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This paper deals with source localization techniques in time domain for broadband acous-
tic sources. The goal is to detect accurately and quickly the position and amplitude of noise
sources in workplaces in order to prevent employees from hearing loss or safety risk. First,
the generalized cross correlation associated with a spherical microphone array is used to
get a raw noise source map. Then a linear inverse problem is defined. Commonly, linear
inverse problem is solved with an l2-regularization. In this study, two sparsity constraints
are used to solve the inverse problem, the orthogonal matching pursuit and the truncated
Newton interior-point method. Synthetic data are used to highlight the abilities of such
techniques. High resolution can be achieved for various acoustic sources configurations.
Moreover, the amplitudes of the acoustic sources are correctly estimated. Finally, a com-
parison of computation time shows these techniques are suitable in real scenario.

1 INTRODUCTION

The goal of this study is to develop an acoustic tool to accurately and quickly localize acoustic
noise sources in workplaces such as an industrial hall. Many workers are exposed to high sound
levels at work that may be harmful and lead to hearing loss or safety risk. Passive solutions
have been developed to reduce noise emitted by sources based on acoustic panels, curtains,
enclosures or damping materials. However, the first step in an acoustic diagnosis is to accurately
localize the position of the noise source in order to act at the right place. Commonly, the
dimensions of an industrial hall are large and the workers undergo the direct sound field and
multiple reflections. Therefore, the source localization method has to correctly identify all
the source positions and reflections in order to adequately design and implement noise control
solutions.
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Intensimetry is a technique to localize acoustic sources [1]. The goal is to scan the sound field
around an object with a two-microphone probe in order to estimate the radiated acoustic power.
Then, this information can be used as input to ray tracing software to predict the sound field in
a closed environment. However this technique is time-consuming and the source locations have
to be known a priori.

An alternative technique is to use an array of microphones associated with a source localiza-
tion algorithm [2]. The goal is to compensate the time or phase delay between two microphones
in relation to a virtual scan point. The processing is performed either in time or frequency do-
main. Frequency methods use the cross spectral matrix between the microphone signals. The
most common technique is known as beamforming [3]. The main disadvantage is the poor spa-
tial resolution at low frequencies. Deconvolution techniques have been developed to improve
the resolution of the noise source map [4–6]. Recent works based on inverse methods with a
l1-regularization have shown good performances [7]. However, in an industrial hall, the noise
sources are generally broadband so that the computational cost is large since the processing has
to be done for each frequency.

The most common technique in time domain is known as the Generalized Cross Correlation
(GCC) which is based on the time-delay between a pair of microphones [8]. This time-delay
generates an hyperbola for the possible source positions over the scan zone. The intersection of
all the hyperbolas (for all the microphone pairs) provides the source positions.

Noël et al. [9] have used the GCC associated to an inverse problem to localize source posi-
tions in an industrial hall. They developed an inverse problem which minimizes the difference
between theoretical and measured cross-correlation. They obtained a noise source map with
the angular energy flow received from each direction relative to the microphone antenna. The
results have shown good performances despite of a small number of scan points and large com-
putational cost. In this study a minimization problem is also proposed but with a different
theoretical formulation, associated to a l1-regularization [10]. Section 2 describes the source
localization techniques and its performance is demonstrated in Section 3 with synthetic data.

2 SOURCE LOCALIZATION TECHNIQUES

2.1 Acoustic model signal

An omnidirectional acoustic point source at location s = (sx, sy, sz)
† and a set of M micro-

phones P = {p1,p2, ...,pM} at location mi = (mix,miy,miz)
† are considered. The bold

letters denote matrices or vectors. Vectors are arranged column-wise, therefore the (·)† symbol
represents the transposed vector. The acoustic pressure p recorded by a microphone in free field
conditions is given by

p(mi, s, t) = S(s, t−∆ti), (1)

with S(s, t) is the acoustic source signal. The Time of Flight (ToF) ∆ti between the source and
the microphone is defined by Euclidean distance

∆ti =
1

c0
‖mi − s‖2, (2)

where c0 is the sound velocity and ‖ · ‖p is the p-norm of a vector or matrix.
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2.2 Generalized Cross Correlation (GCC)

Classically, acoustic source localization or acoustic imaging is performed using the energy of
the microphone array signal Ep defined for continuous signal by

Ep(s) =

∫ +∞

−∞

1

M2

M∑
i=1

M∑
j=1

p(mi, s, t)p(mj, s, t)dt. (3)

The auto-correlation does not bring information about the time delays therefore to improve
the noise source map these terms in Eq. (3) can be subtracted

E′p(s) =

∫ +∞

−∞

1

M2

M∑
i=1

M∑
j=1

p(mi, s, t)p(mj, s, t)dt−
1

M

M∑
i=1

∫ +∞

−∞
p2(mi, s, t−∆ti)dt. (4)

An alternative formulation for the energy may be defined

E′p(s) =
1

M2 −M

M∑
i=1

∑
j 6=i

(pi ? pj)(∆tj −∆ti), (5)

where the product (A ?B) corresponds to the Cross-Correlation (CC) at time lag τ defined by

(A ?B)(τ) =

∫ +∞

−∞
A(t)B(t+ τ)dt. (6)

To compute the CC, the inverse Fourier of the weighted cross-spectrum CAB(ω), denoted (◦),
is introduced

(A ◦B)(τ) =

∫ +∞

−∞
W(ω)CAB(ω) exp (jωτ)dω, (7)

with

CAB(ω) =

(∫ +∞

−∞
A(t) exp (−jωt)dt

)(∫ +∞

−∞
B(t) exp (−jωt)dt

)∗
. (8)

The symbol (·)∗ corresponds to the complex conjugate. The weighted function is used to esti-
mate accurately the time delay between the microphones. The most common technique is the
PHAse Transform (PHAT) [8] defined by

W(ω) =
1

| CAB(ω) |
, (9)

with | · | the absolute value of the signal. The goal is to whiten the cross-spectrum signal by
removing the amplitude and keeping the phase information.

If only the microphone pairs are considered and if the source position is substituted by a set
of Q scan points Q = {q1,q2, ...,qk}, the energy of the source map, commonly called GCC,
can be written as

GCC(qk) =
1

Mp

M∑
i=1

∑
j>i

∫ +∞

−∞
Wij(ω)Cij(ω) exp (jωτ)dω, (10)

with Mp the number of microphone pairs.
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2.3 Inverse model with sparsity constraint

In perfect conditions, the energy source map should exhibit a point at source positions. How-
ever, the geometry of the microphone array and source-microphone distance induce an im-
perfect noise source map with spurious lobes due to the superimposition of hyperbolas. One
approach to improve the source localization is to define a minimization problem J between the
measured source map y (obtained with GCC) and a modeled source map ŷ

J(x) = min
x
ρ(y, ŷ), (11)

where ρ is a cost function and x is the unknown source amplitude vector. The modeled source
map is defined by the following linear system

ŷ = Ax, (12)

where A correspond to a propagation model matrix [10]. To design the propagation model
matrix, an acoustic source at location s is considered. The Tof, denoted ToF (s,dij), between
a source and a pair of microphones dij (at positions mi and mj) is computed. Then the ToF
between all the scan points and this pair of microphone ToF (qk,dij) is computed. Finally, the
difference between ToF (s,dij) and ToF (qk,dij) is calculated. Small difference means that
the scan point is potentially close to the source conversely large difference corresponds to scan
far away from the source. The propagation matrix can be defined by

A =


a(s1, q1) a(s1, q2) · · · a(s1, qk)
a(s2, q1) a(s2, q2) · · · a(s2, qk)

...
... . . . ...

a(sk, q1) a(sk, q2) · · · a(sk, qk)

 , (13)

with

a(sl, qk) =
1

Mp

M∑
i=1

∑
j>i

{
1 if | ToF (sl,dij)− ToF (qk,dij) |≤ ε ε ≥ 0
0 otherwise. (14)

The Tof is given by

ToF (qk,dij) = ∆ti −∆tj =
1

c0
(‖mi − qk‖2 − ‖mj − qk‖2). (15)

Therefore, if ρ represents the Euclidean distance a linear least squares problem can be defined

J(x) = min
x
‖y −Ax‖22. (16)

If the number of scan points is larger than the number of sources, we can use sparse method
to solve the linear inverse problem which means minimize the l0-norm of the x vector. However
the minimization of the l0-norm is very difficult in practice. Convex relaxation of the l0-norm
using the l1-norm is preferred. Therefore, the linear inverse problem to solve is

J(x) = min
x

(
‖y −Ax‖22 + λ‖x‖1

)
. (17)

In the last years, several methods have been proposed to solve this inverse problem. In this
study, the solutions given by the Orthogonal Matching Pursuit (OMP) [11] and the truncated
Newton interior-point called Large Scale l1 (LS1) [12] are compared. The inverse problem
is solved in different way for each method. Both methods are compared in terms of source
localization, level estimation and computational time with the classical GCC.
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3 NUMERICAL STUDY OF THE PERFORMANCES OF THE SOURCE LOCALIZA-
TION TECHNIQUES

3.1 Numerical set-up

To highlight the abilities of the proposed source localization techniques, synthetic data are used
in free-field conditions, reflections can be generated by adding correlated sources (image-source
method). The sound pressure recorded by the microphone array is computed using Eq. (1). The
microphone array is a sphere composed of three circles. The radius of the larger circle is 0.25 m
and it is 0.2 m for the smaller circles. The distance between the smaller circles and the main
circle is 0.15 m. Each circle has five microphones, therefore the total number of microphone is
M = 15 (see Figure 1). In practice, the goal is to set the microphone array at all the worker
positions that is why the geometry is compact with a low number of microphones to limit the
computational time [9]. Commonly, the noise generated in industrial halls is composed of many
sources and reflections over a broad frequency range. Thus the source signal considered here
is a Gaussian white noise with a zero mean value and a standard deviation equal to 1. With an
acoustic pressure reference equal to 2e−5 Pa, the level of the source signal is 94 dB. The acoustic
time signal is sampled at 44, 000 Hz and 214 fast Fourier transform points are used to compute
the cross-spectrum Eq. (8). The sound speed is set to c0 = 340 m/s. The source locations are
searched in a plane (including the source positions), called scan zone, at 1 m from the center
of the spherical microphone array. The scan zone is a square with side equal to 1 m. The scan
zone is sampled with 21 points in each direction which leads to a total number of scan points
equal to L = 441 points and a space sampling of 5 cm. The GCC Eq. (10) is computed with
all the microphone pairs Mp = 105 in this case (Mp = (M × (M − 1))/2 = 105). The PHAT
weighted function is used to whiten the cross-spectrum according to Eq. (9). PHAT removes the
magnitude of the cross-spectrum therefore the source levels can not be estimated. To recover
the magnitude, the cross-spectrum is multiplied by its root mean square. The GCC Eq. (10) is
computed for all the scan points, the result obtained is the noise source map. The origin of the
source map corresponds to the center of the spherical microphone array (at 1 m). The noise
source map is coded with colors where darker colors correspond to louder noise sources. The
dynamic range of the noise source map is 16 dB and 1 dB corresponds to one coded color.

3.2 Case of three uncorrelated sources

First, the case of three uncorrelated point sources is studied. The source spacing is 0.2 m.
The noise source maps are computed with the three source localization techniques discussed
in section 2 and are shown in Figure 2. In all the noise source maps, GCC, OMP and LS1 are
presented in the left, center and right, respectively. The GCC noise source map exhibits three
spots at the source locations with large spurious lobes. In this case, an accurate detection of
the source positions is difficult. OMP and LS1 provide noise source maps with only three spots
at the source locations. Both methods remove the spurious lobes and provide a high resolution
source map. GCC and OMP correctly estimate the magnitudes of the three sources whereas
LS1 under-estimates by 1 dB the source level. This canonic case validates the three methods
and shows the efficiency of OMP and LS1 algorithms at perfectly detecting the positions of
three uncorrelated sources.

3.3 Case of three correlated sources

In some situations, the source signals generated by sources may be correlated such as in the
case of ground or wall reflections. Now, the input signal is the same for the three sources and
the configuration is kept similar. The noise source maps are shown in Figure 3. GCC exhibits a
main lobe at the central source position with two smaller spots at the two other source positions.
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Figure 1: Spherical array composed of 15 microphones (red dots close closed to origin) in the
case of three acoustic point sources (large dots at z = 1 m). The scan zone is represented by the
gray dots (at z = 1 m).

a) b) c)

Figure 2: Noise source maps for three broadband uncorrelated sources, a) GCC, b) OMP and c)
LS1. The circles are the true source positions. The colorbar is in dB.

In this case the pattern is clearly different from the previous configuration and it is more difficult
to detect the three source positions. Due to the correlation between source signals, the side lobes
merge to create a louder source at the origin. Both OMP and LS1 algorithms improve the source
localization and each source is well detected. However, the source level is under-estimated for
the sources on the side with each technique.

3.4 Case of an extended source

In the previous configuration, the noise source was a point source. However, in industrial situ-
ations, noise sources are often extended. Therefore an extended source composed of 41 point
sources from −0.2 m to 0.2 m is computed (source separation of 1 cm i.e five sources by scan
zone sample). The noise source maps are shown in Figure 4. GCC shows an extended source
with large side lobes which may impair the localization of sources with a lower source level.
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a) b) c)

Figure 3: Noise source maps for three broadband correlated sources, a) GCC, b) OMP and c)
LS1. The circles are the true source positions. The colorbar is in dB.

OMP improves the noise source map, however several spots, with low levels which do not
correspond to source locations, are present. The best noise source map is obtained using LS1
where the source position is well detected without any spurious lobes. The source level esti-
mated by all the methods is close to 100 dB. The number of sources by scan point is equal to 5,
thus if the contribution of each source is summed, we can define an overall source level by scan
point (10 log10((5×1)/4e−10) = 101 dB). Therefore, LS1 correctly detects the source positions
and moreover is able to estimate the source level with a small error.

a) b) c)

Figure 4: Noise source maps for an extended source, a) GCC, b) OMP and c) LS1. The circles
are the left, center and right limits of the extended source. The colorbar is in dB.

3.5 Case of three sources with unequal magnitudes

In this section, the ability to detect sources with unequal magnitudes is investigated. The con-
figuration is similar that in the section 3.2 where three uncorrelated sources are 1 m from the
array. However, the magnitude is decreased by 3 dB and 6 dB for the left and right sources,
respectively. The noise source maps are shown in Figure 5.a-c. All the source localization
techniques correctly detect the source positions but the best results are obtained with OMP and
LS1. To gain insight into the noise source maps, slices at y = 0 m are plotted in Figure 5.d-f.
These figures clearly show the high resolution ability of OMP and LS1. The best sound level
estimation is given by OMP method whereas GCC and LS1 under-estimate the sound level by
1 dB.
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a) b) c)

d) e) f)

Figure 5: Noise source maps for three broadband uncorrelated sources with unequal magni-
tudes, a) GCC, b) OMP and c) LS1 and slices at y = 0 m d) GCC, e) OMP and f) LS1. The
circles are the true source positions and sound levels. The colorbar is in dB.

3.6 Computation time

The previous sections compared the efficiency of the source localization techniques to detect
source levels and positions. In an industrial context, all the worker positions have to be tested
therefore the computational time of the methods should remain reasonable. The technique
proposed by Noël et al. requires several hours with 648 scan points [9].

The computational time of the techniques is compared for several numbers of scan points.
The time is given by the tic-toc function of Matlab R2014a. A dual core processor at 3.33 GHz
is used with 4 Go of Ram. The time for building the propagation matrix A (Eq. 13), for solving
the problem using OMP and LS1 is provided for comparison. The construction of matrix A and
the implementation of OMP are custom-made codes whereas LS1 is based on the toolbox Large-
Scale l1-Regularized Least Squares Problems [13]. The computation time of GCC is very low
and mainly dependent on the number of microphone pairs and is therefore not compared with
the other methods. The total number of scan points ranges from L = 361 points (19 × 19 grid
size) up to L = 3025 points (55 × 55 grid size). The result is shown in Figure 6. From the
trend of the curves, it is possible to define a power law depending on the number of scan points.
OMP and LS1 times increase with the square of the number of scan points. OMP is the fastest
method and the time required to build matrix A is over a minute for a number of scan points
larger than 3000. Finally, even with a large number of scan points the computation time is still
reasonable (less than 2 minutes) and can be applied at different workstations.

4 CONCLUSION

In this study, various source localization techniques in time domain for broadband acoustic
sources have been presented. The Generalized Cross Correlation (GCC) provides a coarse noise
source map. Then a linear inverse problem is defined and solved with a sparsity constraint.
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Figure 6: Computation time of OMP and LS1 versus the total number of scan points (using
Matlab R2014a, running on a dual core processor at 3.33 GHz and 4 Go of Ram).

Synthetic data generated for different source configurations are used to highlight the abilities of
such techniques. As compared to GCC, sparsity constraint methods provide a high resolution
imaging with a correct estimation of the source levels. Moreover, the computation time is
reasonable for industrial applications. However, these techniques need user-defined parameters.
In a subsequent work, a parametric study will be carried out to define the optimal choice of
these parameters. Moreover the spherical microphone array allows for recording the acoustic
pressure coming from all the directions, thus the next step is to develop a scan zone in spherical
coordinates. Finally an experiment will be carried out in hemi-anechoic and reverberant rooms
to assess the proposed techniques.
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