corresponding
mathematical models andad hocparameters.
• With the use of overlap priors, systematic bias caused in

some cases by geometric-training constraints [7] can be re-
laxed or weakened, particularly with abnormal subjects where
the left ventricle undergoes high and unseen (unexpected)
geometric variations. It is worth mentioning, however, that
the proposed overlap prior is not an alternative to geometric
priors. Geometric and overlap constraints areorthogonaland
can be used along with each other. The overlap prior is rather

an alternative to existing intensity constraints that are unlikely
to yield acceptable results without a geometric training. It can
be used in conjunction with geometric constraints in medical
applications where a reliable geometric information can be
learned from a training set.
• No assumption is made as to theparametricdistributions

of photometric/geometric data because the current study uses
a nonparametricdescription.
• Explicit curve coupling [3], [25] is not required because

the proposed functionals and two-step minimization yield an
implicit coupling.

(b) We also demonstrateexperimentally that the used
overlap measures are approximately constant over a cardiac
sequence. This result is important because it allows to learn
the overlap priors from a single frame of the current data.
It can be also the basis of future investigations of the LV
segmentation/tracking.

2) The general-purpose segmentation context:The current
study is most related, but not similar, to the recent segmen-
tation/tracking investigations [10]–[14] which have shown the
advantages of usingdistribution metricsover the ML principle.
In this connection, there is a fundamental difference between
the proposed method and the methods in [10]–[14]. Similar
to the ML principle, the methods in [10]–[14] are based
on the following implicit assumption:The overlap between
the distributions of intensity data within different regions in
the current image/frame has to be minimal.Unfortunately,
such assumption may not be valid in cardiac imagery as
well as many other applications. Although those methods
have been effective in some cases, they are notversatile
enough to deal with situations in which a “significant” (cf.
the left ventricle example in Fig. 3) overlap exists between
the distributions within different regions. The proposed method
relaxes the assumption of minimal overlap. It can be viewed as
a generalization of [10]–[14] for situations in which an over-
lap exists between the distributions within different regions
and, consequently, it is more widely applicable than existing
general-purpose methods. As we will show in the context of
the LV tracking (section IV), embedding information about
such overlap in the tracking functional would be very useful.

The remainder of this paper is organized as follows. The
next section gives a brief review, focusing on general-purpose
variational methods as well as the LV tracking. Section III
contains the theoretical contribution: after introducingthe ap-
propriate notations and defining the proposed functionals,we
derive the descent minimization equations via curve evolution.
Section IV describes aquantitativeperformance evaluation of
the proposed method over ten datasets by comparisons with
manual segmentations and other variational methods. It also
demonstrates the advantage of using overlap constraints over
existing intensity constraints, reports the statistics the overlap
priors/measures, and finally depicts a representative sample of
the results. Section V contains a discussion.

II. PREVIOUS WORK

A. General-purpose variational segmentation

The variational level-set segmentation framework, which
uses active curves to delineate the target objects, has beengen-
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erally effective and flexible [10]–[14], [34]–[38]. It has become
very popular in computer vision and medical image analysis
for several reasons: (a) the solution is sought following the
optimization of a cost functional which balances the influence
of image data and prior knowledge in a flexible, principled, and
transparent way. This applies to a wide range of functionals
including intensity-driven, prior-knowledge and application-
specific functionals; (b) the level-set representation of curve
evolution can be easily extended to higher dimensions, and
allows computing geometric characteristics of objects in a
straightforward manner; (c) there are several applications in
medical image analysis where anatomical entities can be
enclosed within a closed contour. Level set segmentation
consists of evolving a curve to delineate the target object.
The curve evolution equations are obtained by optimizing a
functional which, generally, contains a data term measuring
the conformity of the observed photometric data within each
region to a given statistical description. In most of existing
region-based level set methods, the data term can be posed fol-
lowing the Maximum Likelihood (ML) principle2 [34]–[38].
This corresponds to maximizing the conditional probability of
pixel intensity given the assumed model distributions within
the objects. As discussed recently by Michailovich etal. [10],
Likelihood-based curve evolution is sensitive to inaccuracies
in estimating the model distributions. More importantly, it can
not incorporate information about theoverlap between the
distributions of intensity within different regions. Embedding
such information in level set segmentation is among the
contributions of the current study.

Recent studies have shown the advantages and effective-
ness of usingdistribution metrics in level set segmenta-
tion [10], [11] and tracking [12], [13]. Possible measures
of similarity/dissimilarity between distributions include the
Bhattacharyya coefficient [10], [12] and the mutual informa-
tion [14]. However, the Bhattacharyya coefficient has shown
superior performances over other criteria [10], [12]. In [10],
tow-region segmentation is stated as minimizing thesimilarity
(or maximizing thedissimilarity) between thenonparametric3

distributions sampled from inside and outside the curve. In
[12], [13], the target object is identified as the region whose
intensity distribution most closely matches a learned distribu-
tion. It has been demonstrated experimentally [12] that curve
evolution based on the Bhattacharyya measure outperforms
the ML principle. Furthermore, it is much less sensitive to
inaccuracies in estimating model distributions [10]. Similar
to likelihood-based methods, these studies assumeimplicitly
that the overlap between the distributions of intensity within
different regions in the current image/frame has to be minimal.
Unfortunately, such assumption is often violated in cardiac
imagery as well as many other applications.

2A comprehensive review of variational level-set methods can be found in
[34]

3In order to incorporate complex statistical information inthe segmenta-
tion/tracking algorithms, the recent trend in general-purpose segmentation has
been toward using nonparametric models [10]–[14].

B. The LV tracking/segmentation

The LV tracking/segmentation is still challenging, although
an impressive research effort has been devoted to this task
[1]–[9], [15]–[32]. Existing methods are based on, among
others, active appearance/shape models [28]–[32], registration
[7], clustering [5] and the use of probabilistic atlases viathe
Expectation-Maximization algorithm [3]. Other studies have
addressed specifically the problem of the papillary muscles.
A filtering-based approach is investigated in [9] whereas
the authors in [8] propose to segment the papillary mus-
cles separately. As several studies have shown [1]–[3], [15]–
[25], the variational framework based on curve evolution has
been the most flexible and effective approach to the LV
tracking/segmentation. The problem is commonly stated as
the optimization of a functional containing a ML intensity-
driven constraint and a training-based geometric prior which
biases the solution toward geometric knowledge learned from a
finite training set [15]–[21]. Although effective in some cases,
these methods are subject to the well known limitations of a
statistical geometric training: (a) the results depends onthe
characteristics, variability and mathematical description of a
finite training set; (b) a statistical geometric prior can cause
systematic bias in some cases [7], particularly with abnormal
subjects where the left ventricle undergoes high and unseen
(unexpected) geometric variations. Curve coupling between
the LV endo- and epicardium was also introduced in [24], [25]
in order to prevent the papillary muscle from being included
into the myocardium. In [2], the authors propose to maintaina
constant photometric environment in the vicinity of the curves
propagated from one image to another. This corresponds to
matching intensities in profiles perpendicular to the curves
in order to maintain their positions constant with respect to
anatomical structures. In this connection, we proposed a more
global technique in [6] by applying the distribution-matching
of intensity [13] to the three cardiac regions: the LV cavity, the
myocardium and the background. These recent methods based
on intensity matching have led to promising results. However,
matching photometric values can not embed information about
the overlap between the intensity distributions of different
regions. As we will show in this study, embedding global
information about such overlap is important and can lead to
effective LV tracking.

III. F ORMULATION

A. The proposed tracking functionals

Let I be a MR cardiac sequence containingN frames4

In : Ω ⊂ R
2 → R

+, n ∈ [1..N ]. The purpose of this
study is to automatically detect the endocardium (yellow
contour in Fig. 3.a) and the epicardium (green contour in
Fig. 3.a) of the heart for eachn ∈ [2..N ]. We formulate
the problem as the evolution of two closed planar parametric
curves~Γn

in(s), ~Γn
out(s) : [0, 1] → Ω, toward, respectively, the

endo- and epicardium. This consists of segmenting the domain
Ω of each frame into three target regions:

4The number of framesN is typically equal to20 or 25.
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(1) The heart cavityCn corresponding to the interior of
curve~Γn

in:
Cn = R~Γn

in
(1)

whereR~Γ denotes the region enclosed by curve~Γ for each
~Γ ∈ {~Γn

in, ~Γn
out}.

(2) The myocardiumMn corresponding to the region be-
tween~Γn

in and~Γn
out:

Mn = R
c
~Γn

in

∩R~Γn
out

(2)

where R
c
~Γ

denotes the complement ofR~Γ for each ~Γ ∈

{~Γn
in, ~Γn

out}.
(3) The backgroundBn corresponding to the region outside

~Γn
out:

Bn = R
c
~Γn

out

(3)

For each curve, the evolution equation is obtained by
minimizing a cost functional containing three characteristic
terms.

(1) 0verlap prior terms
In order to define the proposed overlap priors, we first

consider the following definitions:
• For each regionR ∈ {Cn, Mn, Bn, n = 1..N}, define

PR,I as the nonparametric (kernel-based) estimate of intensity
distribution within regionR in frameI ∈ {In, n = 1..N}

∀z ∈ R
+, PR,I(z) =

∫

R
K(z − I(x))dx

aR

, (4)

whereaR is the area of regionR

aR =

∫

R

dx (5)

Typical choices ofK are the Dirac function and the Gaussian
kernel [10].
• B(f/g) is the Bhattacharyya coefficient measuring the

amount of overlap between two statistical samplesf andg

B(f/g) =
∑

z∈R+

√

f(z)g(z) (6)

Note that the values ofB are always in[0, 1], where0 indicates
that there is no overlap, and1 indicates a perfect match.

We assume that a segmentation of the first frameI1, i.e., a
partition {C1, M1, B1}, is given. Consider

B
n
in = B(PCn,In/PM1,I1)

︸ ︷︷ ︸

cavity/myocardium overlap measure

∀n ∈ [1..N ] (7)

B
n
in measures the amount of overlap between the intensity

distribution within the heart cavity region inIn and the
myocardium model learned from the first frame. Consider
also the following measure of overlap between the intensity
distribution within the myocardium region inIn and the
background model learned from the first frame:

B
n
out = B(PMn,In/PB1,I1)

︸ ︷︷ ︸

myocardium/background overlap measure

∀n ∈ [1..N ] (8)

As we will demonstrateexperimentallyin section IV, Bn
in

andB
n
out areapproximately constantover a cardiac sequence.

Consequently, measuresB1
in andB

1
out estimated from a given

segmentation of the first frame in sequenceI can be used as
overlap priors to constrain the tracking in framesI2..IN . In
order to embed prior information about the overlap between
the intensity distribution within the three target regions, we
propose to minimize the following constraints for eachn ∈
[2..N ]

On
in = (Bn

in − B
1
in)2

︸ ︷︷ ︸

cavity/myocardium overlap prior

On
out = (Bn

out − B
1
out)

2

︸ ︷︷ ︸

myocardium/background overlap prior

(9)

On
in measures how the overlap between the intensity distribu-

tions within the cavity and myocardium fits priorB1
in. On

out

measures how the overlap between the intensity distributions
within the myocardium and background fits priorB

1
out. Al-

though constraining the LV tracking with overlap priors hasan
intuitive meaning because of the overlap between the intensity
distributions within different cardiac entities (cf. the typical
example in Fig. 3), we will further validateexperimentally
the importance of the proposed overlap constraints (section
IV). More precisely, we will confirm with reference (manual)
segmentations of10 datasets, i.e.,190 frames, thatOn

in and
On

out are approximately equal to zero (refer to table III).
Consequently, the manual segmentations correspond approxi-
mately to the minima of the overlap priors. Thus, it is expected
that, using only the current data, the minimization of such
priors would bias the results toward the desired segmentations.
As we will show in the experiments, the overlap priors prevent
both the papillary muscles from being included erroneously
in the myocardium and the curves from spilling into the
background, thereby relaxing the need of a geometric training.

Note also that, in the scope of general-purpose segmenta-
tion, the overlap priors in (9) can be viewed as a generalization
of the segmentation/tracking constraints proposed recently in
the studies in [10]–[14]. The latter assume implicitly thatthe
overlap between the distributions within different regions is
minimal. The assumption of minimal overlap is often violated
in cardiac imagery as well as many other medical applications.
The overlap constraint in (9) relaxes such assumption and,
consequently, is more applicable5 and more versatile than
existing intensity-driven constraints–it addresses situations in
which an overlap exists between the distributions of different
regions.

(2) Mean-matching terms

In conjunction with the overlap priors, we use mean-
matching terms which measure the conformity of intensity
means within the cavity and the myocardium in the current

5For instance, the particular case corresponding toB1

in
= 0 is an explicit

form of assuming that the overlap between the distributionsof the LV cavity
and the myocardium is minimal. Such assumption isimplicit in existing
methods.
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frame to mean priors learned from the first frame

Mn
in = (µn

in − µ1
in)2

︸ ︷︷ ︸

cavity mean prior

Mn
out = (µn

out − µ1
out)

2

︸ ︷︷ ︸

myocardium mean prior

(10)

where µn
in and µn

out are the estimates of intensity means
within, respectively,Cn andMn, for n ∈ [1..N ]

µn
in =

∫

Cn Indx

aCn

µn
out =

∫

Mn Indx

aMn

(11)

(3) Regularization/gradient terms
We use classic regularization/gradient terms to bias the

curves toward high gradient of intensity and to enforce curve
smoothness

Gn
in =

∮

~Γn
in

(gn + c)ds

Gn
out =

∮

~Γn
out

(gn + c)ds (12)

where c is a positive constant andgn is an edge indicator
function

gn =
1

1 + ‖∇In‖2
∀n ∈ [1..N ] (13)

The functionals to minimize are a weighted sum of the three
characteristic terms

Fn
in = αOn

in + βMn
in + λGn

in

= α(Bn
in − B

1
in)2

︸ ︷︷ ︸

cavity/myocardium overlap prior

+ β(µn
in − µ1

in)2
︸ ︷︷ ︸

Cavity mean matching

+ λ

∮

~Γn
in

(gn + c)ds

︸ ︷︷ ︸

Endocardium boundary

Fn
out = αOn

out + βMn
out + λGn

out

= α(Bn
out − B

1
out)

2

︸ ︷︷ ︸

myocardium/background overlap prior

+ β(µn
out − µ1

out)
2

︸ ︷︷ ︸

Myocardium mean matching

+ λ

∮

~Γn
out

(gn + c)ds

︸ ︷︷ ︸

Epicardium boundary

(14)

B. Minimization equations via curve evolution

The curve evolution equations are obtained by the Euler-
Lagrange descent minimization ofFn

in andFn
out. To this end,

we embed each curve~Γ, ~Γ ∈ {~Γn
in, ~Γn

out}, in a one-parameter

family of curves:~Γ(s, t) : [0, 1] × R
+ → Ω, and solve the

partial differential equations

∂~Γn
in(s, t)

∂t
= −

∂Fn
in

∂~Γn
in

∂~Γn
out(s, t)

∂t
= −

∂Fn
out

∂~Γn
out

(15)

where ∂F

∂~Γ
denotes the functional derivative ofF with respect

to ~Γ. We adopt a two-step algorithm: the first step consists of
fixing ~Γout and evolving~Γin (the endocardium boundary) until
convergence and the second step evolves~Γout (the epicardium
boundary) with~Γin fixed.

Step 1: In this step, we derive the evolution of~Γin by
minimizing Fn

in. We have

∂~Γn
in(s, t)

∂t
= −

∂Fn
in

∂~Γn
in

= −2α(Bn
in − B

1
in)

︸ ︷︷ ︸

Overlap prior influence

∂B
n
in

∂~Γn
in

− 2β(µn
in − µ1

in)
∂µn

in

∂~Γn
in

− λ
∂Gn

in

∂~Γn
in

(16)

Before deriving the final evolution equation of~Γn
in, we give

a simple interpretation of how the overlap prior guides the
curve evolution. The overlap measure learned from the first
frame,B1

in, influences the sign of the multiplicative coefficient
(overlap prior influence) affected to the gradient flow∂B

n
in

∂~Γn
in

.

This coefficient is negative when B
n
in is superior to its

expected valueB1
in. In this case, the overlap prior results in a

curve evolution whichdecreasesBn
in. By contrast, whenBn

in

is inferior to B
1
in, the coefficient becomespositive and the

curve evolutionincreasesBn
in. The overlap prior leads to a

curve evolution which keeps the overlap between the intensity
distributions within the the cavity and the myocardium close
to its expected valueB1

in. As we will see in the results (c.f. the
example in Fig. 3), this prevents the papillary muscles from
being included in the myocardium and~Γn

in from spilling into
the background.

To derive the final curve evolution equation, we need to
compute∂B

n
in

∂~Γn
in

. We have

∂B
n
in

∂~Γn
in

=
1

2

∑

z∈R+

√

PM1,I1

PCn,In

∂PCn,In

∂~Γn
in

(17)

Now we need to compute∂PCn,In

∂~Γn
in

. To this end, we consider

the following proposition, which will be used also in the rest
of the computation.

Proposition 1: For a scalar functionh and a curve~Γ, the
functional derivative with respect to~Γ of the integral ofh over
the region enclosed by~Γ, i.e., R~Γ, is given by

∂
∫

R~Γ

h(x)dx

∂~Γ
= h(x)~n(x) (18)

where~n(x) is the outward unit normal to~Γ at x. This result
is based on the Green’s theorem and has been demonstrated
in [41].
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Applying this proposition toaCn and
∫

Cn K(z− In(x))dx

in ∂PCn,In

∂~Γn
in

yields, after some algebraic manipulations

∂PCn,In(z)

∂~Γn
in(s)

=
1

aCn

(K(z − In(s)) − PCn,In(s))~nn
in(s)

(19)
where~nn

in is the outward unit normal to~Γn
in. We assumeK

is the Dirac function to simplify the equations. However, the
same derivation applies for an arbitrary kernel. Embedding
(19) into (17), and after some algebraic manipulations, we
obtain:

∂B
n
in

∂~Γn
in(s)

=
1

2aCn

(√

PM1,I1(s)

PCn,In(s)
− B

n
in

)

~nn
in(s) (20)

To compute∂µn
in

∂~Γn
in

, we adopt the same procedure by applying

proposition 1 to aCn and
∫

Cn In(x)dx in µn
in. This yields,

after some algebraic manipulations

∂µn
in

∂~Γn
in

=
In − µn

in

aCn

(21)

Embedding (20), (21), and the derivative of the regulariza-
tion/gradient term [39] in (16) gives the final curve evolution
equation of the endocardium boundary:

∂~Γn
in

∂t
= {

α(Bn
in − B

1
in)

aCn

(Bn
in −

√

PM1,I1

PCn,In

)

+
2β(µn

in − µ1
in)

aCn

(µn
in − In)

+ λ[∇gn.~nn
in − (gn + c)κn

in]}~nn
in (22)

whereκn
in is the mean curvature function of~Γn

in.
Step 2: In this step we fix~Γn

in obtained at convergence i.e.,
whent → ∞, and evolve~Γn

out by minimizingFn
out. Following

the same computation as instep 1, and after some algebraic
manipulations, we obtain the following evolution equationof
the epicardium boundary

∂~Γn
out

∂t
= {

(Bn
out − B

1
out)

aMn

(Bn
out −

√

PB1,I1

PMn,In

)

+
2β(µn

out − µ1
out)

aMn

(µn
out − In)

+ λ[∇gn.~nn
out − (gn + c)κn

out]}~n
n
out (23)

where~nn
out is the outward unit normal to~Γn

out, and κn
out is

the mean curvature function of~Γn
out. Partition (Cn, Mn, Bn)

of frameIn is obtained from~Γn
in and~Γn

out at convergence.

C. Implementation

1) Level set evolution equations:We use the level-set
formalism [42] to implement the curve evolution equations in
(22) and (23). We represent curves~Γn

in and~Γn
out, respectively,

by two functionsun
in : Ω ⊂ R → R (~Γn

in = {un
in = 0})

and un
out : Ω ⊂ R → R (~Γout = {un

out = 0}), with the
region inside~Γ (~Γ = ~Γn

in, ~Γn
out) corresponding tou < 0

(u = un
in, un

out). The level-set representation of curve evolution
has well-known advantages over an explicit discretizationof ~Γ

TABLE I

SYNTHETIC EXAMPLE–STATISTICS OF THE BINARY SEGMENTATIONS

OBTAINED WITH THREE ENERGIES: DM, DMBM, AND DMOP. THE

LEARNED OVERLAP MEASURE IS EQUAL TO0.71.

Method DM DMBM DMOP
Normalized mean at convergence0.28 0.30 0.27

Similarity at convergence 0.99 0.99 0.99
Overlap at convergence 0.63 0.42 0.71

TABLE II

CARDIAC CAVITY EXAMPLE –STATISTICS OF THE BINARY SEGMENTATIONS

OBTAINED WITH THREE ENERGIES: DM, DMBM, AND DMOP. THE

LEARNED OVERLAP MEASURE IS EQUAL TO0.53.

Method DM DMBM DMOP
Normalized mean at convergence0.46 0.44 0.47

Similarity at convergence 0.98 0.96 0.98
Overlap at convergence 0.50 0.44 0.54

using a number of points on the curve [42]. It can be effected
by stable numerical schemes [42]. It is also implicit, intrinsic
and parameter free. The level-set representation of variational
problems has become very popular in medical image analysis
for several reasons:
• The obtained algorithms can be extended to higher di-

mensions in a straightforward manner.
• Geometric characteristics of the curve, such as curvatures

and normals, can be easily derived.
One can show that [42] if the curve evolves according to

∂~Γ
∂t = V.~n (refer to equations (22) and (23)), where~n is
the outward unit normal to~Γ andV a scalar function which
depends on pixel position and algorithmic timet, then the
level set function evolves according to∂u(x,t)

∂t = V.‖~∇u‖.
2) Weighting parameters:The parameters weighting the

relative contribution of the overlap priors, the mean-matching
terms and the boundary terms are fixed for all the experiments:
α = 1000, β = 10, λ = 0.1, c = 10.

3) Data: The algorithm was applied to cine-MR short axis
images obtained with a1.5 Tesla scanner. All the images were
obtained during a 10-15 seconds breath-holds with a temporal
resolution of 20 or 25 frames. Note that the algorithm is
applicable to other types of images.

IV. EXPERIMENTS

In the following, we first show two-region segmentation
examples including a synthetic image and a cardiac image,
which demonstrate explicitly the positive effect of the pro-
posed overlap prior and how it can lead to improvements over
related distribution-based constraints. Second, we give atypi-
cal cardiac example that demonstrates clearly the advantage of
using overlap constraints over commonly used ML intensity
constraints. Third, we report the statistics of the overlap
priors/measures over ten manually segmented datasets, which
demonstrates that the overlap measures are approximately con-
stant over a cardiac sequence and, consequently, the minima
of the proposed overlap priors correspond approximately to
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TABLE III

STATISTICS OF THE OVERLAP PRIORS/MEASURES(EXPRESSED AS MEAN± STD) OVER TEN DATASETS. THE OVERLAP PRIORS AREapproximatelyEQUAL

TO ZERO.

B
n
out B

n
in On

out = (Bn
out − B

1
out)

2, (n > 1) On
in = (Bn

in − B
1
in)2, (n > 1)

0.69 ± 0.05 0.42 ± 0.17 1.9(10−3) ± 2.4(10−3) 6.5(10−3) ± 8.5(10−3)

(a) Initialization DM DMBM DMOP
final final final
curve curve curve

(b) Target object DM DMBM DMOP
final final final

object object object

Fig. 1. Segmentation of a synthetic image into two regions with three energies: the second, third, and fourth columns depict the curve at convergence and
the obtained object with, respectively, DM, DMBM, and DMOP.Without the overlap prior, i.e. with DM and DMBM, parts of the background were included
in the final region. On the contrary, the overlap prior, i.e.,DMOP, led to a region similar to the target object in (b). The same initialization in (a) was used
for both energies.

reference segmentations. Fourth, we describe aquantitative
performance evaluation of the proposed method over ten
cardiac datasets by comparisons with manual segmentations
and other variational methods [1], [3], [9], [6]. Finally, we give
a representative sample of the results for visual inspection.

A. Effect of overlap constraints

1) Overlap constraints vs. existing distribution-based con-
straints: To show explicitly the influence of the overlap prior,
we compared three energies in the case of segmentation into
two regions (an object and a background), one energy contains
an overlap prior and the two others do not contain an overlap
prior:

(1) DM: The distribution matching energy proposed in [13]
and applied to cardiac imagery in [6]. The optimization of
this energy seeks a region in the image, so that the sample
distribution of the region most closely matches a model
distribution.

(2) DMBM : The concatenation of the energy in [13], i.e.,
DM, and the foreground/background mismatching energy in
[10]. Optimization of the latter seeks a segmentation, so
that the similarity between the foreground and background
distributions is minimal.

(3) DMOP: The concatenation of DM and the proposed
overlap prior.

Fig. 1 shows a synthetic example in which the target object
is a texture square in the middle of the image. The second
and third columns depict the curve at convergence and the
obtained object with, respectively, DM and DMBM. With
these two energies, i.e.,without the overlap prior, parts of
the background, which have an intensity profile similar to
the target square, were included in the final region. On the
contrary,with the proposed overlap prior, i.e., with DMOP,
the final curve delineates accurately the square in the middle
of the image, leading the a region similar to the target object
(refer to the fourth column in Fig. 1). The overlap prior
prevents the curve from spilling into the background even with
a curve initialization far from the target object (refer to Fig.
1 a). For the three energies, we used the same initialization,
smoothness constraint, and model distributions learned from
the same image. The cardiac image example in Fig. 2, where
the purpose is to separate the heart cavity (refer to the manual
segmentation in Fig. 2 b and c) from the background with
only intensity information, illustrates the same effect ofthe
proposed overlap prior. It depicts an instance where both DM
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(a) Initialization DM DMBM DMOP
evolution evolution evolution

step step step

(b) Manual delineation DM DMBM DMOP
final final final
curve curve curve

(c) Target object DM DMBM DMOP
final final final

object object object

Fig. 2. Segmentation of a cardiac image into two regions withthree energies: DM, DMBM, and DMOP. The purpose is to separate the cavity from the
background as shown by the manual segmentation in (b) and (c). The second, third, and fourth columns depict the curve at convergence and the obtained
object with, respectively, DM, DMBM, and DMOP.Without the overlap prior, i.e. with DM and DMBM, parts of the right ventricle and myocardium were
included in the curve at convergence, whereas adding the proposed overlap prior, i.e., using DMOP, biases the solution accurately toward the cavity. For the
three energies, we used the same initialization in (a) and the same model distributions learned from a previous frame.

and DMBM include erroneously parts of the right ventricle
and myocardium in the curve at convergence (refer to the
second and third columns in Fig. 2), whereas adding the
proposed overlap prior, i.e., using DMOP, biases the solution
accurately toward the target object, the left ventricle cavity in
this case (refer to the fourth columns in Fig. 2). For the three
energies, we used the same initialization and the same model
distributions learned from a previous frame. These examples
demonstrate clearly that the overlap prior is the energy that
prevents the curve from spilling, thereby relaxing the need
of complicated shape priors. To illustrate quantitativelythis
positive effect of the overlap prior, we report in tables I and II
the following statistics of the binary segmentations obtained
with DM, DMBM, and DMOP.

• Normalized mean at convergence: the mean of intensity
within the curve at convergence.

• Similarity at convergence: The Bhattacharyya measure
of similarity between the distribution of intensity withinthe
curve at convergence and a model distribution, i.e., DM at
convergence.
• Overlap at convergence: The Bhattacharyya measure

of overlap between the foreground (the region inside the
curve) and the background (the region outside the curve) at
convergence.

For the three energies, we obtained approximately the same
mean and the same similarity with the model distribution (refer
to the second and third row in table I and table II), although the
segmented objects are different (refer to the last row in Fig. 1
and Fig. 2). On the contrary, adding the proposed overlap prior,
i.e., using DMOP, led to a measure of overlap different from
those obtained with DM and DMBM and approximately equal
to the learned prior (refer to the last row in table I and tableII).



IEEE TRANSACTIONS ON MEDICAL IMAGING 9

When the curve spills in the background with DM and DMBM,
the overlap between the foreground and background decreases,
deviating from the learned prior. Consequently, matching the
distribution inside the curve to a model distribution as in [13],
[6] and using a mean matching constraint are not sufficient
for these binary segmentation examples. Adding the overlap
prior limited the space of possible solutions, and was necessary
to obtain the correct segmentations. These statistics confirm
explicitly that the overlap term is the constraint that prevents
the curve from spilling in the background.

2) Overlap constraints vs. ML intensity-driven constraints:
Figure 3 (a) shows a typical example of a MR mid-cavity
frame. It depicts the expected segmentations of the LV cavity
(region inside the yellow curve) and the epicardial region
(region inside the green curve). Figs. 3 d and e illustrate
the significant overlap between the distributions within the
three target regions: cavity, myocardium and background. No
geometric-training constraints were added for a fair compari-
son between overlap and ML constraints. For both constraints,
model distributions of regions were estimated from the same
pesegmented frame.With a ML intensity-driven constraint,
parts of the background, which have intensity profiles similar
to the cavity and the myocardium, are included inside the
final curves (refer to Fig. 3 c). The use of geometric-training
constraints in conjunction with ML constraints is inevitable
to obtain satisfying results [15]–[23]. By contrast,using an
overlap constraintdelineates accurately the cavity and the LV
(refer to Fig. 3 b), thereby relaxing the need of a training.

(a) Manual (b) Overlap (c) ML
segmentation segmentation segmentation
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Fig. 3. Advantage of overlap constraints: (a) manual segmentation by
a radiologist–yellow curve: endocardium, green curve: epicardium, region
within the yellow curve: cavity, region between the yellow and green curves:
myocardium, region outside the green curve: background; (b) segmentations
obtainedwith an overlap constraint, i.e., with our method; (c) segmentations
obtainedwith a ML constraint; (d) overlap between the distributions within
the LV and the nearby background (region inside the blue curve in a); (e)
overlap between the distributions within the cavity and themyocardium.

B. Statistics of the overlap priors/measures

In Fig. 4, we plotted the proposed overlap priors/measures
versus the frame number (190 frames) using manual segmen-
tations from10 datasets. As reported in table III, the overlap
priors in (9) are approximately equal to zero (refer to the
continuous red line in Fig. 4). This validates the usefulness
of such priors for the LV tracking. It is also interesting to
notice that overlap measuresBn

in andB
n
out do not vary much

over different patients (refer to Fig. 4).
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Fig. 4. The proposed overlap priors/measures versus the frame number (190
frames) in10 manually segmented datasets:Bn

out
(blue points);Bn

in
(green

markers);(Bn

out
− B1

out
)2 + (Bn

in
− B1

in
)2 (continuous red line).

C. Quantitative performance evaluation

The performance of the proposed variational technique was
evaluated by comparisons with independent manual segmen-
tations approved by an experienced cardiologist. We applied
the method to 2D mid-cavity MR sequences obtained from
10 subjects, i.e.,10 different datasets:190 frames were au-
tomatically segmented.The free parameters were unchanged
for all the datasets: α = 1000, β = 10, λ = 0.1, c = 10. Curve
initializations and estimations ofB1

in, B
1
out, µ1

in, and µ1
out

were obtained from a user-provided segmentation of the first
frame in each sequence. Two clinically important measures
were evaluated for performance appraisal:LV cavity area
and LV epicardial area. Area measurements are expressed
as the number of pixels within the region. We first used the
Dice Metric (DM) to measure thesimilarity between manual
and automatic segmentations. LetAa, Am and Aam be
the areas of, respectively, the automatically detected region,
the corresponding hand-labeled region and the intersection
between them.DM is given by6 [1]

2Aam

Aa + Am

(24)

Our algorithm yielded aDM equal to0.93 ± 0.02 for all the
data (refer to table IV).DM is expressed as mean± standard
deviation. We obtainedDM equal to0.92 ± 0.03 for the LV
cavity areas andDM equal to0.94 ± 0.01 for the epicardial
areas.

6DM is always in [0, 1].DM equal to 1 indicates a perfect match between
manual and automatic segmentation.
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TABLE IV

Dice measuresOF SIMILARITY BETWEEN MANUAL AND AUTOMATIC

SEGMENTATIONS. THE HIGHER THEDice metric, THE BETTER THE

SEGMENTATION.

Dice metrics Mean Std
This method 0.93 0.02

Method in [1] 0.81 0.16
Method in [6] 0.89 0.09
Method in [9] 0.90 0.05

TABLE V

Correlation coefficientsBETWEEN MANUAL AND AUTOMATIC AREAS . THE

HIGHER THE correlation coefficient, THE BETTER THE SEGMENTATION.

Correlation LV cavity areas Epicardial areas
This method 0.94 0.96

Method in [3] 0.89 0.87
Method in [6] 0.82 0.89

We also report good correlation coefficients between manual
and automatic endo- and epicardial areas (refer to table V).

To bear comparisons with other recent variational ap-
proaches to LV tracking, we give in tables IV and V, respec-
tively, the Dice metrics and correlation coefficients reported
in [1], [3], [9], [6]. Although neither a geometric trainingnor
a preprocessing were used, our method achieved a compet-
itive score in comparison with existing variational level set
methods. This is consistent with the visual inspection of the
results in [1] (cf. the examples given in Fig. 7 in [1]), which
show that the method in [1] does not allow embedding mid-
cavity papillary muscles in the inner curve. On the contrary, the
proposed method prevents the papillary muscles from being
included erroneously in the myocardium (refer to Fig. 5). This
is due to the effect of the prior on the overlap between the
cavity and the myocardium. It should be noted, however, that
the accuracy of the proposed method comes at the price of
a user interaction. The method in [1] segments all the slices
and is fully unsupervised whereas the proposed method needs
contours in the first frame.

D. Visual inspection

Mid-cavity slices:
In Fig. 5, we give a representative sample of the results with

five mid-cavitysequences (s1–s5). sxfy depicts the tracking
obtained for framey in sequencex. The red and green curves
represent, respectively,~Γn

in and ~Γn
out at convergence. The

obtained curves divide each frame into three regions: the heart
cavity (region inside the red curve), the myocardium (region
between the red and the green curve), and the background
(region outside the green curve). Although neither a geometric
training [20], [21] nor a preprocessing step [9] were used, the
proposed method successfully included the papillary muscles
inside the cavity. This task is challenging [9], particularly
when the papillary muscles are connected to the myocardium
(refer to the typical examples in Fig. 5). Furthermore, unlike
existing intensity constraints which do not allow to achieve

s1f5 s1f7 s1f9 s1f11 s1f13

s2f3 s2f5 s2f7 s2f13 s2f17

s3f5 s3f7 s3f9 s3f12 s3f15

s4f3 s4f5 s4f7 s4f10 s4f15

s5f3 s5f5 s5f9 s5f11 s5f13

Fig. 5. Mid-cavity slices–results for five MR sequences: each row depicts
the results for one sequence.α = 1000, β = 10, λ = 0.1, c = 10. ~Γn

in
: red

curve, ~Γn

out
: green curve.

acceptable results without geometric training, the proposed
overlap priors prevent both the endo- and epicardium bound-
aries from spilling into the background.

Basal slices:
Fig. 6 depicts a representative sample of the results with five

basal sequences. These include difficult examples where the
slice does not contain the myocardium in all360o (cf. s1f4 in
the first row in Fig. 6). Even with these examples, the proposed
method prevented the endo- and epicardium boundaries from
spilling into the background, and led to satisfying results.

Apical slices:
Fig. 7 depicts a representative sample of the results with

five apical sequences. These include examples where it is
difficult to segment the left ventricle because of the small size
of the structures and moving artifacts. Visual inspection of
these results demonstrate that the proposed method is flexible
and effective, although it uses only the intensity of the current
data.

V. D ISCUSSION

This study investigatedoverlap priors for curve evolution
tracking of the LV endo- and epicardium boundaries in cardiac
MR sequences. The curve evolution equations were derived
by minimizing two functionals each containing an original
overlap prior constraint. Using 190 reference (manual) seg-
mentations from 10 datasets, we demonstratedexperimentally
that the overlap measures are approximately constant over a
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s1f4 s1f9 s1f12 s1f15 s1f19

s2f3 s2f7 s2f10 s2f13 s2f16

s3f4 s3f7 s3f9 s3f12 s3f15

s4f3 s4f5 s4f9 s4f11 s4f14

s5f3 s5f5 s5f6 s5f7 s5f9

Fig. 6. Basal slices–results for five MR sequences: each row depicts the
results for one sequence.α = 1000, β = 10, λ = 0.1, c = 10. ~Γn

in
: red

curve, ~Γn

out
: green curve.

cardiac sequence. This led naturally to the proposed overlap
energies. Note that a high variation of the overlap in a
given sequence will affect segmentation accuracy because the
proposed algorithm is based on the assumption that the overlap
is approximately constant. Note also that the algorithm was
performed on 2D slices. Were a segmentation of the first vol-
ume given, it would be straightforward to extend the obtained
2D curve propagation to a 3D surface evolution. The level set
representation of evolving interfaces, such as 2D curves and
3D surfaces, extends to arbitrary higher dimensions. The final
evolution equations in (22) and (23) apply also for a surface
evolution; the only difference is that the domain of the level set
function isR

3 rather thanR2. However, the 3D segmentation
of the first volume requires either a higher amount of user
interaction or an independent automated process.

Although the proposed system uses only the current data,
i.e., neither a geometric training nor a preprocessing were
used, the final curve evolution equations have several desirable
effects:
• The overlap priors prevent the curves from spilling into

the background. This has been demonstrated explicitly with
two-region segmentation examples. It has been also confirmed
by extensive testing over 190 segmentations with 10 different
subjects.
• The proposed energies and two-step minimization suffice

to prevent the curves from intersecting each other and, there-
fore, relax the need of explicit curve coupling. This positive

s1f3 s1f6 s1f7 s1f11 s1f14

s2f2 s2f7 s2f9 s2f12 s2f19

s3f2 s3f4 s3f8 s3f11 s3f18

s4f3 s4f5 s4f9 s4f10 s4f11

s5f4 s5f6 s5f8 s5f10 s5f18

Fig. 7. Apical slices–results for five MR sequences: each row depicts the
results for one sequence.α = 1000, β = 10, λ = 0.1, c = 10. ~Γn

in
: red

curve, ~Γn

out
: green curve.

effect has been confirmed over the 190 tests we run. In each
of these tests, the final curves did not intersect each other.
This can be explained by the following effects of the proposed
energies:

1) The inner curve cannot spill within the myocardium
because this would increase the cavity/myocardium overlap
constraint. Therefore, it does not intersect the initial outer
curve.

2) When the outer curve propagates within the myocardium
erroneously toward the inner curve, we have:

a) The distribution of the region between the two curves–the
myocardium region–remains approximately constant because
the myocardium has, generally, a homogeneous intensity.
Consequently, the myocardium/background overlap constraint
does not decrease.

b) The myocardium mean matching constraint has a similar
effect; it does not decrease because the mean between the two
curves remains approximately constant.

c) On the contrary, the epicardium boundary term increases
when the outer curve evolves inward within the myocardium
because the myocardium has a homogeneous intensity (the
gradient within the myocardium is small).

These positive effects allow more flexibility in clinical use
because the results of the proposed method are not bounded
to the characteristics, variability, and mathematical description
of a finite training set.
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