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Embedding Overlap Priors in Variational Left
Ventricle Tracking

Ismail Ben Ayed, Member, IEEE Shuo Li, and lan Ross

Abstract— This study investigates overlap priors for varia- tracking, which consists of segmenting each frame into three
tional tracking of the Left Ventricle (LV) in cardiac Magnetic  target regions (objects): LV cavity, myocardium and back-
Resonance (MR) sequences. The method consists of evoIvingbround (refer to Fig. 3). Manual labeling is time-consuming.
two curves toward the LV endo- and epicardium boundaries. . . . .

We derive the curve evolution equations by minimizing two Therefo_re’ an automatic tracking is desired. Alt_hOUQh an
functionals each containing an original overlap prior constraint. Impressive research effort has been devoted to this task [1]
The latter measures the conformity of the overlap between the [9], [15]-[32], existing methods are still insufficiently flexible
nonparametric (kernel-based) intensity distributions within the  for routine clinical use. Accurate LV tracking is acknowledged
three target regions—LV cavity, myocardium and background-to 55 5 difficult problem because of several reasons:

a prior learned from a given segmentation of the first frame. . . . . L
The Bhattacharyya coefficient is used as an overlap measure. (a) A significant overlap exists between the intensity distri-

Different from existing intensity-driven constraints, the proposed butions within the cardiac regions (cf. the typical example in
priors do not assume implicitly that the overlap between the Fig. 3)

ensty distibutons i difrent egons hasto be mninal. e The myocardium and the papilary muscles inside the
errongously in the myogar%iumy and the curves fro?n spilling cavi_ty are conner_:ted and h_ave almost the same intensity (refer
into the background. Although neither geometric training nor O Flg: 3 e). In this connectlpn, several' studies have addressed
preprocessing were usedguantitative evaluation of the similari- specifically the problems with the papillary muscles [9], [8].

ties between automatic and independent manual segmentations e The LV cavity has an intensity distribution similar to the
showed that the proposed method yields a competitive score in right ventricle [25] (refer to Fig. 3 d).

comparison with existing methods. This allows more flexibility . . .
in clinical use because our solution is based only on the current (b) There are no boundaries between the epicardium and

intensity data, and consequently, the results are not bounded SOme cardiac regions [25].

to the characteristics, variability, and mathematical description (c) The substantial variations in size, shape and intensity

?r‘: a f'”'tle training set. We also d_emctnnlstrateextpertlmentally thg_‘ between subjects, particularly those with pathological patterns,
€ overiap measures are approximately constant over a cardiac ., ,1e5 geometric/photometric models hard to build from a

sequence, which allows to learn the overlap priors from a single . . o
fraﬂqe_ PP g finite training set [7], [29].

. . . . Most of existing approaches to the LV tracking compute
Index Terms— Left Ventricle tracking, cardiac Magnetic Res- . . .
onance Images (cardiac MRI), variational image segmentation, a pixelwise correspor']de-nce. between the Curr'ent.lmag(.e (or
overlap priors, active contours, level sets. frame) and model distributions of photometric (intensity-
based) and geomettiproperties of the target objects. Model
distributions are generally learned from a training set, i.e.,
a finite set of hand-labeled images, and embedded in the
Accurate tracking of the Left Ventricle (LV) endo- andsegmentation via two standard frameworks: variational active
epicardium boundaries in 2D cardiac Magnetic Resonancentours/level-sets [34] (such as [1]-[3], [15]-[25]) and active
(MR) sequences is needed for the analysis and quantificatappearance/shape models [33] (such as [28]-[32]). In the
of the regional motion of the LV [44]. It plays an essential rolgariational framework, the problem is commonly stated as
in the diagnosis of cardiovascular diseases related to localizbd minimization of a functional containing two constraints:
regions with movement abnormalities. The standardized mg-geometric constraint which biases the solution toward a
ocardial segmentation [43] suggests selecting representatipecific geometric knowledge learned from a finite training
2D cardiac slices to generate 17 standardized LV segmeséts and an intensity-driven constraint based on the Maximum
over which we can assess the regional wall motion abndrikelihood (ML) principle [34]. The latter maximizes the
malities. This standardization is commonly used for regionabnditional probability of pixel intensity given the assumed
analysis of the LV function. Such analysis requires accurate ItWodel distribution within each region. Unfortunately, a ML
intensity-driven constraint is sensitive to inaccuracies in es-
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and the models, ML intensity-driven constraints assume an alternative to existing intensity constraints that arkkely
plicitly that the distribution overlap within different regions haso yield acceptable results without a geometric trainingah
to beminimal Such assumption is often violated in medicabe used in conjunction with geometric constraints in mddica
images. For instance, the pixelwise information is mislegd applications where a reliable geometric information can be
in the case of the LV due to the “significant” (cf. the typicalearned from a training set.
example in Fig. 3) overlap between the distributions within ¢ No assumption is made as to tharametricdistributions
different cardiac regions. Consequently, the use of tngni of photometric/geometric data because the current study us
based geometric constraints in conjunction with ML intgnsi a nonparametricdescription.
driven constraints was inevitable to obtain satisfyinguliss e Explicit curve coupling [3], [25] is not required because
[15]-[23]. Similar to variational level-set approachestie the proposed functionals and two-step minimization yieild a
appearance/shape models compute a pixelwise correspmndémplicit coupling.
between the image and the models [40]. As we will show in (b) We also demonstratexperimentallythat the used
the experiments (section IV), embeddigtpbal information overlap measures are approximately constant over a cardiac
about the overlap between the intensity distributions withsequence. This result is important because it allows tanlear
the segmentation regions is important. In the current stway the overlap priors from a single frame of the current data.
embedoverlap priorsin variational image segmentation andt can be also the basis of future investigations of the LV
demonstrate the effectiveness and flexibility of the pregossegmentation/tracking.
method in the context of the LV tracking. 2) The general-purpose segmentation cont&tie current
We state the tracking of the endo- and epicardium boungfudy is most related, but not similar, to the recent segmen-
aries in a cardiac MR sequence as the evolution of two actit@tion/tracking investigations [10]-[14] which have shothe
curves. We derive the curve evolution equations by miningjzi 2@dvantages of usingjstribution metricsover the ML principle.
two functionals each containing an original overlap pridre In this connection, there is a fundamental difference betwe
latter measures the conformity of the overlap between tkee proposed method and the methods in [10]-[14]. Similar
nonparametrigkernel-based) intensity distributions within the0 the ML principle, the methods in [10]-[14] are based
three target regions—LV cavity, myocardium and backgreun@n the following implicit assumptionThe overlap between
to a prior learned from a given segmentation of the first framée distributions of intensity data within different regoin
The Bhattacharyya coefficient is used as an overlap measiif€. current image/frame has to be miniméalnfortunately,
The contributions of this study are not only in the applicati such assumption may not be valid in cardiac imagery as

context but also in the scope of general-purpose segmentativell as many other applications. Although those methods
have been effective in some cases, they are vessatile

o _ enough to deal with situations in which a “significant” (cf.
A. The contributions of this study the left ventricle example in Fig. 3) overlap exists between

1) The LV tracking contextln the application context, the the distributions within different regions. The proposeethod
contributions of this study can be summarized as follows. relaxes the assumption of minimal overlap. It can be vieveed a

(a) Using only the current intensity data, i.e., even withmu a generalization of [10]-[14] for situations in which an ove
geometric training, the proposed method still yields a cetiap lap exists between the distributions within different o
tive segmentation score because the overlap priors prbe¢imt and, consequently, it is more widely applicable than exgsti
the papillary muscles from being included erroneously i trgeneral-purpose methods. As we will show in the context of
myocardium and the curves from spilling into the backgraunthe LV tracking (section 1V), embedding information about
This allows more flexibility in clinical use, particularlylven such overlap in the tracking functional would be very useful
dealing with abnormal subjects where the left ventricle un- The remainder of this paper is organized as follows. The
dergoes high and unseen (unexpected) geometric variatioh@xt section gives a brief review, focusing on general-psep
The overlap priors lead to a LV tracking which has severshriational methods as well as the LV tracking. Section IlI
advantages over existing methods: contains the theoretical contribution: after introducthg ap-

e The results are not bounded to some geomdiropriate notations and defining the proposed functioneds,
ric/photometric properties and variations learned froniteiin derive the descent minimization equations via curve eiaiut
training set. Section IV describes quantitativeperformance evaluation of

« The proposed method is not prone to the practical difficibeé proposed method over ten datasets by comparisons with
ties related to the choice of training set and the corresipgnd manual segmentations and other variational methods. dt als
mathematical models arad hocparameters. demonstrates the advantage of using overlap constraiets ov

e With the use of overlap priors, systematic bias caused @isting intensity constraints, reports the statistias dherlap
some cases by geometric-training constraints [7] can be R§iors/measures, and finally depicts a representative lganfip
laxed or weakened, particularly with abnormal subjectsrehethe results. Section V contains a discussion.
the left ventricle undergoes high and unseen (unexpected)
geometric variations. It is worth mentioning, however,ttha o )
the proposed overlap prior is not an alternative to geometft- General-purpose variational segmentation
priors. Geometric and overlap constraints arthogonaland The variational level-set segmentation framework, which
can be used along with each other. The overlap prior is ratheses active curves to delineate the target objects, hasgasen

II. PREVIOUSWORK
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erally effective and flexible [10]-[14], [34]-[38]. It hagbome B. The LV tracking/segmentation
very popular in computer vision and medical image analysis
for several reasons: (a) the solution is sought following tha
optimization of a cost functional which balances the infleeen
of image data and prior knowledge in a flexible, principlet a
transparent way. This applies to a wide range of function

including intensity-driven, prior-knowledge and apptioa- Expectation-Maximization algorithm [3]. Other studiesvba

specn‘!c functionals; (p) the level-set re.presenltatlon.mrfve a%dressed specifically the problem of the papillary muscles
evolution can be easily extended to higher dimensions, al filtering-based approach is investigated in [9] whereas

aIIO\_/vs computing georpetnc characteristics of obj_ect§ N5 Juthors in [8] propose to segment the papillary mus-
straightforward manner; (c) there are several application les separately. As several studies have shown [1]-[3]-[15
o

The LV tracking/segmentation is still challenging, altigbu

n impressive research effort has been devoted to this task

[11-[9], [15]-[32]. Existing methods are based on, among
thers, active appearance/shape models [28]-[32], ratist

"’ﬁﬁ clustering [5] and the use of probabilistic atlases tha

medical image analysis where anatomical entities can e .
1g€ y [25], the variational framework based on curve evolutios ha
enclosed within a closed contour. Level set segmentati

E:r?]n&sts of eV(I)I\t/_mg a cutr.ve o dellrg)(tea_te éhs targtgt .Opje?ttacking/segmentation. The problem is commonly stated as
€ curve evolution equations are obtained by optimizing, g, optimization of a functional containing a ML intensity-
functional which, generally, contains a data term meagun%1

en the most flexible and effective approach to the LV

the conformity of the observed photometric data within ea Ir;\;(aerls ?ﬁgzgﬂzés?ngrgzgrge?ﬁiii(?ﬁgggeg:gaﬂgﬁggl
reg@on to a given statistical description. In most of exigti finite training set [15]-[21]. Although effective in somesess,
reg[on-based Ieyel set ”.‘e”.‘OdS' the data_term can be pdsedt ese methods are subject to the well known limitations of a
'OVY'”g the Maximum L|k¢||hqod (ML) pn_nqplé [34]_[33_3].' statistical geometric training: (a) the results dependshen
T_h|s qorrespond_s to maximizing the conquna} p“_’b@bF‘“_ characteristics, variability and mathematical desaviptof a
pixel intensity given the assumed model distributions imith

: . R finite training set; (b) a statistical geometric prior canusa
the quects. As discussed rece_ntly_ by M|Ch_&\|l0Vlebl{19], systematic bias in some cases [7], particularly with abradrm
Likelihood-based curve evolution is sensitive to inacciga

. timating th del distributi More | ; .~ subjects where the left ventricle undergoes high and unseen
In estimating the model distrbutions. Viore impor antygan (unexpected) geometric variations. Curve coupling betwee
not incorporate information about thaverlap between the

o . . T . . the LV endo- and epicardium was also introduced in [24], [25]

dlstnbg'uons Of. mte_nsny within different regions. Endsting in order to prevent the papillary muscle from being included

SUCh. mfprmatlon in level set segmentation is among ﬂ?ﬁto the myocardium. In [2], the authors propose to maingéain

contributions of the current study. constant photometric environment in the vicinity of thevas
Recent studies have shown the advantages and effectigtopagated from one image to another. This corresponds to

ness of usingdistribution metricsin level set segmenta- matching intensities in profiles perpendicular to the carve

tion [10], [11] and tracking [12], [13]. Possible measure# order to maintain their positions constant with respect t

of similarity/dissimilarity between distributions include theanatomical structures. In this connection, we proposed i@ mo

Bhattacharyya coefficient [10], [12] and the mutual informaglobal technique in [6] by applying the distribution-matai

tion [14]. However, the Bhattacharyya coefficient has showsf intensity [13] to the three cardiac regions: the LV cavibe

superior performances over other criteria [10], [12]. 1@][1 myocardium and the background. These recent methods based

tow-region segmentation is stated as minimizingshmilarity —on intensity matching have led to promising results. Howeve

(or maximizing thedissimilarity) between thenonparametrié matching photometric values can not embed information ebou

distributions sampled from inside and outside the curve. the overlap between the intensity distributions of différe

[12], [13], the target object is identified as the region whogegions. As we will show in this study, embedding global

intensity distribution most closely matches a learnedritiist information about such overlap is important and can lead to

tion. It has been demonstrated experimentally [12] thaveureffective LV tracking.

evolution based on the Bhattacharyya measure outperforms

the ML principle. Furthermore, it is much less sensitive to

inaccuracies in estimating model distributions [10]. $ami

to likelihood-based methods, these studies assumpdicitly A. The proposed tracking functionals

that the overlap between the distributions of intensityhimit . -

different regions in the current image/frame has to be mahim Let 7 be a MR cardiac sequence containing frame§_

/" : Q Cc R? —» R*, n € [1.N]. The purpose of this

Unfortunately, such assumption is often violated in cardia . . .
. o study is to automatically detect the endocardium (yellow
imagery as well as many other applications.

contour in Fig. 3.a) and the epicardium (green contour in
Fig. 3.a) of the heart for each € [2..N]. We formulate
the problem as the evolution of two closed planar parametric
curvesI” (s), T ,(s) : [0,1] — €, toward, respectively, the

out
2A comprehensive review of variational level-set methods ba found in - endo- and epicardium. This consists of segmenting the domai
[3§] : e _ Q of each frame into three target regions:
In order to incorporate complex statistical informationtie segmenta-
tion/tracking algorithms, the recent trend in generalppge segmentation has
been toward using nonparametric models [10]-[14]. 4The number of frame&V is typically equal to20 or 25.

IIl. FORMULATION
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(1) The heart cavityC™ corresponding to the interior of Consequently, measur8s, andB!,, estimated from a given
curvel™ : segmentation of the first frame in sequedtean be used as
C" = Rg, (1) overlap priorsto constrain the tracking in frame&..1V. In
" ~ order to embed prior information about the overlap between
where R denotes the region enclosed by cuivefor each the intensity distribution within the three target regipme
Le{rz, o, propose to minimize the following constraints for eache
(2) The myocardiumM™ corresponding to the region be-[2..N]
tweenI” andI™

out:

n __ c .
M"=Re, DRy, @) on = (B, — Bl,)?
where RZ denotes the complement &g for eachT ¢ cavity/myocardium overlap prior
{f?n’ fZut . OQ’U«t = (Bgut - B<1)ut)2 (9)
. (3) The background™ corresponding to the region outside myocardium background overlap prior
F:)Lut:
out O measures how the overlap between the intensity distribu-

For each curve, the evolution equation is obtained Bsns within the cavity and myocardium fits pri@. . O

out

minimizing a cost functional containing three characteris measures how the overlap between the intensity distribsitio

terms. within the myocardium and background fits priB¢,,,. Al-
(1) Overlap prior terms though constraining the LV tracking with overlap priors laas
In order to define the proposed overlap priors, we firgituitive meaning because of the overlap between the iittens

consider the following definitions: distributions within different cardiac entities (cf. theptcal

e For each regioR € {C",M", B",n = 1..N}, define example in Fig. 3), we will further validatexperimentally
Pr,1 as the nonparametric (kernel-based) estimate of intensif importance of the proposed overlap constraints (sectio

distribution within regionR in framel € {I",n =1.N} IV). More precisely, we will confirm with reference (manual)
. [ K (2 — I(x))dx segmentations oIIO datasets, i.e.]90 frames, thatO? and
VzeRT, Pri(z) = , (4) o, are approximately equal to zero (refer to table III).
R Consequently, the manual segmentations correspond approx
whereag is the area of regiolR mately to the minima of the overlap priors. Thus, it is expect
that, using only the current data, the minimization of such
AR = /R dx () priors would bias the results toward the desired segmentsati

Tvpical choi 7 he Dirac f . dthe G . As we will show in the experiments, the overlap priors preéven
ypical choices ofis are the Dirac function and the Gaussiagy i, e papillary muscles from being included erroneously

kernel [10]. in the myocardium and the curves from spilling into the

* B(f/g) is the Bhattacharyya C(_)e_ﬁicient measuring thBackground, thereby relaxing the need of a geometric trgini
amount of overlap between two statistical samplesnd g

Note also that, in the scope of general-purpose segmenta-

B(f/g) = Z V(2)g(2) (6) tion, the overlap priors in (9) can be viewed as a generadizat
zeR+ of the segmentation/tracking constraints proposed récént

Note that the values d8 are always ir{0, 1], where0 indicates the studies in [10]-{14]. The latter assume implicitly thfae
that there is no overlap, aridindicates a perfect match. overlap between the distributions within different regiois
We assume that a segmentation of the first frathe.e., a minimal The assumption of minimal overlap is often violated

partition {C"', M, B'}, is given. Consider in cardiac imagery as well as many other medical application
B The overlap constraint in (9) relaxes such assumption and,
B, = B(Pcn 1/ Py 1) Vn e [1.N] (7) consequently, is more applicabland more versatile than

existing intensity-driven constraints—it addressesasituns in

_ which an overlap exists between the distributions of déffer
B}, measures the amount of overlap between the intensigions.

distribution within the heart cavity region id™ and the

myocardium model learned from the first frame. Consider
also the following measure of overlap between the intensityIn conjunction with the overlap priors, we use mean-
distribution within the myocardium region i and the matching terms which measure the conformity of intensity

cavity/myocardium overlap measure

(2) Mean-matching terms

background model learned from the first frame: means within the cavity and the myocardium in the current
Bout = B(Parn v/ Pp1 1) Vn e [1.N] (8)
myocardium /background overlap measure SFor instance, the particular case correspondin@fg = 0 is an explicit

form of assuming that the overlap between the distributiointhe LV cavity
> ) and the myocardium is minimal. Such assumptioninmplicit in existing
areapproximately constardver a cardiac sequence methods.

As we will demonstrateexperimentallyin section 1V, B},
andB},

out
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frame to mean priors learned from the first frame

n . n 1 1\2
~—_————
cavity mean prior
n

out = (:u:)lut - M(lnut)Q (10)
—_———

myocardium mean prior

where p7, and p,, are the estimates of intensity meang\,here

within, respectivelyC™ and M™, for n € [1..N]

family of curves:I'(s,t) : [0,1] x Rt — €, and solve the
partial differential equations

orL (s,t) _OFn

ot N orn.
o™, (s, 1) _OF g

ou’ — ou 15
7& e (15)

out
af denotes the functional derivative @f with respect
toT. We adopt a two-step algorithm: the first step consists of

[ Tdx fixing Fout and evolvmgFm (the endoca£d|um boundary) until
Hin = g convergence and the second step evolugs (the epicardium
f I dx boundary) wnth fixed.
T (11) Step 1:In th|s step, we derive the evolution df;, by
amr minimizing F7,. We have
3) Regularizaﬁion/gradie_nt tgrms _ . 51:?”(8’” oFL oa(B" B OB
We use classic regularization/gradient terms to bias the™ 5 T o —2a(Bj, - B,,) o
curves toward high gradient of intensity and to enforce eurv " Owerlap prior influence
smoothness 3Mm
Gin, = jgfn (gn +c)ds n in
h Aagi“ 16
out = jgfgut (gn + C)ds (12) - orn (16)
where ¢ is a positive constant ang,, is an edge indicator Before deriving the final evolution equation ﬁfn we give
function a simple interpretation of how the overlap prior guides the
1 : )
G = Vi € [1..N] (13) curve evlolutlon. The overlgp measure Ie_arnec_i from thg first
1+ ||VIn|? frame,B; , influences the sign of the multiplicative coeff|C|ent

n?

The functionals to minimize are a weighted sum of the thréoverlap prior influencp affected to the gradient ro

characteristic terms

Fr a0 + M, + AGL,

— n 12
—_—————
cavity/myocardium overlap prior
n 12
+ Bt — tin)
~—_———

Cavity mean matching

+ /\7{ (gn + c)ds

in
Endocardium boundary

Ft?ut = aoout + ﬁMout + /\gout
= (Bn B(lnut)

out
myocardium /background overlap prior
n 1 2
+ ﬁ(uout - Mout)
~—_——
Myocardium mean matching

+ A (gn + c)ds
F'Vl

out

| —

Epicardium boundary

(14)

B. Minimization equations via curve evolution

This coefficient is negative when B}, is superior to |ts
expected valud., . In this case, the overlap prior results in a
curve evolution whicldecrease®B}, . By contrast, wheB},
is inferior to B}, , the coefficient becomegositive and the
curve evolutionincreasesB.,. The overlap prior leads to a
curve evolution which keeps the overlap between the intgnsi
distributions within the the cavity and the myocardium elos
to its expected valuB!, . As we will see in the results (c.f. the
example in Fig. 3), this prevents the papillary muscles from
being included in the myocardium alfdln from spilling into
the background.

To derive the final curve evolution equation, we need to

_ 1 Z Py v OPcn pn (17)

8F” S\ Ferary,

Now we need to computgpc"—f" To this end, we consider

the following proposition, WhICh will be used also in thetres
of the computation.

Proposition 1 For a scalar functiorh and a curvel’, the
functional derivative with respect 0 of the integral ofh over
the region enclosed bﬁ i.e., Ry, is given by

3fR x)dx

aﬁ — h(x)7i(x) (18)

The curve evolution equations are obtained by the Eulavherefi(x) is the outward unit normal t&' at x. This result

Lagrange descent m|n|m|zat|on xﬁ" and F .. To this end,

out"
we embed each cun@, T’ e {I™"

n’

is based on the Green’s theorem and has been demonstrated
Out} in a one-parameterin [41].
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TABLE |
SYNTHETIC EXAMPLE—STATISTICS OF THE BINARY SEGMENTATIONS
OBTAINED WITH THREE ENERGIES DM, DMBM, AND DMOP. THE
LEARNED OVERLAP MEASURE IS EQUAL TO0.71.

Applying this proposition taic-» and [, K (z — I"(x))dx
61;?;'” yields, after some algebraic manipulations

M_l z—1"(s)) — Pcn n(s)) il (s
ot~ aor (K= 1) = Ponm ()T ()

in

(19) Method DM | DMBM | DMOP
o . = Normalized mean at convergende 0.28 0.30 0.27
where7i?}, is the outward unit normal td},. We assumex Similarity at convergence | 0.09 | 0.99 0.99
is the Dirac function to simplify the equations. However th Overlap at convergence 0.63 | 0.42 0.71
same derivation applies for an arbitrary kernel. Embedding
(19) into (17), and after some algebraic manipulations, we TABLE Il
obtain: CARDIAC CAVITY EXAMPLE —STATISTICS OF THE BINARY SEGMENTATIONS
OBTAINED WITH THREE ENERGIES DM, DMBM, AND DMOP. THE
8B?n 1 PMl It (S) n —n
= = : - B, | 7i.(s)  (20) LEARNED OVERLAP MEASURE IS EQUAL T00.53.
ar?n (s) 2acn Pcn,]n (S)
our, . Method DM | DMBM | DMOP
To comput arn we adopt the same procedure by applylng Normalized mean at convergende 0.46 0.44 0.47
proposition 1to ac» and [, I"(x)dx in pf,. This yields, Similarity at convergence | 0.98 | 0.96 0.98
after some algebraic manipulations Overlap at convergence | 0.50 | 044 | 0.54
or?, acn

using a number of points on the curve [42]. It can be effected
Embedding (20), (21), and the derivative of the regularizéy stable numerical schemes [42]. It is also implicit, insic
tion/gradient term [39] in (16) gives the final curve evahuti and parameter free. The level-set representation of imet

equation of the endocardium boundary: problems has become very popular in medical image analysis
o . ) for several reasons:
s, _ {Q(Bm - Bin)(Bﬂ _ PMPP) e The obtained algorithms can be extended to higher di-
m . . .
ot acn Pen, mensions in a straightforward manner.
28(u — k) e Geometric characteristics of the curve, such as curvatures
+ Mzn luzn ( n o o_ In) . .
acm Hin and normals, can be easily derived.
T A[Vgn.A — (g + c)RT VT (22) 6ﬁOne Cal’l show that [42].|f the curve evolves accoid!ng to
_ L 5 = Vi (refer to equations (22) and (23)), whefiis
wherer;;, is the mean curvature function &f;,. the outward unit normal té' and V' a scalar function which

Step 2 In this step we fixI';, obtained at convergence i.e.gepends on pixel position and algorithmic timethen the
whent — oo, and evolvel';,,, by minimizing 777,,. Following ~jeve| set function evolves according 81 = v.[|Vu|.
the same computation as gtep 1 and after some algebraic 2) Weighting parametersThe parameters weighting the
manipulations, we obtain the following evolution equatimn q|ative contribution of the overlap priors, the mean-rhatg

the epicardium boundary terms and the boundary terms are fixed for all the experiments
L 0 ml o =1000,3 =10, = 0.1,c = 10.
Mous {(OutiBout)( noE— A /M) 3) Data: The algorithm was applied to cine-MR short axis
ot amr Pare 1 images obtained with &5 Tesla scanner. All the images were

28(u" — i) n obtained during a 10-15 seconds breath-holds with a terhpora
* apn (Hour = 1") resolution of 20 or 25 frames. Note that the algorithm is

+ AVgn-fin: — (gn + KD F o (23) applicable to other types of images.

where " , is the outward unit normal t&",,, andx?,, is IV. EXPERIMENTS
the mean curvature function of; ,. Partition C", M", B™) _ S . _
of frame I" is obtained from” andI™,, at convergence.  In the following, we first show two-region segmentation

examples including a synthetic image and a cardiac image,
which demonstrate explicitly the positive effect of the pro
posed overlap prior and how it can lead to improvements over
1) Level set evolution equationsiWe use the level-set related distribution-based constraints. Second, we giwpia
formalism [42] to implement the curve evolution equations ical cardiac example that demonstrates clearly the advewtag
(22) and (23). We represent curviefy, andI'y,,, respectively, using overlap constraints over commonly used ML intensity
by two functionsu?, : @ ¢ R — R (I'?, = {ul’, = 0}) constraints. Third, we report the statistics of the overlap

C. Implementation

andug, : @ CR =R (liout = {ul,;, = 0}), with the priors/measures over ten manually segmented datasetsh whi
region insidel’ (I' = I'},,I'y,,) corresponding tou < 0 demonstrates that the overlap measures are approximately ¢

(u=ul,,ul,.). The level-set representation of curve evolutiostant over a cardiac sequence and, consequently, the minima

wm?

has well-known advantages over an explicit discretizatibli  of the proposed overlap priors correspond approximately to
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TABLE Il
STATISTICS OF THE OVERLAP PRIORS\AEASURES(EXPRESSED AS MEANt STD) OVER TEN DATASETS THE OVERLAP PRIORS AREappI’OXimate|yEQUAL
TO ZERO.
Bgut B?n Ogut = (Bgut — Biut)Q' (n > 1) O?n - (B?n — len)Q’ (n > 1)
0.69 £0.05 | 0.42+0.17 1.9(1073) £ 2.4(1073) 6.5(1073) £ 8.5(1077)

(b) Target object DM DMBM DMOP

final final final
object object object

Fig. 1. Segmentation of a synthetic image into two regionth Wiree energies: the second, third, and fourth column&déye curve at convergence and
the obtained object with, respectively, DM, DMBM, and DMQW#ithout the overlap prigri.e. with DM and DMBM, parts of the background were included
in the final region. On the contrary, the overlap prior, iBMOP, led to a region similar to the target object in (b). Tlene initialization in (a) was used

for both energies.

reference segmentations. Fourth, we describguantitative (3) DMOP: The concatenation of DM and the proposed
performance evaluation of the proposed method over tewerlap prior.

cardiac datasets by comparisons with manual segmentations

and other variational methods [1], [3], [9], [6]. Finallyevgive ~ Fig. 1 shows a synthetic example in which the target object

a representative sample of the results for visual inspectio is a texture square in the middle of the image. The second
and third columns depict the curve at convergence and the

A. Effect of overlap constraints obtained object with, respectively, DM and DMBM. With
1) Overlap constraints vs. existing distribution-based-co these two energies, i.ewithout the overlap prior parts of
straints: To show explicitly the influence of the overlap priorthe background, which have an intensity profile similar to
we compared three energies in the case of segmentation ifte target square, were included in the final region. On the

two regions (an object and a background), one energy cantad@ntrary,with the proposed overlap pripii.e., with DMOP,
an overlap prior and the two others do not contain an overl#e final curve delineates accurately the square in the middl
prior: of the image, leading the a region similar to the target dbjec
(1) DM: The distribution matching energy proposed in [13{refer to the fourth column in Fig. 1). The overlap prior
and applied to cardiac imagery in [6]. The optimization gprevents the curve from spilling into the background eveth wi
this energy seeks a region in the image, so that the samaleurve initialization far from the target object (refer tF
distribution of the region most closely matches a modél a). For the three energies, we used the same initialization
distribution. smoothness constraint, and model distributions learnewh fr
(2) DMBM: The concatenation of the energy in [13], i.e.the same image. The cardiac image example in Fig. 2, where
DM, and the foreground/background mismatching energy the purpose is to separate the heart cavity (refer to the atanu
[10]. Optimization of the latter seeks a segmentation, segmentation in Fig. 2 b and c) from the background with
that the similarity between the foreground and backgroumaly intensity information, illustrates the same effecttbé
distributions is minimal. proposed overlap prior. It depicts an instance where both DM
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(a) Initialization DMBM DMOP
evolution evolution evolution
step step step

(b) Manual delineation DM DMBM DMOP
final final final
curve curve curve
k|

(c) Target object DM DMBM DMOP
final final final
object object object

Fig. 2. Segmentation of a cardiac image into two regions witee energies: DM, DMBM, and DMOP. The purpose is to sepaifa¢ cavity from the
background as shown by the manual segmentation in (b) and'i€) second, third, and fourth columns depict the curve avergence and the obtained
object with, respectively, DM, DMBM, and DMORVithout the overlap priari.e. with DM and DMBM, parts of the right ventricle and myodaim were
included in the curve at convergence, whereas adding th@opeal overlap prior, i.e., using DMOP, biases the soluticrumately toward the cavity. For the
three energies, we used the same initialization in (a) aadséime model distributions learned from a previous frame.

and DMBM include erroneously parts of the right ventricle e Similarity at convergencerhe Bhattacharyya measure
and myocardium in the curve at convergence (refer to tloé similarity between the distribution of intensity withihe
second and third columns in Fig. 2), whereas adding tleerve at convergence and a model distribution, i.e., DM at
proposed overlap prior, i.e., using DMOP, biases the swiuticonvergence.
accurately toward the target object, the left ventricleityawn e Overlap at convergenceThe Bhattacharyya measure
this case (refer to the fourth columns in Fig. 2). For the¢hresf overlap between the foreground (the region inside the
energies, we used the same initialization and the same mogl¢lve) and the background (the region outside the curve) at
distributions learned from a previous frame. These examplgonvergence.
demonstrate clearly that the overlap prior is the energy tha o the three energies, we obtained approximately the same
prevents the curve from spilling, thereby relaxing the negflean and the same similarity with the model distributiofefre
of complicated shape priors. To illustrate quantitativéiis o the second and third row in table | and table I1), although t
positive effect of the overlap prior, we report in tables #dh  segmented objects are different (refer to the last row in Fig
the following statistics of the binary segmentations atedi 5nq Fig. 2). On the contrary, adding the proposed overlay,pri
with DM, DMBM, and DMOP. i.e., using DMOP, led to a measure of overlap different from
e Normalized mean at convergendke mean of intensity those obtained with DM and DMBM and approximately equal
within the curve at convergence. to the learned prior (refer to the last row in table | and tdble
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When the curve spills in the background with DM and DMBMB. Statistics of the overlap priors/measures

the overlap between the foreground and background desieasen Fig. 4, we plotted the proposed overlap priors/measures
deviating from the learned prior. Consequently, matchimg tyersys the frame numbetq0 frames) using manual segmen-
distribution inside the curve to a model distribution asi8]l ~tations from10 datasets. As reported in table Ill, the overlap
[6] and using a mean matching constraint are not sufficiegfiors in (9) are approximately equal to zero (refer to the
for these binary segmentation examples. Adding the overlggntinuous red line in Fig. 4). This validates the usefines
prior limited the space of possible solutions, and was re20gs of sych priors for the LV tracking. It is also interesting to
to obtain the correct segmentations. These statistics ravnfigtice that overlap measur&j, andB",, do not vary much
explicitly that the overlap term is the constraint that @nets oyer gifferent patients (refer to Fig. 4).
the curve from spilling in the background.

2) Overlap constraints vs. ML intensity-driven constraint
Figure 3 (a) shows a typical example of a MR mid-cavity
frame. It depicts the expected segmentations of the LV gavit

L . : X 0 0.8 ws Na :
(region inside the yellow curve) and the epicardial region g cn FT e PR

o - . 2 ke S NSTEW e S
(region inside the green curve). Figs. 3 d and e illustrate goej.fg * ® Cop sy ki
the significant overlap between the distributions withie th E ﬁf }#ﬁ . Fa  F

X . . g i
three target regions: cavity, myocardium and backgrourad. N <04 Ty {1& %@%j Fn
geometric-training constraints were added for a fair camapa 3 f"ﬂ}i@ T f*#fﬁ + 7
. . 2 +

son between overlap and ML constraints. For both consgaint O p.otit e

model distributions of regions were estimated from the same

pesegmented framaldith a ML intensity-driven constraint 0
parts of the_ background, which _have inter_15ity profil_es_simil 0 50 100 150 200
to the cavity and the myocardium, are included inside the Image number (190 frames from 10 datasets)

final curves (refer to Fig. 3 ¢). The use of geometric-tragnin
( 9 ) 9 a Fig. 4. The proposed overlap priors/measures versus theefraumber 190

constra_ints iq cqnjunction with ML constraints is i_neviltab frames) in10 manually segmented dataseB",, (blue points):B”. (green
to obtain satisfying results [15]-[23]. By contrasising an markers);(BZ,, — BL,,)? + (B}, — B} )? (continuous red line).
overlap constraintlelineates accurately the cavity and the LV

(refer to Fig. 3 b), thereby relaxing the need of a training.
C. Quantitative performance evaluation

The performance of the proposed variational technique was
evaluated by comparisons with independent manual segmen-
tations approved by an experienced cardiologist. We agplie
the method to 2D mid-cavity MR sequences obtained from
10 subjects, i.e. 10 different datasets190 frames were au-
tomatically segmentedlhe free parameters were unchanged
for all the datasetsa = 1000, 5 = 10, A = 0.1, ¢ = 10. Curve
initializations and estimations aB! , Bl ,, i, and ul,,

wm?

(a) Manual (b) Overlap () ML \vere obtained from a user-provided segmentation of the first
segmentation segmentation segmentation  frame in each sequence. Two clinically important measures
Overlap LV/Background Ovorte oy Ryor Aem were evaluated for performance appraisa¥l cavity area
:“H”:fc’:‘v“; and LV epicardial area Area measurements are expressed
2 Left Ventricle . B e ity uscies as the number of pixels within the region. We first used the

Dice Metric (DM)to measure thaimilarity between manual
and automatic segmentations. Lat,, A, and A,,, be
the areas of, respectively, the automatically detectetbmeg
the corresponding hand-labeled region and the intergectio
s e TR e e S between themDM is given by [1]

(d) (e) 2Aam

Fig. 3.  Advantage of overlap constraints: (a) manual segatien by Aat Am

a radiologist-yellow curve: endocardium, green curvecamium, region Our algorithm yielded &M equal t00.93 + 0.02 for all the
within the yellow curve: cavity, region between the yellondagreen curves: data (refer to table IV)DM is expressed as meahn standard
myocardium, region outside the green curve: backgrounds€gmentations L .

obtainedwith an overlap constrainti.e., with our method: (c) segmentationsdeviation. We obtaine®M equal t00.92 + 0.03 for the LV
obtainedwith a ML constraint (d) overlap between the distributions within cavity areas andM equal t00.94 & 0.01 for the epicardial
the LV and the nearby background (region inside the blue ecimva); (e) areas

overlap between the distributions within the cavity and timgocardium. ’

Density
Density

(24)

6DM is always in [0, 1].DM equal to 1 indicates a perfect match between
manual and automatic segmentation.
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TABLE IV
Dice measure®F SIMILARITY BETWEEN MANUAL AND AUTOMATIC
SEGMENTATIONS THE HIGHER THEDice metric THE BETTER THE
SEGMENTATION.

Dice metrics | Mean | Std s1f9 s1f11
This method 0.93 0.02
Method in [1 0.81 0.16
Method in [6 0.89 0.09

Method in [9 0.90 0.05

TABLE V
Correlation coefficientBETWEEN MANUAL AND AUTOMATIC AREAS. THE
HIGHER THE correlation coefficientTHE BETTER THE SEGMENTATION

Correlation LV cavity areas| Epicardial areas| s3fT s3f9
This method 0.94 0.96
Method in [3 0.89 0.87
Method in [6 0.82 0.89

We also report good correlation coefficients between manu s
and automatic endo- and epicardial areas (refer to table V). F,
To bear comparisons with other recent variational ap-ik |
proaches to LV tracking, we give in tables IV and V, respec-§
tively, the Dice metrics and correlation coefficients repdr s5f3 s5f5 $519 s5f11 s5113
in [1], [3], [9], [6]. Although neither a geometric trainingor _ o _ _
a preprocessing were used, our method achieved a comfjih-> Mid-caviy slices results for e MR sequences: each,fow depicts
itive score in comparison with existing variational levelt s C;V:S#nst:oérggi (Sjcrtjeen@'_ A =10,A=0.1,¢=10. IF,: re
methods. This is consistent with the visual inspection &f th o
results in [1] (cf. the examples given in Fig. 7 in [1]), which

show that the method in [1] does not allow embedding midiceptable results without geometric training, the pregos
cavity papillary muscles in the inner curve. On the contrdig  oyerjap priors prevent both the endo- and epicardium bound-
proposed method prevents the papillary muscles from beigges from spilling into the background.

included erroneously in the myocardium (refer to Fig. 5)isTh 554l slices:

is due to the effect of the prior on the overlap between therig g gepicts a representative sample of the results wih fiv

cavity and the myocardium. It should be noted, however, thglica| sequences. These include difficult examples where the

the accuracy of the proposed method comes at the pricegffe goes not contain the myocardium in280° (cf. s14 in

a user interaction. The method in [1] segments all the slicgss first row in Fig. 6). Even with these examples, the progose

and is fully unsupervised whereas the proposed method negghod prevented the endo- and epicardium boundaries from

contours in the first frame. spilling into the background, and led to satisfying results
Apical slices:

D. Visual inspection Fig. 7 depicts a representative sample of the results with

. . . five apical sequences. These include examples where it is

Mld—_cavny sllc_es: _ difficult to segment the left ventricle because of the smiak s

In Fig. 5, we give a representative sample of the results wi the structures and moving artifacts. Visual inspectidn o

f'\t/)e mld(;cfaw:cysequ.ences{s(l—s@. er{y d%p'CtZ the tracking yhese results demonstrate that the proposed method islélexib
obtained for framey in sequencer. The red and green CUVes, y ofective, although it uses only the intensity of therent
represent, respectively;?, and I'?,, at convergence. The

; . u ; data.
obtained curves divide each frame into three regions: thethe

cavity (region inside the red curve), the myocardium (ragio
between the red and the green curve), and the background
(region outside the green curve). Although neither a gedmet This study investigatedverlap priorsfor curve evolution
training [20], [21] nor a preprocessing step [9] were ushd, ttracking of the LV endo- and epicardium boundaries in cardia
proposed method successfully included the papillary nesscMR sequences. The curve evolution equations were derived
inside the cavity. This task is challenging [9], particlifar by minimizing two functionals each containing an original
when the papillary muscles are connected to the myocardiwwerlap prior constraint. Using 190 reference (manual} seg
(refer to the typical examples in Fig. 5). Furthermore, kmli mentations from 10 datasets, we demonstratqgerimentally
existing intensity constraints which do not allow to acleievthat the overlap measures are approximately constant over a

V. DISCUSSION
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iiiiIIIIiIiiIIII
s1f12  sl1f15

s2f7 $2£9

s3f2 s3f4 s3f8

s4f3 s4f5 s4f9 s4f10 s4f11
sHf4 s5f6 sHf8 s5f10 s5f18

sbf3 s5fh s5f6 sHf7 s5f9

Fig. 7. Apical slicesresults for five MR sequences: each row depicts the
Fig. 6. Basal slicesresults for five MR sequences: each row depicts theesults for one sequence. = 1000, 8 = 10,A = 0.1,¢ = 10. f?n: red
results for one sequence. = 1000,8 = 10,\ = 0.1,c = 10. f;?n: red curve, fgut: green curve
curve, fgut: green curve

cardiac sequence. This led naturally to the proposed quergffect has been confirmed over the 190 tests we run. In each
energies. Note that a high variation of the overlap in gf these tests, the final curves did not intersect each other.

given sequence will affect segmentation accuracy becdese This can be explained by the following effects of the progbse
proposed algorithm is based on the assumption that theagve§N€rgles:

is approximately constant. Note also that the algorithm was1) The inner curve cannot spill within the myocardium
performed on 2D slices. Were a segmentation of the first vdlecause this would increase the cavity/myocardium overlap
ume given, it would be straightforward to extend the obtdineonstraint. Therefore, it does not intersect the initiateou
2D curve propagation to a 3D surface evolution. The level satrve.

representation of evolving interfaces, such as 2D curvels an 2) When the outer curve propagates within the myocardium
3D surfaces, extends to arbitrary higher dimensions. Tta firerroneously toward the inner curve, we have:

evolut!on equations_in (22) apd (23) apply a!so for a surfacea) The distribution of the region between the two curves—the
evolu_t|on_; th? only dlfferenczze is that the domain of the Iestﬁ_ myocardium region-remains approximately constant becaus
function isR” rather thaniR. However, the 3D segmentationy,, myocardium has, generally, a homogeneous intensity.

of the first volume requires either a higher amount of us@l,nqequently, the myocardium/background overlap canstra
interaction or an independent automated process. does not decrease

Although the proposed system uses only the current datab h di ichi traint h imil
i.e., neither a geometric training nor a preprocessing wer )t' .tedmyocart (|jum meanbmac mgt;hcons ramb t\?vs as;rr?u;tlr
used, the final curve evolution equations have severalatdsir eliect, it does not decrease because thé mean between the two

effects: curves remains approximately constant.

e The overlap priors prevent the curves from spilling into €) On the contrary, the epicardium boundary term increases
the background. This has been demonstrated explicitly wifthen the outer curve evolves inward within the myocardium
two-region segmentation examples. It has been also confirmecause the myocardium has a homogeneous intensity (the
by extensive testing over 190 segmentations with 10 differedradient within the myocardium is small).
subjects. These positive effects allow more flexibility in clinical &is

e The proposed energies and two-step minimization suffibecause the results of the proposed method are not bounded
to prevent the curves from intersecting each other andetheto the characteristics, variability, and mathematicatdpson
fore, relax the need of explicit curve coupling. This pasti of a finite training set.
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