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Abstract. This study investigates heart wall motion abnormality detec-
tion with an information theoretic measure of heart motion based on the
Shannon’s differential entropy (SDE) and recursive Bayesian filtering.
Heart wall motion is generally analyzed using functional images which
are subject to noise and segmentation inaccuracies, and incorporation
of prior knowledge is crucial in improving the accuracy. The Kalman
filter, a well known recursive Bayesian filter, is used in this study to esti-
mate the left ventricular (LV) cavity points given incomplete and noisy
data, and given a dynamic model. However, due to similarities between
the statistical information of normal and abnormal heart motions, de-
tecting and classifying abnormality is a challenging problem which we
proposed to investigate with a global measure based on the SDE. We
further derive two other possible information theoretic abnormality de-
tection criteria, one is based on Rényi entropy and the other on Fisher
information. The proposed method analyzes wall motion quantitatively
by constructing distributions of the normalized radial distance estimates
of the LV cavity. Using 269×20 segmented LV cavities of short-axis mag-
netic resonance images obtained from 30 subjects, the experimental anal-
ysis demonstrates that the proposed SDE criterion can lead to significant
improvement over other features that are prevalent in the literature re-
lated to the LV cavity, namely, mean radial displacement and mean radial
velocity.

1 Introduction

Early detection of motion abnormality is the utmost importance in the diagnosis
of coronary heart disease – the most common type of cardiovascular disease.
Unfortunately, early detection by visual inspection is limited due to vast amount
of information and uncertainty associated with heart motion. Computer-aided
detection systems, which can analyze extensive amount of information associated
with the heart motion, have attracted research attention in recent years [1–3].
Computer-aided abnormality detection primarily consists of two components:
preprocessing and classification.

The preprocessing, centered around image segmentation, is in itself chal-
lenging due to the difficulties inherent to cardiac images [4]. Additionally, the
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classification is also difficult because of similarities between the statistical infor-
mation associated with normal and abnormal heart motion. Fig. 1 depicts typical
examples of normal and abnormal heart motion, along with the corresponding
distributions of motion measurements over time. The significant overlap between
these distributions makes the classification problem difficult, and the use of dis-
tribution moments, for instance the mean [2], may not be sufficient to separate
normal and abnormal motions. To tackle the classification problem, we propose
an information theoretic measure of heart motion. In order to take full advantage
of the information related to cardiac motion, we propose to use the Shannon’s
differential entropy (SDE) [5], which provides a global, theoretically grounded
measure of distributions – rather than relying on elementary measurements or a
fixed set of moments, the SDE measures a global distribution information and,
as such, has more discriminative power in classifying distributions. The typi-
cal examples in Fig. 1 illustrate the potential of the SDE in the classification
problem: the means of abnormal and normal motion distributions are very close,
whereas, the SDEs are relatively different.
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Fig. 1. The potential of the SDE measure in detecting abnormal motion. (a)
typical normal motion, (b) typical abnormal heart, (c) and (d) corresponding
distributions of radial distances and radial velocities. A significant overlap exists
between normal and abnormal motion distributions, and the corresponding first
moments are approximately the same, whereas the SDEs are relatively different.

We further derive two other possible information theoretic abnormality detec-
tion criteria, one is based on Rényi entropy and the other on Fisher information
[5]. Although widely used in physics [6], computer vision [7, 8], communications
[9], and many other fields, the application of information theoretic concepts is
still in its early stage in medical image analysis. Few notable exceptions include



using cross and joint entropy for image registration [10, 11], the Rényi entropy
for measuring the heart rate Gaussianity [12], and the Shannon entropy for an-
alyzing heart period variability [13].

To tackle image preprocessing, an overlap prior based left ventricle (LV)
segmentation [4], which does not require a training, is used, and the segmentation
results are subsequently processed with recursive Bayesian filtering. The latter,
which provides a temporal smoothing of the dataset given a suitable model, is
shown to be very effective when the data is less reliable. Specifically, a cyclic
model is used to characterize the dynamics of sample points of the segmented
LV cavity and the Kalman filter [14] is used for state estimation. The filter
estimates are subsequently analyzed to build an information theoretic classifier
of heart motion.

Using 269 image sequences, each consisting of 20 segmented LV cavities of
short-axis magnetic resonance functional images, obtained from 30 subjects,
the experimental analysis demonstrates that the proposed information theoretic
measure of heart motion can lead to significant improvement over other features
that are prevalent in the literature related to the LV cavity, namely, the mean
radial displacement and mean radial velocity [2]. Furthermore, an analysis based
on Bhattacharyya distance (cf. plots in Fig. 3), which measures the separability
of classes in classification problems, show that the SDE yields better classifi-
cation ability amidst the stochastic nature of the cardiac motion and image
segmentation inaccuracies.

2 The recursive Bayesian filtering

The analysis is performed by sampling a set of points along the segmented LV
cavity. We assume a cyclic state-space model for the dynamics of sample points
that characterize the temporal evolution of the points for a periodic heart motion.
Let xi

k = [x̄i
k xi

k ẋi
k ȳi

k yi
k ẏi

k]T be the state vector, consisting of mean position
(x̄i

k, ȳi
k), current position (xi

k, yi
k) and velocity (ẋi

k, ẏi
k) of sample point i,

respectively, in x and y coordinate directions at time step k (for k = 1, . . . ,K).
The state transition equation for cyclic motion is given by
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, {vi
k−1}

is a zero-mean Gaussian noise sequence with covariance Qk, ω the reciprocal of
period of heart cycle, and T the interval between two subsequent image frames.
The additive noise in the dynamic model is an approximation, and is included
to accommodate significant differences between the modeling and real motion of
the LV cavity points.

The measurement equation is given by

zi
k = Hkx

i
k + wi

k for i = 1, . . . , N (2)



where Hk =

[

Bk 01×3

01×3 Bk

]

, Bk =
[

0 1 0
]

and {wi
k} is a zero-mean Gaussian

noise sequence with covariance Rk. The measurements are obtained by sampling
the segmented LV cavities. The measurement equation indicates the fact that
only the current position of a sample point is measured.

The Kalman filter, which yields an optimal estimate for linear/Gaussian sys-
tems, is applied for state estimation. In some very rare cases, the segmentation
results of the LV deviate significantly, and such inconsistencies are detected by
gating the center of the segmented LV. The segmentation results are ignored in
such cases, and the sample points were only predicted using the dynamic model,
i.e., they were not updated by filter.

In order to find the sequence of corresponding points over time, the symmetric

nearest neighbor correspondences [15] is applied by sampling a set of equally-
spaced points along the LV boundary. The construction of a sequence of points is
essential to analyze wall motion regionally. Using spline interpolation, Ns points
were sampled along the LV cavity in each frame, and N points were chosen as
measurements to the filter. A kernel density estimation based on normal kernel
function is applied to obtain the probability density. The radial distance for each
dataset is normalized with respect to maximum value, which allows analyzing
different long-axis segments, namely, apical, mid and basal, without additional
processing.

3 The SDE of normalized radial distance

We define the following normalized radial distance ri
k by
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where x̂i
k and ŷi

k are the estimates of xi
k and yi

k, respectively. Let r ∈ R be a
random variable. The kernel density estimate of the normalized radial distance
is given by

f(r) =

∑

i,k K(ri
k − r)
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, (4)

where K(y) =
1√

2πσ2
exp(− y2

2σ2
) is the Gaussian kernel. In this study, we derive

the SDE measure of heart motion as follows
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We further derive two other information theoretic criteria to measure the global

information associated with heart motion, one is based on the Rényi entropy

Rα
f =
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1 − α
ln
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)α

dr for 0 < α < ∞, α 6= 1 (6)



and the other on Fisher information

If = 4

∫

r∈R

|∇g(r)|2dr, (7)

where

g(r) =

√

∑

i,k K(ri
k − r)

NK
. (8)

4 Experiments

The data contain 269 short-axis image sequences, each consisting of 20 func-
tional 2D-images acquired from 20 normal and 10 abnormal hearts. The data
were acquired on 1.5T MRI scanners with fast imaging employing steady state
acquisition (FIESTA) image sequence mode. The Kalman filter positions and
velocities were initialized using two-point initialization [14], and mean positions
were initialized using all the measurements in the sequence.

The experiments compare the proposed information theoretic measure based
on the SDE with other classifier elements, namely, the mean radial displacement
and mean systolic radial velocity, as well as other information measures, namely,
Rényi entropy (α = 2) and Fisher information. Radial velocity computations are
based on the systolic phase of cardiac cycle. The results were compared with
ground truth classification of the cine MRI sequences by experienced medical
professionals. A heart is considered to be abnormal in an image sequence if any
of its segments [16] is abnormal.

We used two criteria to measure the performance of each classifier element,
namely, classification accuracy via leave-one-subject-out method5 and the re-
ceiver operating characteristic (ROC) curves with corresponding area under the
curves (AUCs). Furthermore, we used the Bhattacharyya measure to assess the
discriminative power of each classifier elements. Table 1 summarizes the results.

The ROC and AUC: The ROC curves for classifier elements is shown in
Fig. 2. The more inclined the curve towards the upper left corner, the better
the classifier’s ability to discriminate between abnormal and normal hearts. The
figure shows that the proposed SDE has superior classifying ability than other
classifier elements. The AUCs that correspond to the ROC curves in Fig. 2 are
reported in Table 1. The AUC represents the average of the classifier sensitivity
over false-positive resulting from considering different threshold values, and gives
an overall summary of the classification accuracy. The SDE yielded the highest
AUC and, therefore, has the best performance.

The Bhattacharyya measure: We used the Bhattacharyya distance met-
ric to evaluate the overlap between the distributions of classifier elements over
normal and abnormal motions. The Bhattacharyya metric [17] is given by

B =

√

1 −
∑

y∈R

√

fN (y)fA(y) (9)

5 Each subject is classified given the information learned from other subjects.



where fN and fA are the distributions over, respectively, normal and abnormal
hearts. The higher B, the lesser the overlap (Refer to Fig. 3 for an illustration)
and, therefore, the better the discriminative ability of the classifier. The SDE
yielded the highest B as reported in Table 1 and, therefore, the best discrimi-
native ability. This is consistent with the previous findings based on ROC/AUC
evaluations.

Classification accuracy: Evaluating the percentage of correctly classified
hearts using leaving-one-subject-out method, the proposed SDE yielded 90.5%
true positive (TP) and 78.6% true negative (TN), i.e., 90.5% of abnormal hearts
and 78.6% of normal hearts were classified correctly, which is the best overall
performance among the reported classifier elements in Table 1.

Bhattacharyya
distance Classification accuracy

Classifier element AUC (%) metric (B) Abnormal (%) Normal (%)

Mean systolic velocity 70.8 0.32 79.4 54.9
Mean radial displacement 87.3 0.53 76.2 70.9
Fisher information 89.3 0.59 84.1 85.0
Rényi entropy 90.8 0.60 87.3 84.5
Shannon’s differential entropy 90.9 0.62 90.5 78.6

Table 1. The area under the curve corresponding to Fig. 2, Bhattacharyya dis-
tance metric of normal/abnormal distributions given in Fig. 3, and the percent-
age of classification accuracy using leaving-one-subject-out method for classifier
elements.

5 Conclusions

This study investigates heart wall motion abnormality detection, which primarily
consists of two components: preprocessing and classification. In preprocessing,
an overlap prior based segmentation is used to generate left ventricular (LV)
contours and the results are subsequently processed using Kalman filter, given
a cyclic dynamic model. More importantly, we propose an information theoretic
measure based on the Shannon’s differential entropy (SDE) for classification.
The proposed method analyzes wall motion quantitatively by constructing dis-
tributions of the radial distance estimates of the LV cavity. We further derive
two other possible information theoretic abnormality detection criteria, one is
based on Rényi entropy and the other on Fisher information. The experimental
analysis is performed using 269×20 short-axis magnetic resonance images ob-
tained from 30 subjects. The results, based on receiver operating characteristics,
area under the curves, Bhattacharyya distance metrics and leave-one-subject-out

cross validation, show that the proposed SDE criterion can lead to significant
improvement over other prevalent classifier elements.
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Fig. 2. Receiver operating characteristics of classifier elements. The closer the
curve to the left hand top corner, the better the classification performance.
The proposed information theoretic measure based on the SDE outperforms other

classifier elements.

−40 −20 0 20 40
0

0.02

0.04

0.06

0.08

0.1
Mean systolic velocity

Abnormal
Normal

−20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4
Mean radial displacement

Abnormal
Normal

−500 0 500 1000
0

0.005

0.01

0.015
Fisher information

Abnormal
Normal

B = 0.32 B = 0.53 B = 0.59

0 1 2 3
0

0.5

1

1.5

2

2.5
Renyi entropy

Abnormal
Normal

−1 0 1 2
0

0.5

1

1.5

2

2.5
Shannon’s differential entropy

Abnormal
Normal

B = 0.60 B = 0.62

Fig. 3. Distribution of normal and abnormal hearts categorized using classifier
elements. The Bhattacharyya distance metric show that information theoretic

measure based on the SDE has better discriminative ability over other classifier

elements.



References
1. Qian, Z., Liu, Q., Metaxas, D. N., Axel, L.: Identifying Regional Cardiac Abnormal-

ities from Myocardial Strains Using Spatio-temporal Tensor Analysis. In: Metaxas,
D., Axel, L., Fichtinger, G., Szkely, G. (eds.) MICCAI 2008. LNCS, 5241, 789–797,
Springer, Heidelberg (2008)

2. Qazi, M., Fung, G., Krishnan, S., Bi, J., Bharat Rao, R., Katz, A.: Automated
heart abnormality detection using sparse linear classifiers. In: IEEE Engineering in
Medicine and Biology Magazine 26(2), 56–63 (2007)

3. Mansor, S., Noble, J.: Local wall motion classification of stress echocardiography
using a Hidden Markov Model approach. In: 5th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro 1295–1298 (2008)

4. Ben Ayed, I., Lu, Y., Li, S., Ross, I.: Left Ventricle Tracking Using Overlap Priors.
In: Metaxas, D., Axel, L., Fichtinger, G., Szkely, G. (eds.) MICCAI 2008, LNCS,
5241, 1025–1033, Springer, Heidelberg (2008)

5. Thomas M. Cover, Joy A. Thomas: Elements of Information Theory. Wiley-
Interscience, New York, NY, USA (1991)

6. Frieden, B. R.: Physics from Fisher Information: a Unification. Cambridge Univer-
sity Press, Cambridge, UK (1998)

7. Ben Ayed, I., Li, S., Ross, I.: Tracking distributions with an overlap prior. In: IEEE
Conference on Computer Vision and Pattern Recognition 1–7 (2008)

8. Kim, J., Fisher I., J.W., Yezzi, A., Cetin, M. and Willsky, A.: A nonparametric
statistical method for image segmentation using information theory and curve evo-
lution. In: IEEE Transactions on Image Processing, 14(10), 1486–1502 (2005)

9. Biglieri, E., Proakis, J. and Shamai, S.: Fading channels: information-theoretic
and communications aspects. In: IEEE Transactions on Information Theory, 44(6),
2619–2692 (1998)

10. Studholme, C., Hill, D. L. G., Hawkes, D. J.: An overlap invariant entropy measure
of 3D medical image alignment. In: Pattern Recognition 32(1), 71–86 (1999)

11. Zhu, Y. M.: Volume image registration by cross-entropy optimization. In: IEEE
Transactions of Medical Imaging, 21, 174-180, (2002)

12. Lake, D. E.: Renyi entropy measures of heart rate Gaussianity. In: IEEE Transac-
tions on Biomedical Engineering, 53(1), 21–27 (2006)

13. Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A. and
Cerutti, S.: Entropy, entropy rate, and pattern classification as tools to typify com-
plexity in short heart period variability series. In: IEEE Transactions on Biomedical
Engineering 48(11), 1282–1291 (2001)

14. Bar-Shalom, Y., Li, X. R., Kirubarajan, T.: Estimation with Applications to Track-
ing and Navigation. Wiley-Interscience, New York, NY, USA (2001)

15. Papademetris, X., Sinusas, A., Dione, D., Constable, R., and Duncan,
J.:Estimation of 3-D left ventricular deformation from medical images using biome-
chanical models. In: IEEE Transactions on Medical Imaging 21(7), 786–800 (2002)

16. Cerqueira, M. D., Weissman, N. J., Dilsizian, V., Jacobs, A. K., Kaul, S., Laskey,
W. K., Pennell, D. J., Rumberger, J. A., Ryan, T. and Verani, M. S.: Standardized
Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart:
A Statement for Healthcare Professionals From the Cardiac Imaging Committee of
the Council on Clinical Cardiology of the American Heart Association Circulation.
105, 539-542 (2002)

17. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564-577 (2003)




