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Abstract—Spatial modulation (SM) is a multiple antenna
transmission approach that uses the index of the transmitting
antenna for delivering information data. The choice on the
transmitting antenna depends on the incoming bit sequence and
has a random nature. The receiver estimates the transmitted
symbol and the active transmit antenna index and uses both
estimations to retrieve the original information bits. For best
reception, individual channel links between transmit and receive
antenna pairs must be unique. In fact, correct reception totally
depends on the uniqueness of channel coefficients. Incorrectly
interpreting channel state information at the receiver causes the
BER performance to degrade and the detection to fall short. In
this paper, we develop a channel model that incorporates both
correlated and imperfect channel state information and use this
model to study the bit-error-ratio (BER) performance of most
widely used SM detectors, namely the minimum mean square
error, the maximum likelihood and the optimum detector in flat
Rayleigh fading channels to examine the sensitivity these detectors
exhibit to the presence of either channel correlation or imperfect
channel state information. The capacity of SM system is studied
in comparison to other multiple-input multiple-output techniques
and the influence of channel impairments on the overall system
capacity is observed.

I. INTRODUCTION

Spatial Modulation (SM) is a recently developed low-
complexity Multiple-Input Multiple-Output (MIMO) scheme
where the information bitstream is divided into blocks of
length (nt + m) = log2(NtM) bits, where Nt is the number
of transmit antennae and M is the size of the signal set [1,
2]. In SM, only one antenna out of Nt antennae is active
during a transmission time. In each block of (nt + m) bits,
m = log2(M) bits select a symbol from an M-ary signal
set (such as M-QAM or -PSK) and nt = log2(Nt) bits
select an antenna out of Nt transmit antennae to accomplish
transmission. In this configuration, transmit antenna indices
will be j = 1, 2, 3, ..., Nt.

The throughput achieved by this scheme is
R = log2(NtM) bpcu. Therefore, the SM scheme achieves an
increase in the spectral efficiency of log2(M) bits over single-
antenna systems. In order to achieve higher throughputs,
either Nt or M , or both need to be increased which renders
this scheme suitable for low and moderately high spectral
efficiencies. One of the important benefits of this scheme
is that it is free from inter-channel interference (ICI) by
virtue of activating a single transmit antenna at a time. In the
context of the scope of this paper, the impact of imperfect
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CSI on a multiple-input multiple-output (MIMO) system with
interference has been studied in [3], the performance of a
MISO system with maximum likelihood (ML) detection and
full CSI at the receiver is considered in [4] and the effect
of channel estimation errors on the performance of SM with
ML detection is examined in [5]. Since the uniqueness of
channel coefficients is a requirement for correct detection
in SM system and because the system performance entirely
depends on the peculiarity of channel coefficients, inaccurately
depicting channel state information at the receiver leads to
BER performance degradation.

In this paper, a channel model that incorporates both corre-
lated and imperfect channel state information at the receiver is
developed. The developed model is then used to study the bit-
error-ratio (BER) performance of three most widely used SM
detectors, namely the minimum mean square error (MMSE),
the ML and the optimum detector (OD) in flat Rayleigh fading
channels to ponder the extent to which the BER performance
deviates from the ideal case with perfect knowledge of channel
state information (CSI). The influence of channel impairments
on the capacity of the SM system under the developed model is
also investigated. The rest of this paper is organized as follows:
In Section II, SM system model is presented. In Section III,
an explanation regarding the SM detectors on which this study
focuses is presented. Section IV studies channel impairments.
Capacity of SM is provided in Section V. Simulation results
are presented in Section VI and discussions and conclusions
are given in Section VII.

II. SM SYSTEM MODEL

The SM system consists of a MIMO wireless link with
Nt transmit and Nr receive antennae, and a random sequence
of independent bits b = [b1 b2 · · · bNt ] that enter an SM
mapper or interleaver encoder, where groups of m+nt bits are
mapped into a constellation vector x = [x1 x2 · · · xNt ]

T

and are transmitted at a time. In SM, only one antenna is active
during transmission and only one single entry is non-zero in x,
i.e. the entry (or index) of the chosen antenna will be nonzero.
Fig. 1 gives a pictorial representation of this scheme. Note that
the mapping table in Fig. 1 is for the binary transmission case
and is put there for illustration simplicity.

A. The Wireless Channel

The SM signal is transmitted over an Nr × Nt wireless
channel H and experiences an Nr−dim additive white Gaus-
sian noise (AWGN) n = [n1 n2 · · · nNr ]

T . The channel
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Fig. 1: The SM system.

matrix H ∈ CNr×Nt has entries given by

H =


h11 h12 · · · h1Nt

h21 h22 · · · h2Nt

...
...

. . .
...

hNr1 hNr2 · · · hNrNt

 (1)

where hji is a complex fading coefficient that connects the
ith transmit antenna to the jth receive antenna and is mod-
elled as independent and identically distributed (iid) zero-
mean complex Gaussian (ZMCG) random variables with unit
variance. Knowing that SM uses symbol indices as well as
antenna indices as means to send information, the symbol
index combined with the antenna index make up the SM
mapper which outputs a constellation vector that has the
following form

xjq =

[
0 0 · · · xq · · · 0 0

↑
jthposition

]T
(2)

where xq is the qth symbol from the M -ary constellation X
and j is the index of the activated antenna. Therefore, only the
jth antenna remains active transmitting the qth symbol. The
output of the SM channel when the qth symbol is transmitted
on the jth antenna is expressed as

y =
√
Es hjxq + n (3)

where Es is the symbol energy defined as Es , mEb, hj

denotes the activation of the jth column of H for a randomly
chosen j during each transmission period, y ∈ CNr×1 is the
received samples vector and n ∈ CNr×1 is the additive noise
vector, where each element is assumed to be iid ZMCG random
variable with variance σ2

n. From this point onwards and for
the sake of simplicity, we assume that the symbol energy√
Es is embedded in the transmitted symbol xq such that the

expression
√
Es xq reduces to xq .

III. SM DETECTOR TYPES

As indicated earlier, we consider the performance of the
most widely used three types of SM detectors, namely the
MMSE, the ML and the OD receivers. In MMSE, the antenna
index is estimated first, then the transmitted symbol is detected
[1]. In both ML and OD, a joint detection of antenna index
and transmitted symbol is carried out. The size of the search
space in MMSE is Nt +M while it is NtM in ML and OD.

A. Minimum Mean Square Error Detection

The MMSE detector carries out detection at two consec-
utive stages; first, the antenna index is estimated, then the
transmitted symbol is detected [1]. The transmitted signal is
received by Nr receive antennae. After demodulation at the
kth antenna, the complex conjugate of the kth row of H is
multiplied by y resulting in

gk = hH
k y (4)

for k = 1, 2, · · · , Nt. Placing the outcome for all transmit
antennae coefficients in a complex vector such that

g = [g1 g2 · · · gNt ] (5)

The transmit antenna number ĵ is the index (position) of the
element in g whose absolute value is maximum [1]

ĵ = arg max
j

|g| (6)

The antenna index (number) estimate is the position of the
maximum absolute value of all elements in the vector g. As can
be noticed in the SM transmission, H reduces to hj by virtue of
having only one active antenna at a time, i.e. the jth antenna.
The search argued in Eq. (6) corresponds to finding the element
of greatest magnitude in the spatial domain among a set of Nt

elements. Assuming that the estimate of the transmit antenna
number is correct, the transmitted symbol at this instant can be
estimated by finding the distance between gj and each signal
constellation point. That is to say, the constellation point that
has minimum distance to gj is considered to be the winner.

q̂ = arg min
q
|gj − xq| (7)

B. Maximum Likelihood Detection

The ML detection which is based on maximum likelihood
sequence estimation (MLSE) is a detection scheme that cal-
culates the minimum Euclidean distance between the received
signal and all possibly transmitted sequences. An example of
such a detection scheme and the search for the closest lattice
point for MIMO is performed in [6] and for SM-MIMO is
carried out in [7]. ML estimates the combination of antenna
index and transmit symbol at one shot, given by the expression[

ĵ, q̂
]

= arg min
j,q

‖y− hj xq‖2 (8)

where || · ||F denotes the Frobenius norm which is defined
as the sum of the absolute squares of its argument [8].
The ML detector jointly estimates the antenna index and the
transmitted symbols by searching over all possible values of
the constellation vector space X and channel matrix H. It
must be noted, however, that the complexity of this detector
increases exponentially with the modulation order M and
number of transmit antennae Nt as a natural consequence for
the expansion of the search space given by NtM .

C. Optimal Detection

Like the ML detector, the optimum detector (OD) also
performs a joint detection of antenna indices and transmitted



symbols, however, it follows slightly a different rule than the
ML detector and is given by

[ĵ, q̂] = arg min
j,q

(
||hj ||2F |xq|2 − 2Re{yHhj xq}

)
(9)

where the optimal detection is based on the maximum likeli-
hood detection parameters excluding the term yHy.

IV. CHANNEL IMPAIRMENTS

The channel impairments we attempt to study in this work
are classified in two categories. First we study the effect of
channel estimation errors (imperfections) on the performance
of SM detectors, then we investigate the influence of channel
correlation. The former is the case in which the estimated
channel coefficients are contaminated with noise. The latter
is the case where channel coefficients are correlated.

1) Erroneous Channel: Channel estimation is the most cru-
cial and important part of SM detection process. We assume the
presence of either error-free (perfect) or erroneous (imperfect)
channel estimations. Since avoiding CSI errors is difficult in
practical systems, we assume the existence of both amplitude
and phase errors in the estimated CSI. We define erroneous CSI
such that the following relationship between the estimated and
the correct channel coefficients at the kth receiver holds

ĥk = ρ hk + (1− ρ) ε1×Nt (10)

where ε is a normal distributed random variable with zero
mean and unit variance. The coefficient 0 < ρ < 1 is a
correspondence factor that determines the resemblance of the
estimated CSI to the actual one. Perfect CSI estimation is
achieved when ρ = 1, i.e. when 1− ρ = 0.

2) Correlated Channel: In the context of our work, we
define channel correlation to be the interference of the entries
of the channel matrix with each other such that the correlated
channel becomes Ĥ = H∆, where ∆ ∈ RNt×Nt is a Toepltiz
matrix with the value 1 − δ in the diagonal elements and the
value δ in the superdiagonal and subdiagonal elements. The ∆
matrix takes the form given below for Nt = 4

∆ =

(1− δ) δ 0 0
δ (1− δ) δ 0
0 δ (1− δ) δ
0 0 δ (1− δ)

 (11)

where 0 < δ � 1. Channel coefficients are said to be perfectly
uncorrelated when δ = 0, i.e. when 1− δ = 1.

3) Erroneous and Correlated Channel: We consider the
generalized case where the channel coefficients are first cor-
related with each other, then undergo certain amount of con-
tamination with noise. We have used the following model to
incorporate both correlation and contamination with noise

H̃ = ρH∆ + (1− ρ) εNr×Nt . (12)

It is clear that the overall channel model H̃ depicted in Eq.
(12) is governed by the two parameters δ and ρ each with the
properties described aforetime and is the the result of having
H be first correlated by ∆ in the fashion expressed in Eq. (11)
and then contaminated by noise in a similar manner to Eq.
(10).

V. CAPACITY OF SM

The capacity of MIMO, single-input multiple-output
(SIMO) and multiple-input single-output (MISO) systems are
well discussed in Chapter 8 of [9] where the capacities of
these systems are compared and graphically presented for
n = 1, 2, · · · , 16 for the n × n MIMO, n × 1 SIMO and
1 × n MISO cases where n = Nt = Nr. In this work, we
reproduce the capacities described and shown in Fig. 8.6 on
page 345 of [9] and we base our argument on capacity by
adding the capacity of SM to this collection in order to have
a better outlook on the location of SM, in terms of capacity,
among the other MIMO technologies mentioned here.

A. Capacity Calculation

In order to calculate the capacity of the SM system,
the MIMO capacity approach will not apply because the
antenna number represents added information. Furthermore,
the antenna pattern is considered as spatial constellation and
not as source of information. Thus, concerning computing the
SM capacity, the conventional information theory approach
will be used [10]

C
SM

= (m+nt)[1+pe log2(pe)+(1−pe) log2(1−pe)] (13)

where pe is the probability of error of SM detection at a given
SNR value and m + nt represents the total number of bits
conveyed by the SM system. Since Nt has to be a power
of 2 in SM systems, the number of antennae n must be set
to 2, 4, 8 or 16 and the SM capacity must be calculated
based on the probability of error for the 2 × 2, 4 × 4, 8 × 8,
and 16 × 16 configurations which correspond to number of
antenna indexing bits nt to be 1, 2, 3 and 4 respectively. Note
that the configuration size follows from n = Nt = Nr as
indicated earlier. A flashback on the capacity issue along with
the obtained capacity results are presented in Section VI.

VI. SIMULATION RESULTS

In this section we provide simulation results for the SM
scheme in Rayleigh fading channels using Monte Carlo sim-
ulation for the MMSE, ML and Optimum detectors. Various
values for modulation order M has been used but the antenna
configuration has been restricted to 4 × 1 and 4 × 4. The
case of perfect and imperfect CSI has been studied first,
then the effect of channel correlation is investigated. The
destructive effects of CSI imperfection and correlation on
the BER performance and on the capacity of SM systems
is explored. The partially estimated CSI case comprises two
situations, the first is when the CSI estimation is erroneous
(imperfect) and is contaminated with noise, the second is when
channel coefficients are correlated CSI, i.e. the coefficients
do interfere among themselves. In this work, we study the
consequences of erroneous and correlated CSI on the BER
performance and on the capacity of SM system. The noise at
each antenna is assumed to be independent zero-mean complex
Gaussian random variable with variance σ.

A. The Perfect CSI case

To have a clear vision on the performance of SM detectors
presented in this paper, we first have a look at the perfect CSI
case where channel coefficients are perfectly estimated. Fig.



Fig. 2: BER performance of SM with perfectly estimated CSI for
4× 1 and 4× 4 configurations.

Fig. 3: BER performance of SM with imperfect CSI for a 4 × 4
configuration with M = 8.

2 demonstrates the BER performance of the system for the
4× 1 and 4× 4 cases, both with a modulation order M = 8.
As expected and observed in Fig. 2, the optimum detector
shows superior performance in comparison to its rivals in this
scenario and antenna diversity plays its BER enhancement role
as expected.

B. The Imperfect CSI case

In this section, we study the performance of SM detectors
with imperfect channel coefficients as narrated in Eq. (10).
The BER performance of SM detectors for ρ = 0.85 and ρ =
0.7 is shown in Fig. 3. As obsreved, the BER performance
deteriorates with decreased value of the correspondence factor
ρ. The ML detector seems to be more susceptible to noise
since it contains more noisy terms that challenge the minimum
Euclidean distance.

Fig. 4: BER performance of SM with correlated CSI for a 4 × 4
configuration with M = 8.

C. The Correlated CSI case

The BER performance of the SM system with correlated
channel coefficients as described by the ∆ matrix in Eq. (11)
is considered here. The performance of SM detectors for δ =
0.15 and δ = 0.3 is shown in Fig. 4. As can be observed in
this figure, the BER performance deteriorates as the correlation
value increases.

D. Correlated and Imperfect CSI

The system has been tested in accordance with the inclusive
model we propose in Eq. (12) with M = 8, Nt = Nr = 4.
A 3-D view of the BER using OD SM versus δ and 1 − ρ
is shown in Fig. 5 for 0 ≤ δ ≤ 0.5 and 0 ≤ 1 − ρ ≤ 0.5.
The reason why we chose the optimum detector is because
this detector proved to outperform the rival detectors while
it maintained more robustness against both imperfection and
correlation. As observed here, both factors ρ and δ exhibit a
similar destructive trend. The relationship between ρ, δ and
the noise variance is left for future analysis.

E. Capacity Issues

Having studied the influence of imperfect and correlated
CSI on the system performance, we will have a look at the
capacity degradation under the presence of ρ and δ. Based
on our results, the OD has proved to achieve the best BER
performance while it exhibits most robustness against channel
imperfections and correlation, so the probability of error in
Eq. (13) will be based on optimal detection. Furthermore, the
signal to noise ratio will be fixed at 0 dB since the MIMO,
MISO and SIMO systems of [10] are evaluated at this value.
In Fig. 6 the capacities originally given in [9] were reproduced
and the capacity of SM was then calculated and added in the
described fashion. Since MIMO, SIMO and MISO evaluations
are done at perfect CSI, i.e. ρ = 1, δ = 0, the capacity of
SM at these values corresponds to the perfect CSI case and
represents the capacity of SM in comparison with other MIMO
technologies. As seen in Fig. 6, with imperfect and correlated



Fig. 5: BER performance of SM vs. correlated and imperfect CSI
estimation at Eb/N0 = 15 dB.

Fig. 6: Capacities of MIMO, SM, SIMO and MISO channels

coefficients, capacity of the SM system drops as a consequence
of the BER performance decline at no surprise. The capacity
of SM deteriorates even more as ρ and δ take farther distances
from the ideal values. More on MIMO capacity issues may be
looked up in [11] and [12].

VII. DISCUSSIONS AND CONCLUSIONS

In this work, we have developed a general model for
channel impairments that incorporates channel imperfection
and channel correlation. The developed model is then used
to study the effects of channel impairments on the BER
performance of three most widely used SM receivers, namely
the MMSE, ML and OD receivers. Moreover, the influence of
channel impairments on the capacity of the SM system has
also been investigated. Even though numerical calculations
are mainly based on a 4 × 4 SM system configuration, the
results obtained may be generalized to any accommodating
configuration. Furthermore, our results reveal that the BER

performance of SM detectors under study deteriorate with
channel imperfections especially in high SNR regions. In
fact, the performance of the ML is very fragile and sensitive
to either correlated or imperfect channel coefficients while
MMSE and OD do better in such situations. Given the lower
complexity of MMSE compared to OD and the convergence of
their BER performance at high SNR values, the MMSE might
be a preferred candidate for higher power scenarios where
simplicity matters. However, at lower SNR, the OD becomes
a more suitable choice. Fundamental complexity concepts are
provided in [13] while more related complexity discussions are
found in [1, 2, 14] and is not repeated here. The information
theory-based calculation of the SM capacity carried out in this
work confirms and approves this fact. Consequently, channel
impairments cause the SM system capacity to drop as a
reasonable and logical aftermath of the rise in the probability of
error. Therefore, CSI is a phenomenon that can not be always
assumed to be perfect because of the serious impacts it has on
the BER performance and on the capacity of the SM system.
Finally, we observe that SM is sensitive to both imperfect and
correlated channels.
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