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Abstract—Adaptive classifier ensembles have been shown to
improve the accuracy and robustness of systems for face recog-
nition (FR) in video surveillance. However, it is often assumed
that the proportions of faces captured for target and non-target
individuals are balanced, or they are known a priori, and constant
over time. Some active approaches have been proposed to update
the ensemble during operations according to class imbalance of
the input data stream. Beyond the estimation operational class
imbalance, these approaches commonly generate diverse pools
of classifiers by selecting balanced training data, limiting the
potential diversity provided by the abundant non-target data. In
this paper, a skew-sensitive ensemble is proposed to adaptively
combine classifiers trained with data selected to have varying
levels of imbalance and complexity. Given a face re-identification
application, faces captured for each person appearing in the scene
are tracked and regrouped into trajectories. During enrollment,
faces in a reference trajectory are combined with those of selected
non-target trajectories to generate a pool of 2-class classifiers
using data with various levels of imbalance and complexity.
During operations, the level of imbalance is periodically estimated
by comparing input trajectories and pre-computed histograms
using Hellinger distance quantification. Ensemble fusion functions
are then adapted based on the imbalance and complexity of
operational data. Finally, ensemble scores are accumulated over
trajectories for robust spatio-temporal FR. Results obtained in
experiments with synthetic data and Face in Action videos
reveal that the proposed approach can significantly improve
performance across operational imbalances.

I. INTRODUCTION

In video surveillance, face re-identification applications
involve recognizing the face of individuals that have previously
appeared over a network of video cameras. Systems for video-
to-video FR are commonly employed in such applications
to match facial trajectories1 captured in either live (real-time
monitoring) or archived (post-event analysis) videos against the
facial models of all target individuals enrolled to the system.
Given a video surveillance system, an analyst may capture a
reference facial trajectory corresponding to a target individual
appearing in video feeds, and then design or update a facial
model (e.g., a set of templates or a statistical representation)
to be stored in the gallery. In face re-identification scenarios,
several persons may appear before a camera view point, and
their appearance typically varies either abruptly or gradually
due to changes in, e.g., illumination, blur, scale and pose.
Changes in the capture conditions are associated with changes
in the underlying class distribution of operational data in

1A trajectory is defined as a set of facial regions of interest (ROIs) captured
in video that correspond to a same high quality track of a person appearing
across consecutive frames.

the face matching space. Uneven proportions of ROI patterns
from target and non-target individuals are related to the prior
probability of individuals, and are commonly referred to as
class imbalance or skew in pattern recognition literature.

Some recent systems for video-to-video FR have been
successfully designed using adaptive ensembles of 2-class
(target vs. non-target) classifiers [1]. They allow to represent
and update facial models based on new reference trajectories,
yet avoid knowledge corruption. Other ensemble-based meth-
ods have also been proposed to address the class imbalance
problem in video FR [2]. This paper focuses on the design
of facial models using adaptive skew-sensitive ensembles of
2-class classifiers.

Several methods have been proposed to generate diversified
pools of classifiers by varying the complexity (class overlap
and dispersion) [3] and imbalance [4] of class distributions.
Moreover, recent research suggests that specialized selection
and fusion methods that consider both complexity and im-
balance may lead to robust ensembles [5]. A representative
techniques for active fusion under changing class imbalance
is skew-sensitive Boolean combination (SSBC). It allows to
estimate class proportions using the Hellinger distance be-
tween histogram representations of operational and validation
samples [2]. However, the accuracy of estimates on opera-
tional imbalance is limited by the number of imbalance levels
(histograms) generated using validation samples. Furthermore,
using classifier generation methods that only rely on data
complexity limits the diversity of ensembles.

In this paper, adaptive skew-sensitive classifier ensem-
bles are proposed to address applications (like face re-
identification) where the operational class imbalance changes
over time. During enrollment of a target individual, facial
captures from a reference trajectory are combined with selected
non-target captures from the universal (UM) and cohort (CM)
models2 to generate a diverse pool of 2-class classifiers using
data with various levels of imbalance and complexity. Train-
ing/validation sets with different imbalances and complexities
are built through random under-sampling, and cover a range
of imbalances from 1:1 to a maximum imbalanced 1:λmax,
where λmax is estimated empirically. During operations, the
level of imbalance is periodically estimated from the input data
stream using a Hellinger distance (HD) quantification method.
The operational level of imbalance is estimated employing

2In this paper, the UM is a database containing non-target trajectories
from selected unknown people appearing in scene. The CM is database with
trajectories belonging to other target individuals enrolled to the system.
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the Hellinger distance between validation and operational
histogram representations of class distributions in the feature
space, HDx [6]. Pre-computed histograms and ensemble fusion
functions are then adapted to the imbalance and complexity of
operational data. Finally, a decision threshold is applied to the
accumulation over time of positive ensemble scores for robust
spatio-temporal recognition.

The proposed approach had been validated on synthetic
and video surveillance data sets, and compared against ref-
erence approaches. The synthetic problem was designed us-
ing samples generated from Gaussian distributions in a two-
dimensional feature space, where the overlap for target and
non-target classes is controlled. The Carnegie Mellon Univer-
sity Face In Action (FIA) video database was used to emulate
face re-identification applications.

II. SKEW-SENSITIVE ENSEMBLES

Ensembles methods combine classifiers with diversity of
opinions to increase classification robustness and accuracy. The
design process can be divided into three steps – generation
of a diversified pool of base classifiers, selection and fusion
of base classifiers to improve performance [3]. Representative
examples of ensemble methods are bagging, boosting, random
subspaces, which employ different sets of data or features
from the training set to build distinct base classifiers [3], [7].
Connolly et al. [8], authors take advantage of diversity in
the hyperparameter space of classifiers to produce diversity
of opinions. Well-known selection strategies include greedy
search, clustering-based methods and ranking-based methods,
and fusion strategies are often divided in feature-based (con-
catenation), score-based (average, meta kNN) and decision-
based (majority vote) [9].

Algorithms designed for dynamically changing environ-
ments in data distributions, and particularly in the class priors,
can be categorized according to the use of a change detec-
tion mechanism [10]. Active approaches seek explicitly to
determine whether and when a change has occurred in the
prior probability before taking a corrective action [2], [10].
Conversely, passive approaches assume that a change may
occur at any time, or is continuously occurring, and hence the
classifiers are updated every time new data becomes available
[11], [10].

Specialized architectures with ensembles of detectors (2-
class classifiers) per individual enrolled to the system have
been employed for FR in video surveillance [12]. In this case,
the generation of classifiers is based on different decision
bounds produced by varying classifier hyper-parameters and
presentation order of training data [8]. Boolean combination
was employed to select and combine the base classifiers in
the ROC space [13]. Several active approaches in literature
employ ensembles for classification in imbalanced environ-
ments [2], [14]. Changing imbalance can be estimated by
adding a mechanism to detect changes in prior probabilities.
Examples of such mechanisms are based in Hellinger distance
[2], Kullback Leibler divergence [15], or accounting for class-
specific performance (e.g., recall) [14].

This paper proposes an active approache for skew-sensitive
ensembles designed for face re-identification. Skew-sensitive
Boolean combination (SSBC) is considered as a representative

example, which estimates class imbalance using the Hellinger
distance between the distributions of validation data and the
most recent unlabeled operational samples [2]. During training,
SSBC assumes that a diversified pool of binary classifiers
P = {p1, ..., pn} has been generated, and operates at the
ensemble selection and fusion levels to take advantage of the
diversity of opinions. Validation data with different levels of
imbalance is used to estimate the operations points of the
BC function (covering the whole ROC space). Two validation
sets with the same imbalances, the first (OPT) are employed
to estimate the operational imbalance, and the other (VAL)
is employed to select the operation point with the proper
estimated imbalance.

During operations, the histogram opd corresponding to the
most recent operational samples is accumulated over time, and
the closest level of class imbalance λ∗ ∈ Λ is estimated by
comparing opd to the data sets in OPT using the Hellinger
distance. Then, λ∗ is used to select the BC that corresponds
to that imbalance. In the case λ∗ is not available on ΛBC ,
the BCs for the two closest imbalances are merged, and the
convex hull is estimated.

The known levels of class imbalance used by the approach
form the set Λ = {λbal = 1 : 1, ..., λmax}. A subset of class
imbalances ΛBC ⊂ Λ is selected from Λ to optimize a subset
of BCs E. The subset of imbalances ΛBC should contain
evenly distributed intermediate class imbalance levels between
the minimum λbal and the maximum level of imbalance
λmax inclusively. The sets OPT and VAL are generated from
imbalanced reference data that follows λmax. Different data
sets with the levels of class imbalance defined in Λ, where the
amount of target samples remains fixed, while the amount of
non-target samples are added to the set through random under
sampling.

The strength of the SSBC algorithm lies in the adaptive
selection of suitable fusion functions (ROC operations points)
according to the estimated operational imbalance. However,
this technique assumes that the pool of classifiers is generated
using balanced training data that provides enough diversity of
opinions to classify when input operational data is imbalanced.
Another issue with SSBC is the precision of class imbalance
estimation, that is limited by the sampling strategy used to
create the set of imbalances Λ. Specialized methods to quantify
the class priors of unlabeled (operational) data have been
proposed in literature [6], and two of them are summarized
in the next section.

III. ESTIMATION OF CLASS IMBALANCE

Quantification (estimation of the class distribution in
Bayesian terms) allows to approximate the number of samples
belonging to each class in an unlabeled set [16], [17]. In
the literature, different quantification methods appear and
are based either on the classifier confusion matrix [18], the
posterior probability estimates provided by a classifier [16],
or the comparison of class conditional probability densities
of data sets with known and unknown proportions [2], [6],
[17]. Regarding the estimation task from the point of view
of a classifier, two levels can be identified to estimate the
class imbalance of a distribution represented by a set of
unlabeled (operational) samples. Data-level estimation operates



in the feature space, employing the probability distribution of
samples for each feature [2], [6]. On the other hand, score-
level allows to employ the probability distribution of the scores
generated by a probabilistic classifier.

Two representative quantification methods where recently
proposed to use the Hellinger distance to estimate the prior
probability of unlabeled data, either using the feature (HDx)
or score (HDy) levels [6]. Given an unlabeled dataset U =
{(an) : n = 1, ..., N} and a labeled validation dataset V =
{(am, lm) : m = 1, ...,M}, the Hellinger distance between
these two sets can be computed according to

HD(V,U) =
1

nf

nf∑
f=1

HDf (V,U), (1)

where the feature-specific Hellinger distance is given by

HDf (V,U) =

√√√√ b∑
i=1

(√
|Vf,i|
|V |

−

√
|Uf,i|
|U |

)2

, (2)

and where nf is the number of features, b is the number of bins
used to construct the feature-specific histogram representation
of the probability density functions of the datasets. |U | is the
number of samples in U and |Uf,i| is the number of samples
whose feature f belongs to the bin i, similarly with |V | and
|Vf,i| for the validation set V . The Hellinger distance between
the probability densities of the unlabeled and validation sets
can be computed by making the assumption

|Vf,i|
|V |

=
|S−f,i|
|S−|

Pv(−) +
|S+

f,i|
|S+|

Pv(+), (3)

where |S−| is the number of non-target training samples and
|S−f,i| is the number of non-target samples whose feature
f belongs to bin i in the histogram representation of the
probability distribution of the training data S. Similarly, |S+|
and |S+

f,i| are equivalent measures for the target class. The
prior probability Pv(+) (and similarly Pv(−)) can be manually
assigned by the HDx quantification method.

For HDy, the Hellinger distance between the distributions
of classifier outputs is estimated as

HD(V,U) =

√√√√ b∑
i=1

(√
|Vy,i|
|V |

−

√
|Uy,i|
|U |

)2

(4)

where |Uy,i| and |Vy,i| are the number of unlabeled and
validation samples whose output y belongs to the bin i = 1...b.
Similarly to the HDx method, the substitution to avoid sub-
sampling and/or oversampling is given by

|Vy,i|
|V |

=
|S−y,i|
|S−|

Pv(−) +
|S+

y,i|
|S+|

Pv(+), (5)

where |S+
y,i| and |S−y,i| represent the number of non-target

samples whose output y belongs to bin i in the histogram
representation of the probability distribution of the scores.

The level of class imbalance in the proportions of a
set of samples is related to the prior probability of target
(and equivalently non-target) samples. Given an imbalanced

validation set V with |V | samples, this relationship follows
the definition of prior probability given by

P (+) = 1− P (−) =
|V +|
|V |

=
|V +|

|V +|+ |V −|
, (6)

where |V +| and |V −| correspond to the number of target and
non-target samples in V respectively. In the notation followed
in this paper, the level of imbalance is represented as

|V +|
|V +|

:
|V −|
|V +|

, (7)

and the number of target samples |V +| is given by the context.
By simple algebraic substitution it is easy to see that both
are representations of the same quantity. Hence, the HDx and
HDy quantification methods provide an estimate of P (+), and
equivalently, an estimate of the class imbalance.

In the HDx and HDy quantification methods, the prior
probabilities Pv(+) and Pv(−) are explicitly defined by a step
size that divides the full range of values 0 ≤ Pv(+) ≤ 1. The
optimal size of each “small step” can be easily deducted by
considering the maximum expected imbalance λmax, which
can be used to estimate the optimal size for these steps.
In practice, the step size can be defined using the available
validation set V , and is given by

STEPSIZE = Pmin(+) =
V +

V + + V −
. (8)

IV. ADAPTIVE SKEW-SENSITIVE ENSEMBLES FOR
VIDEO-TO-VIDEO FACE RECOGNITION

Figure 1 depicts the proposed architecture for an adaptive
skew-sensitive multi-classifier system (MCS) for video-to-
video FR. It consists of a tracker, a skew-sensitive classi-
fication system with individual-specific ensembles, a spatio-
temporal fusion module, a sample selection and a classifier
design/update systems. It is an extension of the framework
proposed in [1], and incorporates the functionality to adapt the
individual-specific ensembles to the most recent operational
imbalance.

A. Design/update phase

This phase is triggered when a new reference trajectory
becomes available. Target samples are extracted and combined
with non-target samples from UM and CM to form a learning
data set Dk (for training and validation). Dk follows the
maximum predefined imbalance λmax, which is set a priori
in accordance with the experience in the field. An individual-
specific selection strategy is employed to choose non-target
samples that achieves the maximum expected imbalance λmax.
The data set Dk is evenly divided for imbalanced generation
(DGEN

k ) and fusion function computation (Dval
k ). This allows

to generate a pool P ′k of classifiers, which are incorporated to
the previous pool following a learn-and-combine strategy (see
Section IV-D). A long term memory (LTM) is employed to
store individual-specific reference samples and avoid knowl-
edge corruption [19]. Then, the validation samples used for
combination are stored in the datasets optmax for operational
imbalance estimation (see Section IV-C) and the approximation
of imbalanced BC. Finally, the skew-sensitive combination
module allows to select the operations point with validation
data according to the approximated imbalance λ∗.



Fig. 1. Adaptive skew-sensitive MCS for video-to-video FR. It works in two different phases: operations and design/update of facial models (see [1]).

B. Operational Phase

The tracker follows the position of the segmented faces
in video, building a face trajectory composed of consecutive
ROIs from a same person in the scene. Simultaneously, features
for classification are extracted and selected from segmented
ROIs to form feature vectors (a), which are processed by
all the individual-specific ensembles of classifiers. The skew-
sensitive ensemble for each enrolled individual k produces a
sequence of predictions for input ROI patterns belonging to a
face trajectory. In order to adapt the fusion function to the most
recent operational imbalance, the feature specific histogram
representation of the distribution of the operational data (opd)
from facial captures of the last predefined time period (e.g. 15
minutes) is computed. The most recent distribution stored in
opd is employed to estimate the operational imbalance λ∗ (see
Section IV-C). Then, the combination function corresponding
to the estimated operational imbalance λ∗ is approximated,
and the operations point (op) in each individual-specific en-
semble is selected. Finally, the spatio-temporal fusion module
accumulates ensemble predictions over a fixed-size window of
time. When the accumulation of predictions from an ensemble
k surpasses a pre-defined detection threshold γdk , the individual
of interest k is detected in scene. If self-update is required and
thee accumulation surpasses a second update threshold γuk , the
adaptation process starts employing all the ROIs belonging to
the trajectory [1].

C. Approximation of Operational Imbalance

Initially, the classification system starts its operation con-
sidering a balanced operational environment. Feature vectors
extracted from input facial regions are used to populate a data
set with the most recent operational samples ops. The ops
set is renewed with new input samples over an user-defined
period of time. The operational feature histogram is estimated
based on the ops set. Then, the prior probability of the most
recent target class distribution P ∗(+) of operational samples

is estimated using HDx quantization, based on the feature
histograms from unlabeled operational (ops) and reference
validation (optmax) samples.

Let |V +| be the number of target samples in a validation
data set V (e.g., optmax). The number of non-target samples
required to accomplish with the estimated class distribution
P ∗(+) is given by

|V −| = |V +|
(

1

P ∗(+)
− 1

)
, (9)

and the estimated class imbalance λ∗ can be represented
assuming |V +| = 1 and substituting in Eqn. 7.

The HDx quantification method require a single validation
set (optmax), which stores data from the abundant non-target
samples that provide information from both imbalance and
complexity in the feature space. The procedure for imbalance
estimation is summarized in Algorithm 1.

Algorithm 1: Estimation of the level of imbalance λ∗

from reference data optmax and operational data ops

Input : Data set optmax, Operational samples ops, number of
bins b

Output : Imbalance estimation λ∗
Estimate prior probability using HDx
Assume |V +| = 1
Compute |V −| using Eqn. 9
Compute imbalance λ∗ using Eqn. 7

The adaptation of the combination function based on the
newly-approximated class imbalance λ∗ is performed in accor-
dance to the skew-sensitive algorithm, either by updating the
combination weights (weighted voting or meta-classification
combiners) or by selecting the imbalance-specific operations
point (SSBC). The advantage of using an estimation of the
prior probability as given by HDx provides a good estima-
tion of the class imbalance, and the selection of the correct



imbalance in validation set VAL reduces the error propagation
induced by some algorithms for imbalance estimation.

D. Design and Adaptation of Ensembles

The imbalance-based generation strategy proposed in this
subsection allows to generate diversity of opinions, which can
be successfully exploited with other skew-sensitive combina-
tion strategies. The operational imbalance in a real scenario
suffers from constant changes, and should not assume a
constant level of imbalance. Active skew-sensitive ensembles
allow to estimate the operational imbalance, and select and
combine the classifiers from a pool. Robustness of the ensem-
bles may be enhanced with base classifiers trained on different
levels of imbalance and complexity.

Limitations in resources make impractical to train a ded-
icated classifier for every possible level of imbalance, and a
number of training imbalances should be fixed before train-
ing. The combination function is responsible for selecting
of the classifiers with the proper imbalance and complexity,
according to the operational data. In this way, given predefined
minimum and maximum imbalances denoted by λmin and
λmax respectively, a fixed number of imbalances is chosen
between them.

Algorithm 2: Generation of diversified classifiers based
on different levels of imbalance and complexity

Input : Training data Dt, maximum imbalance λmax
GEN , levels of

imbalance |ΛGEN |, size of subpools sp.
Output : P Pool of |ΛGEN | × sp diversified classifiers.
Generate ΛGEN by sampling the levels of imbalance with a log scale

(e.g. 1:100, 1:10
log10(λmax)×i
maxClsf−1 , ... 1:100)

Generate the imbalanced training sets DImb
i according to the

imbalances in ΛGEN

for i = 1...|ΛGEN | do
Train a new subpool with sp classifier Pi using DImb

i and a
source of diversity
P ⇐ P ∪ Pi

The procedure proposed for imbalance-based generation of
diversified classifiers is shown in the Algorithm 2. In order to
generate more diversity, the sub-pools of classifiers for each
specific imbalance can be generated employing typical sources
of diversity like different subsets of data, presentation orders,
distinct hyperparameters, or other techniques.

V. EXPERIMENTS WITH SYNTHETIC DATA

The objectives of these experiments include observing
the impact on performance of designing adaptive ensembles
trained on different levels of imbalance. The effectiveness of
the skew-sensitive ensembles is compared to other ensemble
techniques, and the generation of more than one classifier
per imbalance level is evaluated, with diversity enhanced by
different complexities.

To emulate a face re-identification scenario, a Gaussian
distribution was employed to generate samples for the minority
target class (individual of interest), and a second Gaussian
distribution to draw samples for majority class (non-target
individuals). The two overlapping multivariate Gaussian dis-
tributions with simple linear decision boundaries are shown in
Figure 2a. These distributions are maintain a fixed center of

mass µ1 = [0, 0], µ2 = [3.29, 3.29], and the degree of overlap
was controlled by adjusting the covariance matrix σ of both
distributions. Ten different imbalance levels were used to train
2-class probabilistic Fuzzy ARTMAP (PFAM) classifiers [20],
corresponding to a logarithmic sampling between balanced and
the maximum level of imbalance λmax = 1 : 1000.

Total Covariance
Probability Matrix

of Error
1. 1% I
2. 5% 2× I
3. 10% 3.304× I
4. 15% 5.038× I
5. 20% 7.672× I
6. 25% 11.90× I

(a) Synthetic overlapping (b) Covariances matrices

Fig. 2. (a) Representation of the synthetic overlapping data set used for
simulations and (b) covariance matrices used to control the degree of overlap
between distributions (I is the 2× 2 identity matrix). The covariance matrix
allows to change the degree of overlap, and thus the total probability of error
between classes. These parameters were extracted from [21].

Figure 3 illustrates a logarithmic scheme and the opti-
mal decision boundaries for the imbalances selected between
λ1GEN and λmax

GEN . It produces evenly distributed decision
boundaries and generates diversity evidenced in feature space.

Fig. 3. Cross-cut of the overlapping data distributions for target (right-
blue curves) and non-target (left-red curves) samples. This logarithmic scheme
shows the imbalances ΛGEN = {1 : 20, 1 : 21, 1 : 22, 1 : 23, 1 : 24}

The standard hyperparameters of the PFAM classifiers were
used (e.g. [α = 0.001, β = 1, ε = 0.001, ρ̄ = 0, r = 0.60],
[21]), and a hold-out validation process was employed to
optimize the number of training epochs with different presen-
tation orders. 10 target samples were maintained in training
training and validation sets, which is typical of applications
with limited training data. Similarly, the number of negative
samples was variated according to the desired imbalances in
ΛGEN .

Five combination strategies are used for comparison. The
MAX rule selects the maximum target score produced by the
base classifiers in the pool. The AVG rule estimates the mean
of the target scores. In meta kNN, the 1-NN classifier was
trained on independent score-level validation data, and it was
employed in test to produce output distance-based scores. For
BC, the ten Boolean functions are applied to different pairs of
classifiers, and the BC algorithm was run on an independent
validation set to find the operation points that maximize the
ROC convex hull [13]. Finally, the SSBC is applied with a
validation set containing a profile with the same imbalance as
the expected in test [2].



Imbalanced generation: This scenario provides a situation
where the ensemble is deployed and an operational point
at fpr = 1% provides the final decisions. The number of
classifiers was variated from 2 to 10, adding one PFAM at a
time in decreasing order according to AUC accuracy, evaluated
on an independent validation set. The performance of all
the approaches was evaluated on a test set with imbalance
λmax
GEN = 1 : 1000. The ambiguity and F1 measure are shown

for the comparison. The ambiguity was defined by Zenobi and
Cunningham in [22], and include the responses of the base
classifiers and the overall ensemble.
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Fig. 4. Performance over the number of classifiers in the ensemble, using
different combination strategies and adding the classifiers in decreasing order
according to AUC evaluated on validation. Results are shown for the problem
with total probability of error of 20%.

Figure 4 presents the resulting F1 measure and ambiguity
for the ensembles in the scenarios with total probability error
of 20%. Regarding the F1 measure, the maximum, average, BC
and SSBC combinations perform better than meta-kNN at all
times, and a significant increase in performance is shown by
SSBC when the ensemble contains between 5 and 9 classifiers.
The phenomenon was repeated for the other levels of overlap,
becoming more evident as the total probability error grows.
The ambiguity of the meta-kNN combination remains at a
high compared to the other four approaches, which, combined
with the low F1 performance, allows to see that this approach
exploits the diversity of opinions in a less efficient way. On
the other hand, the ambiguity shown by SSBC remains low
compared to the meta-kNN, reinforcing that useful diversity
of opinions is exploited by this approach.

In Fig. 4a, it can be observed that the last value for SSBC
in the curve, corresponding to 10 classifiers in the ensemble,
is significantly higher than the first value (2 classifiers). This
is related to the order in which base classifiers are added to the

ensemble, and the limit of useful diversity of opinions provided
by the base classifiers. The last (and least accurate) classifiers
added to the ensemble, negatively affects diversity and thus, the
global performance. This tendency is more evident in problems
with a high level of total probability of error, in which the
classifiers with less performance bias the ensemble towards
the erroneous decisions. In general, the approaches that show a
higher diversity tend to produce a lower performance, showing
that there is a limit in the useful diversity, and beyond that
limit, it damages the ensemble accuracy.

Table I shows a comparison between the combination
strategies, considering 7 classifiers trained on different levels
of imbalance. It can be seen that SSBC provides the most
accurate fpr in all cases, remaining always close to the
desired fpr = 1% regardless of the total probability of error
between classes. In contrast, the average rule and meta kNN
provide the highest tpr at the expenses of increased fpr.
This is undesirable since false alarms should be limited in
video surveillance in an environment with numerous non-target
individuals. Comparing the F1 measures for the different com-
bination methods, SSBC significantly outperforms all other
approaches. Only the problem with an overlap of 1% that
seems to be better addressed by the meta kNN. From results,
one would suggest that traditional combination methods are
suitable to be used in imbalanced environments when the
classification problems are easy enough (e.g. present a lower
total probability of error between classes, simple decision
boundaries, etc). However, as the total probability of error
grows, SSBC outperforms the others. Note that this global
performance is affected by a low tpr.

Exploiting complexity: Using more than one classifier for
each level of imbalance allows to exploit the complexity of
data to generate more robust ensembles. In this experiment,
ensembles were augmented by increasing the number of classi-
fiers per imbalance. Variations in the classifiers was introduced
by changing the presentation order in the training sets. A
sensitivity analysis was conduced to observe the performance
of ensembles after changing the size of these sub-pools from
1 to 3 classifiers per imbalance, resulting in pools of 7, 14
and 21 classifiers. The test set was kept with the maximum
imbalance.

SSBC (7x1) SSBC (7x2) SSBC (7x3)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

F
1

Fig. 5. F1 box plots for the skew-sensitive ensembles with a pool of classifiers
with 7 imbalances, problem with 20% total probability of error. A sub-pool
for each of the imbalances was growth from one to three classifiers, resulting
in pools of 7, 14 and 21 classifiers

Figure 5 presents the box plots for the F1 performance
achieved by skew-sensitive ensembles with different sizes of
pools of classifiers. It can be seen that the median grows as the
number of classifiers increases. The variations represented by



TABLE I. AVERAGE PERFORMANCE OBTAINED WITH DIFFERENT SYSTEMS. ENSEMBLES ARE COMPOSED OF 7 BASE CLASSIFIERS. THE BOLD
NUMBERS REPRESENT THE PERFORMANCE VALUES SIGNIFICANTLY HIGHER THAN OTHER APPROACHES.

PFAM Score-level AVG Meta kNN Proposed approach
fpr(↓) tpr(↑) prec(↑) F1(↑) fpr(↓) tpr(↑) prec(↑) F1(↑) fpr(↓) tpr(↑) prec(↑) F1(↑) fpr(↓) tpr(↑) prec(↑) F1(↑)
Total probability error: 1%
13.26% 94.30% 1.61% 0.0314 11.74% 99.90% 1.57% 0.0307 1.37% 97.70% 16.04% 0.2496 0.81% 58.50% 6.85% 0.1219
(4.19) (4.94) (0.40) (0.0078) (3.06) (0.10) (0.39) (0.0075) (0.51) (0.56) (5.03) (0.0623) (0.07) (5.53) (0.45) (0.0077)

Total probability error: 5%
13.92% 50.30% 0.79% 0.0153 16.62% 92.30% 0.93% 0.0183 8.86% 87.40% 2.37% 0.0441 0.93% 57.50% 6.17% 0.1102
(3.70) (11.06) (0.32) (0.0061) (4.64) (2.21) (0.18) (0.0034) (2.16) (2.33) (0.99) (0.0174) (0.08) (5.51) (0.73) (0.0118)

Total probability error: 10%
12.32% 39.50% 0.75% 0.0140 13.71% 75.80% 1.40% 0.0267 15.67% 81.70% 0.62% 0.0122 1.24% 36.80% 3.50% 0.0625
(4.48) (10.02) (0.30) (0.0054) (4.16) (5.32) (0.47) (0.0087) (2.11) (3.80) (0.10) (0.0019) (0.20) (4.07) (0.66) (0.0106)

Total probability error: 15%
14.52% 42.00% 0.38% 0.0075 10.44% 49.10% 1.35% 0.0234 23.12% 78.20% 0.39% 0.0078 1.13% 21.80% 2.16% 0.0390
(3.55) (9.58) (0.10) (0.0020) (3.97) (10.47) (0.38) (0.0059) (2.50) (2.72) (0.06) (0.0013) (0.13) (2.50) (0.34) (0.0059)

Total probability error: 20%
19.00% 51.50% 0.28% 0.0057 11.99% 54.50% 0.74% 0.0144 27.88% 75.00% 0.28% 0.0056 1.12% 14.20% 1.32% 0.0240
(3.06) (9.33) (0.04) (0.0007) (3.77) (5.68) (0.13) (0.0024) (2.30) (2.56) (0.02) (0.0004) (0.10) (2.13) (0.22) (0.0038)

Total probability error: 25%
12.62% 32.40% 0.47% 0.0083 10.92% 42.20% 0.60% 0.0115 31.27% 68.60% 0.23% 0.0046 1.22% 8.10% 0.67% 0.0123
(3.78) (6.52) (0.15) (0.0020) (3.30) (7.13) (0.09) (0.0017) (2.56) (2.55) (0.02) (0.0003) (0.10) (1.03) (0.07) (0.0012)

the upper and lower bars becomes narrower as the number of
classifiers grows. The difference in performance between the
second (7x2 classifiers) and the third (7x3 classifiers) boxes
is small. Other criteria like spatial complexity may be used to
select the size of the sub-pools.

VI. EXPERIMENTS WITH VIDEO SURVEILLANCE DATA

Assume that a surveillance camera continuously captures
videos from a scene and feeds them to the segmentation mod-
ule (Viola-Jones face detector) that isolates the facial regions
of interest (ROIs) in each consecutive frame. Discriminant
features are extracted using a face descriptor (multi-block
local binary patterns), and the 32 principal components are
selected after PCA. The tracking module (incremental visual
tracking [23]) follows the face of each individual and regroups
ROIs from a same individual in trajectories, whereas the
classification module produces consecutive identity predictions
for each ROI. Finally, the spatio-temporal decision fusion
module accumulates target predictions and applies individual-
specific thresholds for enhanced spatio-temporal FR [1]. In
the reference system, the EoDs are co-jointly trained using
a DPSO learning strategy to generate a diversified pool of
PFAM classifiers [20]. In the proposed approach, the base
classifiers are independently trained data sets with different
levels of imbalances, and hyperparameters are optimized with
the aforementioned DPSO learning strategy.

Videos from the CMU-Face in Action (FIA) database are
employed. Each video corresponds to 20 seconds sequences
from one of 244 individuals in a passport checking scenario
[24]. Six cameras capture the scene at 640×480 pixels, with 30
frames per second. During each trial, 10 individuals of interest
were randomly selected for enrollment, and the remaining non-
target individuals were split into two independent subsets for
training and test.

During enrollment, a pool of PFAM classifiers was gen-
erated according to ΛGEN = {1 : 1, 1 : 101/3, 1 : 102/3, 1 :
10, 1 : 104/3, 1 : 105/3, 1 : 100}. The DPSO algorithm was
initialized with a population size of 20 particles, a maximum
of 6 subswarms of 5 particles maximum, and a maximum
of 10 iterations [21]. The global best classifier was selected
for each imbalance in ΛGEN . Test videos were concatenated
one after the other, emulating a passport checking scenario.
Four blocks of 30 minutes were prepared (D1, D2, D3 and

D4), with different imbalances. The first two blocks are
composed of trajectories from capture session 2, and the last
two blocks are composed of trajectories from capture session
3. Trajectories from blocks D1 and D3 were captured with an
unzoomed camera, and trajectories from blocks D2 and D4

were captured with a zoomed camera. Learning is performed
following 4x6-fold cross-validation for 24 independent trials.
The first two folds are merged for training (Dt), and the rest
are distributed in validation sets to stop training epochs (De),
for fitness evaluation (Df ), estimation of fusion function (Dc)
and selection of the operational point (Ds).

Table II shows the average performance using the reference
system and SSBC using PFAM and ensembles with AVG
score level fusion, meta-kNN, and the proposed approach, after
selecting the operations point at fpr = 1%. The performance
of the proposed approach is significantly higher after adapting
ensembles to the operational imbalance. It can be seen that the
proposed approach maintains fewer false alarms after the oper-
ations point is adapted. This capacity is related to the use of the
abundant non-target samples to establish the decision frontier
at the fusion function, enhancing the discrimination between
target and non-target classes. However, this is achieved at the
expense of a lower tpr.

TABLE II. AVERAGE PERFORMANCE OF DIFFERENT APPROACHES AT
AN fpr = 1% ON TEST BLOCKS AT DIFFERENT t TIMES. THE STANDARD

ERROR IS DETAILED BETWEEN PARENTHESIS, AND BOLD NUMBERS
SYMBOLIZE SIGNIFICANT DIFFERENCE IN TERMS OF F1 MEASURE WITH

RESPECT TO OTHERS.
Approach Measure t = 1 t = 2 t = 3 t = 4

fpr
5.15% 4.15% 4.71% 3.30%
(0.025) (0.024) (0.023) (0.014)

tpr 61.54% 56.94% 59.74% 59.41%
SSBC [2] recall (0.171) (0.234) (0.283) (0.313)

precision
23.19% 24.67% 30.61% 34.43%
(0.077) (0.099) (0.154) (0.171)

F1
0.300 0.307 0.363 0.383

(0.094) (0.135) (0.183) (0.217)

fpr
5.15% 1.47% 1.61% 1.11%
(0.025) (0.010) (0.013) (0.006)

tpr 61.54% 54.60% 49.79% 54.40%
Proposed recall (0.171) (0.327) (0.341) (0.354)
approach

precision
23.19% 40.82% 48.82% 48.13%
(0.077) (0.158) (0.251) (0.247)

F1
0.300 0.422 0.434 0.477

(0.094) (0.204) (0.238) (0.285)

Facial trajectories were built using the IVT face tracker
to regroup target facial regions, and used for trajectory-based



TABLE III. AVERAGE PERFORMANCE FOR THE REFERENCE AND
PROPOSED APPROACHES, CONSIDERING THE 10 INDIVIDUALS OVER 24

TRIALS. THE STANDARD ERROR IS SHOWN IN PARENTHESIS.

t = 1 t = 2 t = 3 t = 4

Average Imbalance 1:15 1:16 1:10 1:15

Number of target ROIs 85.3 102.7 79.3 95.0
(7.07) (6.56) (5.35) (6.44)

SSBC [2] 67.87 67.67 71.41 73.36
(AUC-5%) (2.21) (2.40) (2.36) (2.28)

Proposed approach 67.87 79.45 78.61 74.07
(AUC-5%) (2.21) (1.98) (2.14) (2.57)

analysis of the system a passport-checking scenario. When a
new face is captured in a video sequence, the location of the
facial region is employed to initialize the tracker, and follows
it until the individual leaves the scene. Target predictions
produced by the system were accumulated over time for full
trajectories to provide overall decisions, and the detection
threshold was applied to these accumulations.

Table III shows the average operational imbalance, the
number of target ROIs, as well as the average overall AUC
for the ROC curves obtained over 0 ≤ fpr ≤ 0.05 (AUC-5%).
The AUC performance of the system the first test block, when
the operational imbalance is not considered, is significantly
lower compared to the performance after adapting the fusion
function.

VII. CONCLUSION

In this paper, an adaptive skew-sensitive ensemble was
proposed for video-to-video FR systems applied to face re-
identification. The proposed approach adaptively combines 2-
class classifiers trained by selecting data with varying levels of
imbalance and complexity. Results on synthetic problems show
that the adaptive skew-sensitive ensembles lead to a significant
increase in ensemble diversity, robustness and performance.
Similarly, results on CMU-FIA videos show that the proposed
method can outperform reference techniques in imbalanced
environments for face re-identification applications. The pro-
posed approach maintains a low level of false positives and a
high precision on synthetic and real data with imbalance, at
the expense of a lower level of true positives.

Future research should consider exploiting adaptive skew-
sensitive ensembles with imbalance-specific thresholds at deci-
sion fusion level. The characterization of the proposed system
should also be performed in more challenging scenarios with
uncontrolled capture conditions (e.g., crowded and outdoor
scenes). Finally, adaptation of the proposed system to gradual
or abrupt changes in the probability distribution of operational
data due to varying capture conditions for facial appearance
may be addressed employing self-update techniques, leading
to further improvement.

REFERENCES

[1] M. De-la Torre, E. Granger, P. V. Radtke, R. Sabourin, and D. O.
Gorodnichy, “Partially-supervised learning from facial trajectories for
face recognition in video surveillance,” Information Fusion, vol. 24, pp.
31–53, 2015.

[2] P. V. Radtke, E. Granger, R. Sabourin, and D. O. Gorodnichy, “Skew-
sensitive boolean combination for adaptive ensembles –an application
to face recognition in video surveillance,” Information Fusion, vol. 20,
pp. 31–48, 2013.

[3] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Wiley, 2004.

[4] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,” IEEE Transactions on Sys-
tems, Man and Cybernetics, vol. 42, pp. 463–484, 2011.

[5] V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera, “An
insight into classification with imbalanced data: Empirical results and
current trends on using data intrinsic characteristics,” Information
Sciences, vol. 250, pp. 113 – 141, 2013.

[6] V. Gonzalez-Castro, R. Alaiz-Rodriguez, and E. Alegre, “Class distribu-
tion estimation based on the hellinger distance,” Information Sciences,
vol. 218, pp. 146–164, 2013.

[7] J. Kittler, “Combining classifiers: A theoretical framework,” Pattern
Analysis and Applications, vol. 1, pp. 18–27, 1998.

[8] J.-F. Connolly, E. Granger, and R. Sabourin, “Evolution of hetero-
geneous ensembles through dynamic particle swarm optimization for
video-based face recognition,” Pattern Recognition, vol. 45, no. 7, pp.
2460 – 2477, 2012.

[9] Q. Tao and R. Veldhuis, “Hybrid fusion for biometrics: combining
score-level and decision-level fusion,” in IEEE CVPR Workshops,
Piscataway, USA, 2008, pp. 1 – 6.

[10] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 25, no. 10, pp. 2283–2301, 2013.

[11] S. Oh, M. S. Lee, and B.-T. Zhang, “Ensemble learning with ac-
tive example selection for imbalanced biomedical data classification,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 8, no. 2, pp. 316–325, 2011.

[12] C. Pagano, E. Granger, R. Sabourin, and D. O. Gorodnichy, “Detec-
tor ensembles for face recognition in video surveillance,” in IJCNN,
Brisbane, Australia, June 2012, pp. 1–8.

[13] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Adaptive roc-based
ensemble of hmms applied to anomaly detection,” Pattern Recognition,
vol. 45, pp. 208–230, July 2012.

[14] S. Wang, L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao,
“Concept drift detection for online class imbalance learning,” in IJCNN,
Dallas, USA, Aug 2013, pp. 1–10.

[15] M. C. du Plessis and M. Sugiyama, “Semi-supervised learning of class
balance under class-prior change by distribution matching,” in ICML,
Edinburgh, UK, 2012, pp. 1–26.

[16] A. Bella, C. Ferri, J. Hernandez-Orallo, and M. J. Ramirez-Quintana,
“Quantification via probability estimators,” Sydney, Australia, 2010, pp.
737 – 742.

[17] G. Forman, “Quantifying counts and costs via classification,” Data
Mining and Knowledge Discovery, vol. 17, no. 2, pp. 164 – 206, 2008.

[18] Y. S. Chan and H. T. Ng, “Estimating class priors in domain adaptation
for word sense disambiguation,” in Proc. Int. Conf. on Computational
Linguistics and 44th Annual Meeting of the Asoc. Comp. Linguistics,
Stroudsburg, USA, 2006, pp. 89–96.

[19] M. De-la Torre, E. Granger, R. Sabourin, and D. O. Gorodnichy,
“An individual-specific strategy for management of reference data in
adaptive ensembles for face re-identification,” in ICDP, IET, Ed.,
London, UK, December 2013, pp. 1–7.

[20] C. Lim and R. Harrison, “An incremental adaptive network for on-
line supervised learning and probability estimation,” Neural Networks,
vol. 10, no. 5, pp. 925–939, 1997.

[21] E. Granger, P. Henniges, R. Sabourin, and L. S. Oliveira, “Supervised
learning of fuzzy ARTMAP neural networks through particle swarm
optimization,” J of PR Research, vol. 2, pp. 27–60, 2007.

[22] G. Zenobi and P. Cunningham, “Using diversity in preparing ensembles
of classifiers based on different feature subsets to minimize generaliza-
tion error,” in Machine Learning, 2001, vol. 2167, pp. 576–587.

[23] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” Int. Journal of Computer Vision, Special
Issue: Learning for Vision, vol. 77, pp. 125–141, 2008.

[24] R. Goh, L. Liu, X. Liu, and T. Chen, “The CMU Face In Action
Database,” in Analysis and Modelling of Faces and Gestures. Carnegie
Mellon University, 2005, pp. 255–263.




