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Abstract

Recognizing the face of target individuals in a watch-
list is among the most challenging applications in video
surveillance, especially when enrollment is based on one
reference still facial image. Besides the limited representa-
tiveness of facial models used for matching, the appearance
of faces captured in videos varies due to changes in illumi-
nation, pose, scales, etc., and to camera inter-operability. A
multi-classifier system is proposed in this paper for robust
still-to-video face recognition (FR) based on multiple di-
verse face representations. An individual-specific ensemble
of exemplar-SVMs (e-SVMs) classifiers is assigned to each
target person, where each classifier is trained using a high-
quality reference face still versus many lower-quality faces
of non-target individuals captured in videos. Diverse face
representations are generated from different patches iso-
lated in facial images and face descriptors that are robust to
various nuisance factors (e.g., illumination and pose) com-
monly encountered in surveillance environments. Discrimi-
nant feature subsets, training samples, and ensemble fusion
functions are selected using faces of non-target individu-
als captured in videos of the scene. Experiments on videos
from the Chokepoint dataset reveal that the proposed en-
semble of e-SVMs outperforms state-of-the-art FR systems
specialized for the single sample per person problem.

1. Introduction

Systems designed for FR in video surveillance aim to
detect the presence of individuals of interest by comparing
the faces captured over a network of cameras against facial
models of target individuals enrolled to the system [9, 16].
In watch-list screening applications, the number of repre-
sentative reference stills per target individuals is very lim-
ited [4]. Face models for matching are often designed a
priori using a single high-quality reference face image cap-
tured under controlled conditions. This challenging prob-
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lem is referred to as a "single sample per person" (SSPP)
problem [18]. Moreover, regions of interest (ROIs) iso-
lated within reference stills may differ significantly from
those captured in operational videos, due to camera inter-
operability, and to the different capture conditions. The ap-
pearance of faces captured in video under semi- or uncon-
trolled conditions may vary considerably according to sev-
eral nuisance factors, including ambient illumination, pose,
scale, expression, occlusion, and blur [3].

Different techniques have been proposed to address a
SSPP problem, such as exploiting multiple face descriptors,
synthetic face generation through morphing or 3D recon-
struction, and using auxiliary sets to enlarge the training set
[15, 18]. Recently, a system with multi-manifold learning
of discriminative features from patches has been proposed
to perform manifold-manifold matching [13]. Although
sparse representation based classification (SRC) methods
have shown a prominent performance in FR [20], they are
not directly applicable to SSPP problems. To address this
problem, a generic auxiliary training set has been exploited
in extended SRC (ESRC) [6] to enhance the intra-class vari-
ation in order to appropriately discriminate between the
probe and gallery samples. Similarly, a generic training set
has been integrated with the gallery set to develop a sparse
variation dictionary learning (SVDL), where an adaptive
projection is jointly learned to connect the generic set to the
gallery set, and to construct a sparse dictionary with suffi-
cient variations of representations [21].

Despite improvements achieved by the abovementioned
methods to handle the SSPP problem, they are not fully-
adapted for still-to-video FR systems w.r.t. the following
drawbacks. First, they are relatively sensitive to variations
in capture conditions (e.g., considerable changes in illumi-
nation, pose, and specially occlusion). Second, samples in
the generic training set are not similar to the samples in the
gallery set due to the different cameras. Hence, the intra-
class variation of training set may not translate to discrim-
inative information regarding samples in the gallery set.
Third, they may suffer from a high computational complex-
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ity, because of the sparse coding and the large and redundant
dictionaries [6, 21].

Few specialized classification systems have been pro-
posed for still-to-video FR. Although only one high-quality
reference still is available per target individual, video se-
quences from other non-target individuals may also be
used to overcome the aforementioned challenges [4, 8, 17].
Moreover, ensemble methods have been shown to provide a
high-level of performance when training data is limited and
imbalanced [11]. Ensembles of template matchers based
on multiple diverse face representations of a single target
ROI pattern have been shown to significantly improve on
the overall performance of a basic still-to-video FR system
[4].

In this paper, a multi-classifier system is proposed for
robust still-to-video FR, where the single reference still of
a target individual is modeled using an individual-specific
ensemble of exemplar-SVM (e-SVM) classifiers [14]. E-
SVMs are 2-class classifiers trained using a single target fa-
cial ROI versus many non-target ROIs captured in videos
from the same camera view-point. This specialized en-
semble of e-SVMs models the variability in facial appear-
ances by generating diverse face representations that are
robust to different nuisance factors frequently observed in
surveillance environments. Multiple face representations
are generated from different face patches and face descrip-
tors. Indeed, the abundance of non-target faces acquired
from videos of unknown people in the environment (back-
ground model) is used throughout the design process to se-
lect discriminant feature sets, scores normalization, and fu-
sion.

The contributions of this paper can be summarized as
follows. First, an individual-specific ensemble of e-SVMs
is proposed to discriminate between a single high-quality
target ROI and an abundance of non-target ROIs from low
resolution videos of the scene. Secondly, multiple face
representations are generated to provide ensemble diversity
and improve robustness to various perturbation factors. The
performance of the proposed system is compared to state-
of-the-art systems using videos of Chokepoint dataset [19].

2. Ensembles of Exemplar-SVMs Based on
Multiple Representations

The block diagram of the proposed multi-classifier sys-
tem is shown in Figure 1. During enrollment, an individual-
specific ensemble is designed for each target individual us-
ing multiple robust facial representations and specialized e-
SVM classifiers. This ensemble is robust to variability of
faces by generating diverse representations (different fea-
tures extracted from patches) that address common nuisance
factors. E-SVM classifiers are trained under imbalanced
data distributions (a single reference face still versus an

abundance of non-target faces captured from video cameras
in the scene). Faces captured in videos for non-target in-
dividuals appearing in the camera viewpoint are employed
during design phase (enrollment of an individual). Hence, a
diverse pool of e-SVM classifiers is generated during design
and then classifiers’ responses are combined at the score-
level during operation.

2.1. Enrollment Phase

During enrollment of a target individual, the facial model
is encoded into an ensemble of e-SVMs using the ROI ex-
tracted from a single high-quality reference still. The ref-
erence still ROI is first converted to gray-scale and then a
facial ROI is isolated using a face detector. Then, each ROI
is scaled into a common size, aligned, and then normalized
for illumination invariance. Afterwards, a pool of diverse e-
SVM classifiers is generated using multiple face representa-
tions extracted from patches of the reference ROI. In partic-
ular, uniform non-overlapping patches are used to improve
FR of partially occluded faces [ | 2]. For each representation,
the ROI patch patterns of the target individual is combined
with the corresponding ROI patterns of non-target individ-
uals to train e-SVMs to estimate the face model. For a sys-
tem with P patches, and M feature extraction techniques,
enrollment involves generating a pool of MxP e-SVMs.

2.2. Multiple Feature Extraction

Feature extraction techniques are selected based on their
robustness to the nuisance factors encountered in video
surveillance environments [1, 2, 7]. To that end, both LBP
and LPQ extract textures, while LBP is illumination invari-
ant and LPQ is more robust to motion blur. HOG is capable
of providing a high level of discrimination on a SSPP due
to its modeling of gradients with different angles and orien-
tations. Furthermore, HOG is robust to rotation and transla-
tion. Haar wavelet transform performs accurately regarding
to pose changes and partial occlusion.

2.3. Exemplar-SVM Classification

In this paper, specialized Support Vector Machine
(SVM) classifiers are considered for face matching as ac-
quired in still-to-video FR. The performance of traditional
SVM classifiers declines when training data is imbalanced,
as the estimated boundary is skewed to the majority class
(non-target ROIs). For classification of imbalanced data
sets, the SVM objective function should adapt the boundary
in order to decrease the effect of class imbalance [22]. Con-
sider a training dataset {(x1,v1), (X2,%2) ..., (X, y1)} in
a binary classification problem, where x; € R" and y; €
{—1,+41} represent an n-dimensional data points and the
classes of these data, respectively, for i = 1,2,... 1. Dif-
ferent Error Costs (DEC) methods were proposed to mod-
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Figure 1. Block diagram of the proposed still-to-video FR system using ensemble of e-SVMs per target individual.

ify the SVM objective function, where two misclassification
cost values CT and C'~ are assigned as follows:

l !
1
minw,b75§w2—|—c+ Z &E+C Z & (D

[t|lyi=+1] lilyi=—1]

where slack parameters ¢; are introduced to account for
l
misclassified examples, thus, Y & can be considered as a

misclassification amount, and lwlis the weight vector. Con-
stants C* and C~ are the misclassification costs for the
positive and negative class, respectively.

The e-SVM classifier is trained using a single target sam-
ple (still ROI pattern) along with many non-target samples
(ROI patterns from videos) for each individual of interest
as illustrated in Figure 2. As a specialized classification ap-
proach for watch-list screening with a SSPP, training can
be performed by considering all or a subset of non-target
ROIs as negative samples obtained from a universal back-
ground model. Subsequently, the information of non-target
individuals from the context are exploited during training to
enhance the classifier generalization capability.

Let a be the positive sample (target ROI pattern) and U
is the number of non-target (negative) samples. The formu-
lation of the linear classifier e-SVM cost function is:

min v ,w? + Cymax(0,1 — (WTa + b) +
Ce Y max(0,1— (wix+b)) @
xeU

where C and Cy parameters control the weight of reg-
ularization terms, and b is the bias term. Since there is

Target individual
(still capture)

Non-target individuals
(video captures)

Figure 2. 2D illustration of e-SVM decision boundary for an indi-
vidual of interest enrolled in the watch-list.

only one positive sample in the training set, its error is
weighted much higher than the negative samples. The cali-
brated score of e-SVM for the given ROI a and the learned
regression parameters (a,,) is computed as follows [14]:

1

J (x|w,aq,Ba) = 1T o—aaWI—Fa)
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E-SVMs possess some potential benefits in designing
individual-specific classifier systems with multiple face rep-
resentations. The number of non-targets appears to provide
enough constraints to the SSPP problem. The amount of
non-targets cannot affect the accuracy of decision boundary
due to estimate support vectors that are highly similar to
each target [14]. Hence, it can be applied suitably even for
large databases containing a few exemplars in the training
set, e.g., as acquired in the watch-list screening.

Since each e-SVM is highly specialized to the target in-
dividual, the largest margin (decision boundary) will be ob-
tained by training under imbalanced data exploiting differ-



ent regularization parameters, where it provides more free-
dom in defining the decision boundary. Therefore, it is less
sensitive to class imbalance than other classification tech-
niques, such as neural network and decision tree [22]. E-
SVM as a passive learning approach impose no extra train-
ing overhead and compensate the imbalance data in the op-
timization process. Combining e-SVMs into an ensemble
may prevent over-fitting issue and simultaneously provide
higher generalization [10]. This method can be also inter-
preted as an approach to order and to select the representa-
tive non-targets by visual similarity to the target individuals.

2.4. Operational Phase

During operation, several people may appear in video
frames as illustrated in Figure 1, while some of them are
considered as individuals of interest. Thus, segmentation
and preprocessing step are performed on each frame in or-
der to capture face(s), and then the resulting ROI is scaled
into a common size. Afterward, multiple face descriptors
i1=1,2, .., M are extracted from each patch p =1, 2, ...,
P. PCA is employed to either rank features or to reduce di-
mension of face descriptors. Thereafter, each e-SVM classi-
fier provides a classification score S; ,(a; ) between every
patch ROI pattern a; , and the corresponding patch model
m,; i (classifier parameters trained and preserved for each
specific patch), where j=1, 2, ..., IV indicates the number of
individuals of interest. Classifiers scores are finally fed into
the score fusion module after score normalization to obtain
the final score S;.

Fusion at score-level among face patches and descriptors
are applied on the ensembles to achieve higher accuracy and
robustness, as follows: (1) score-level fusion of patches at-
tempts to combine the scores generated among patches us-
ing multiple classifiers trained per each patch, and (2) score-
level fusion of descriptors within the ensemble to provide
the final score. In the former fusion strategy, P classifiers
are used, while PxM classifiers are exploited in the latter.

3. Experimental Results

Chokepoint video dataset' [19] is selected as a bench-
mark for large-scale FR based on its characteristics to sim-
ulate real-world scenarios, especially in watch-list applica-
tion. In this paper, different aspects of the proposed frame-
work are evaluated experimentally using Chokepoint. First,
experiments assess the performance of classifiers trained
on ROI patterns extracted using different feature extraction
techniques. Second, experiments investigate the impact of
using patch configurations on the performance. Finally, the
performance of score-level fusion of classifiers within the
ensembles are compared.

Uhttp://arma.sourceforge.net/chokepoint/

3.1. Methodology for Validation

To constitute the watch-list, 5 high-quality still ROIs of
individuals of interest as shown in Figure 3 are selected ran-
domly with neutral expression. Random examples of ROIs
captured from videos are also illustrated in Figure 3. Videos
of 10 unknown people that are assumed as background (to
exploit a global view of the scene) are employed during en-
rollment phase. Thus, the rest of videos including 10 other
non-target individuals are associated for the testing process
along with videos of 5 watch-list individuals. Therefore,
target individuals (one at a time) and unknown individuals
within the test videos participate in each test iteration.

Reference
?till ROIs_ _

Examples of video ROIs

Figure 3. Illustration of ROIs captured from ’neutral’ reference
stills of 5 target individuals, as well as, random examples of their
ROIs captured from video sequences in the Chokepoint dataset.

Libsvm [5] is used in order to train each exemplar SVM.
The same regularization parameters C; = 1 and Cs = 0.01
for all exemplars (w of a target sample is 100 times greater
than non-targets) are chosen based on the imbalance ratio.
Furthermore, the size of the reference stills and captured
ROIs are scaled to 48x48 pixels. It should be noted that
the features extracted prior to the training phase must be
normalized between O and 1, as well as, output scores of
classifiers. Hence, min-max normalization is used in this
regard using non-target faces.

Ensemble of template matchers (TMs) [4] and SVDL
[21] are considered as state-of-the-art systems to compare
with the proposed system. In SVDL experiment, 5 high-
quality stills belonging to individuals of interest are consid-
ered as a gallery set and low-quality videos of non-target
individuals are employed as a generic training set to learn a
sparse variation dictionary. Three regularization parameters
A1, A2, and A3 set to 0.001, 0.01, and 0.0001, respectively
according to the default values defined in SVDL. The num-
ber of dictionary atoms are initialized to 80 based on the
number of stills in the gallery set, where it is a trade-off be-



Table 1. Average pAUC(20%) and AUPR performance of the proposed system over all Chokepoint videos using patches and 4 different
feature extraction techniques.

ROI - Patch Face Representations
Configurations LBP (max: 59) LPQ (max: 256) HOG (max: 500) Haar (max: 2304)
pAUC AUPR pAUC AUPR pAUC AUPR pAUC AUPR
1 (48x48 pixels) block | 77.86+£2.53 | 72.12+7.18 | 77.93£1.80 | 69.13£7.10 | 86.08+1.70 | 81.71+6.34 | 71.124+3.08 | 67.54+8.92
4 (24x24 pixels) blocks | 79.53+2.34 | 74.71£8.76 | 79.24+2.66 | 76.65+8.40 | 91.03+£0.84 | 88.02+4.32 | 84.41+2.38 | 81.82+7.42
9 (16x16 pixels)blocks | 81.68+£2.04 | 77.38+6.37 | 85.03+1.12 | 82.184+6.90 | 98.44+0.78 | 96.64+2.12 | 82.50+1.16 | 80.46+6.20

tween the computational complexity and the level of spar-
sity. Additionally, 100 dimensional Eigenvectors are com-
puted using the pixel intensities of faces as a feature set.
The performance of watch-list screening systems are
evaluated at the transaction-level by the Receiver Oper-
ating Characteristic (ROC) curve. A global scalar met-
ric of the detection performance is the Area Under ROC
curve (AUC), which can be interpreted as the probabil-
ity of classification. Precision-recall (PR) curve can also
estimate the performance considering the target individu-
als under imbalanced data situation. Recall can be de-
fined as TPR and precision (PR) is computed as follows
PR = %. In transaction-level analysis, system per-
formance are provided using partial AUC (pAUC) and Area
Under Precision-Recall (AUPR). The AUPR is suitable to
illustrate the global accuracy of the system in the skewed
imbalanced data circumstances. To achieve statistically sig-
nificant results, the experiments are iterated 5 trials for dif-
ferent groups of 5 individuals of interest, and then the av-
erage values of pAUC and AUPR for all individuals in the

HOG provides better performance. The maximum dimen-
sion of features that each feature extraction technique pro-
duces is also mentioned, while PCA is employed to reduce
and rank them. It can be concluded that training a sepa-
rate classifier for each patch provides higher performance,
contrary to training one classifier on the one block. Par-
ticularly, it is confirmed that the better facial model the e-
SVM trained on, the higher performance achieved. Since
each face descriptors performs inconstantly, applying fusion
among them can essentially capture their advantages.

In order to evaluate the proposed system against the
state-of-the-art systems, SVDL [21] and ensemble of tem-
plate matchers (TMs) [4] are considered. The performance
of applying fusion to combine the descriptors within the en-
semble at feature-level (concatenation) and score-level to
combine classifiers scores (mean function) is presented in
Table 2 versus the state-of-the-art systems.

Table 2. Average pAUC(20%) and AUPR performance of the pro-
posed system over all Chokepoint videos using score-level fusion
of descriptors within ensembles against state-of-the-art systems.

watch-list are reported along with standard deviations.

3.2. Results and Discussion

Performance of the proposed watch-list screening sys-
tem is evaluated with different feature extraction tech-

Systems / Performance pAUC AUPR
SVDL [21] 47.70+£1.20 | 40.14+4.12
Ensemble of TMs [4] 85.60+1.40 | 82.78+7.06
Ensemble of e-SVMs (1 block) | 92.28+0.54 | 90.95+2.84
Ensemble of e-SVMs (4 blocks) | 98.58+0.40 | 97.34+1.82
Ensemble of e-SVMs (9 blocks) | 100+0.00 | 99.24+0.38

niques, where score-level fusion among patches and de-
scriptors are considered using 1, 4, and 9 blocks (48x48,
24x24, and 16x16 pixels, respectively). It is worth not-
ing that the output scores of classifiers trained over each
patch are combined to provide the final score for each rep-
resentation using averaging. Since the dimension of these
representations are inconsistent and due to complexity and
to avoid over-fitting, their dimensions are reduced using
PCA?. The average values of pAUC(20%) and AUPR along
with standard errors are presented in the Table | for differ-
ent face descriptors and patch configurations.

As shown in Table 1, using score-level fusion of patch-
based method with 9 blocks mostly outperforms the perfor-
mance of without using patch (1 block) and 4 blocks. In
terms of comparing among feature extraction techniques,

2For PCA projection, the first 64 eigenvectors are selected as feature
sets for LPQ, HOG and Haar descriptors.

Table 2 shows that using fusion of descriptors within
the ensemble significantly outperforms feature extraction
techniques individually either with or without patches at
transaction-level compare to Table 1. Accordingly, it can
be also concluded that exploiting patch-based method ap-
propriately along with accurate e-SVM classifiers trained
within the ensembles lead to a robust face screening sys-
tem, where patches’ sizes 16x16 pixels perform better than
24x24 and 48x48 pixels. Hence, the bigger the pool of e-
SVMs, the more robust the system reached overall.

As shown in Table 2, ensemble of e-SVMs greatly out-
performs ensemble of TMs and SVDL. Performance of the
screening system using SVDL is quite poor, mostly because
of the remarkable differences between target face stills in
the gallery set and video faces in the generic training set



in terms of quality and appearances, as well as, lots of
non-targets (unseen individuals that are not enrolled in the
gallery) observed during operation. Since each faces cap-
tured should be assigned to one of the target still in the
gallery, therefore, many false positive will trivially occur. It
is worth mentioning that SVDL can only apply as a global
N-class classifier with a higher time complexity in con-
trast to the proposed ensemble of 2-class e-SVM classi-
fiers, specifically due to sparse optimization and classifica-
tion during operational phase.

4. Conclusion

This paper presents a robust multi-classifier system for
still-to-video FR that is specialized for watch-list screening
applications with a SSPP. Several feature extraction tech-
niques and local patches are employed to generate a diver-
sified ensemble of exemplar-SVM per individual. Feature
extraction techniques are chosen precisely based on their
robustness against variety of nuisance factors encountered
occasionally in VS environments. Accordingly, results con-
firm that using multiple robust face representations for de-
sign of facial models and encoding them into an ensemble
of adapted classifiers favorably achieve an accurate system.
Meanwhile, employing representative non-target samples is
required to optimize performance due to estimate the clas-
sifiers parameters, discriminant feature selection, and en-
semble fusion functions. Simulation results indicate that
training a separate classifier for each patch and combin-
ing their scores outperforms a single classifier trained us-
ing a long feature vector of concatenated patches. Conse-
quently, score-level fusion of descriptors within the ensem-
ble provides significantly better performance compared to
the state-of-the-art systems.
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