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Due to the expensive production equipment, many manufacturers usually lease production equipment with a warranty period
during a finite leasing horizon, rather than purchasing them. The lease contract contains the possibility of obtaining an extended
warranty for a given additional cost. In this paper, based on the forecasting production/maintenance optimization problem, we
develop amathematical model to study the lease contract with basic and extended warranty based on win-win relationship between
the lessee and the lessor.The influence of the production rates in the equipment degradation consequently on the total cost by each
side during the finite leasing horizon is stated in order to determine a theoretical condition under which a compromise-pricing
zone exists under different possibilities of maintenance policies.

1. Introduction

Due to the rapid advances in technology, the technological
obsolescence appeared in the market at a quick rate with
the new and better equipment. On the other hand, the
owning cost of this new equipment became very high. Due
to these different reasons, more and more industries started
leasing equipment rather than owning them. The mainte-
nance actions in leasing contract are considered the most
important element negotiable between the manufacturer and
the consumer. Prior to the onset of leasing aspect, most
businesses owned the equipment and the different preventive
and corrective maintenance actions were approved inter-
nally. This began to change with the progress complexity of
equipment with specialist services and their uneconomical
maintenance actions made in-house. On the other hand,
most manufacturers considered the maintenance as a no
basic activity which is why they focus only on the principal
activities, which are considered as the basic of the business. In
this context, the notion of warranty is attached to the leasing

concept since the leasing contract contains the warranty for
the maintenance service. In this case, we can consider the
warranty as a selling argument to attract and win more
customers concerning the point of view of the lessor. From
the customers’ point of view, warranty means reducing the
cost of repairs or replacement of the defective equipment
during the warranty period.

The maintenance of leased equipment offered by the
equipment owner is generally quantified in a lease con-
tract provided by the lessor to the lessee (Murthy and
Asgharizadeh [1]). Concerning the maintenance strategy for
leased equipment, some research works treated this type of
problem with numerous preventive maintenance policies,
which have been proposed and studied under various situ-
ations, such as perfect or imperfect maintenance. Yeh and
Chang [2] determine the optimal number of lease periods and
define the maintenance strategy for leased equipment that is
based on a minimal repair to restore the equipment to an
operating condition when the leased equipment fails and an
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imperfect preventive maintenance is done to avoid failures,
when the age of the equipment reaches a certain threshold
value. In the same context, Jaturonnatee et al. [3] proposed
a method of failure-rate reduction, in which the failure rate
of equipment is reduced after each preventive maintenance
action, to solve the optimal maintenance policy of leased
equipment under periodical preventive maintenance actions.

Concerning the warranty periods of the production
machines, in numerous cases, due to the complexity of main-
tenance actions for variousmachines, the consumers prefer to
buy a supplementary period of warranty by covering an extra
cost in order to avoid problems of production/maintenance
cost increase and the production system perturbation. In this
context, Berke and Zaino [4] treated two types of warranties
contracts that were intended to assure the consumer that the
product would perform its planned functions under specific
conditions and periods of time. The first type defined a
combination policy that proposed an initial free-replacement
warranty and from a certain period the replacement item’s
cost is calculated on a sliding scale. The other was the fleet
warranty, which guarantees a purchaser of a large quantity of
wanted items an average field performance. Remaining with
warranty and maintenance aspect, Kim et al. [5] defined the
relation between the warranty and preventive maintenance
by showing the impact of PM over warranty period on
the cost of warranty service. Yun et al. [6] proposed two
new warranty servicing strategies, concerning imperfect and
minimal repairs. In the first strategy, they involve a func-
tional optimization to determine the optimal improvement
in reliability, when an imperfect repair is carried over the
warranty period and depends on the age of the item. In the
second strategy, they include only a parameter optimization
to determine the optimal reliability improvement that does
not depend on the age.

On the other hand, there are other types of warranties
applied to nonrepairable products; we can cite the renewing
free-replacement warranty (RFRW) in which in the case of
product failure under warranty period it is replaced by a new
one with a full warranty. Chien [7] investigated analytically
the impacts of the RFRW on the optimal age-replacement
policy for a repairable product with a general failure model.
They presented a general model that contains two types of
failure when the product fails. In type 1, the failure (minor
failure) is removed by a minimal repair, whereas in type
2 of failure (catastrophic failure) it is removed only by a
replacement. Chien [8] presented a new warranty strategy
based on an age-replacement policy for products, which
combines a fully renewable free-replacement with a pro
rata warranty policy (RFRW/RPRW policy). They developed
a cost model from the user/buyer and discussed special
cases of the model, in order to determine the corresponding
local optimal replacement age by minimizing the long run
expected cost rate.

The majority of the researches concerning the war-
ranty problems consider a fixed warranty period while the
dynamicwarranty period or otherwise the extendedwarranty
period, especially in the lease contract, helps the lessor to
keep contact with clients after the end of warranty period.
Extended warranty helps the customer to continue with the

same maintenance service of well-known equipment. In this
context, Bouguerra et al. [9] developed amathematicalmodel
to study the opportunity provided by the extended warranty
for the consumer and manufacturer and proposed a strategy
of a long guarantee plan of the preventive maintenance
for the systems subjected to the random troubleshooting.
This strategy considers diverse options for maintenance
policies during the following periods: basic guarantee period,
extended guarantee period, and postguarantee period.

Wu and Longhurst [10] showed the influence of both
the length of warranty period and replacement time on
the life cycle cost of equipment. They formulated the
expected life cycle cost considering the opportunity-based
age-replacement policy with minimal repair for an extended
warranty and maintenance. They also proved the conditions
for the existence of optimal solutions for both the length of
the extended warranty period and the design life for special
cases.

Recently, another type of problem that deals with leas-
ing/warranty problem is treated by Hajej et al. [11]; they
handled the optimization problem of production and main-
tenance policies for leased equipment under a lease con-
tract with warranty periods. A mathematical model of the
total production and maintenance cost is developed and an
optimal production planning as well as the corresponding
optimal maintenance strategy is derived by choosing the
optimal warranty periods for the lessee in order to minimize
the total cost.

Motivated by our work in Hajej et al. [11], we can consider
this work is a continuation of our work in Hajej et al. [11]
where we determine themost optimal basic warranty periods
for the lessee. This study shows that it has novelty and
originality relative to this type of problem, which considers
a mathematical model to study the opportunity provided to
extend the warranty for the lessee. Based on a forecasting
production and maintenance problem for leasing machine,
we will determine the total cost of leasing machine for
each side in order to determine, for any given situation,
zone of possible compromise yielding a win-win relationship
with respect to the extended warranty cost. The zone of
compromise is characterized by the maximum extra cost
the lessee should pay for the extended warranty and the
minimum price at which the lessor should sell it. Indeed, we
have shown the influence of production rates as well as the
maintenance actions of the manufacturing machine over the
warranty and the extended warranty period on the warranty
servicing cost.

This study proposes a new idea of production andmainte-
nance coupling in the leasing aspect withwarranty.This study
shows that it has novelty and originality relative to this type of
problem, which considers and proposes a new maintenance
strategy for leasing contract with extendedwarranty based on
win-win relationship between the lessee and the lessor. This
originality is characterised by the influence of the production
variation rates on the machine degradation degree that is
new in the literature charactering by analytical study that
shows the evolution of the machine failure rate according
to its use respecting at the same time the continuity of the
equipment reliability from a period to another. Secondly, in
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our opinion, no analytical or numerical way has been stated
in the literature, which leads to a decision framework to the
lessee and/or to the lessormaking the identification of pricing
zones of the extended warranty acceptable for both sides.

The remainder part of this paper is organized as fol-
lows. Section 2 states the problem. Section 3 presents and
develops the mathematical model concerning the forecasting
production problem and the different policies ofmaintenance
considering the influence of production rates on the leasing
machine degradation. Section 4 presents a numerical exam-
ple illustrating our approach followed by a variability study
showing the impact of variation of preventive maintenance
costs on our model. Finally, the conclusion is given in
Section 5.

2. Problem Description

2.1. Problem Statement. In this work, we are considering the
problem of forecasting production andmaintenance problem
for leasing machine with warranty periods. The idea of our
problem is to define a new aspect in the leasing contract.
Generally, several pieces of equipment are leased with a
warranty period but there are leasing contracts that propose
to the lessee (who leases the equipment) the possibility of
purchasing an additional period of warranty which will start
at the end of the basic warranty period by adding additional
costs. Hence, the lessee has to decide whether to buy or
not the extended warranty period and what the price of the
extended warranty is. It is a difficult decision for each side.
The lessee does not know if the extra cost (the price of the
extended warranty) of the leasing equipment would exceed
the potential repairs cost that would be borne by him in case
he does not take the extended warranty. On the other hand,
for the lessor not to lose, the price of extended warranty
should be higher than the cost of claims servicing borne
(maintenance actions) by him during the additional warranty
period.

We will answer all these questions by proposing a fore-
casting model in whichthe lessee leases a manufacturing
machine.The equipment is leased for amultihorizon𝐿⋅Δ𝑡 (we
assumed that the production horizon is portioned equally to
periods with a length equal to Δ𝑡 ) with a warranty period𝑋⋅

Δ𝑡. We suppose that leasing production machine is designed
in order to produce only one type of product in amanufactur-
ing system composed also by a manufacturing store, where
the customer receives his demand over the leasing finite
horizon L. Moreover, for the forecasting problem, we assume
that the satisfaction of the demand is under a given inventory
service level 𝛼 and the fluctuation of the demand is a normal
distribution with mean and variance given, respectively, by 𝑑

and 𝜎𝑑 (Figure 1).
The considered leased machine is subject to the random

failures. Its failure rate 𝜆(𝑡) increases with both time and
production rate. An influence of the production rate variation
on the equipment degradation and hence on the average
number of failures is considered.

The leasing contract includes the machine under war-
ranty period X with the possibility of being extended until

Basic warranty period Extended warranty period
Δt

k = 0k = 1k = 2

. . .

X = a · Δ = b · Δt

L

. . .
Xe

Figure 1: Life cycle of leasing machine with warranty and extended
warranty periods.

instant 𝑋𝑒 for an additional cost 𝐶𝑋 paid by the lessee when
leasing the machine. Namely, all maintenance actions during
the basic and extended warranty periods are supported by
the lessor at no cost to the lessee. For the rest of the
leasing periods, the equipment is not under warranty and the
maintenance actions are under the responsibility of the lessee.

The maintenance actions are considered the well-known
preventive maintenance policy with minimal repair at failure
with negligible duration keeping the system failure rate
nearly the same. The role of maintenance is to increase the
availability of machine reducing the maintenance costs in
order to ensure the production plan on the leasing horizon
L.

According to the forecasting problem as well as the
optimal production plan of leasing machine obtained, our
objective is to develop a mathematical model to study the
opportunity provided by the extended warranty from the
lessee and the lessor perspectives. We will express the total
expected cost incurred by each side during the product’s
life cycle in order to determine, for any given situation,
the maximum extra cost the lessee should pay for the
extended warranty and the minimum price at which the
lessor should sell it. Taking into account the influence of
preventive maintenance actions performing on the leasing
machine during the basic and extended warranty periods,
we are considering different cases of maintenance strategies
approved during the life cycle of leased machine.

3. Mathematical Model

3.1. Forecast Production Plan

(i) Stochastic Production Model. Based on the approach
proposed by Zied et al. [12] and Hajej et al. [11], the
production planning problem is formulated as a quadratic
model whose decision variables include production rates and
inventory levels. The purpose of this section is to develop
a mathematical model that will allow us to determine the
optimal production plan𝑈

∗ (𝑈∗ = 𝑢(𝑘)
∗ and 𝑘 = 1, . . . , 𝐿−1)

during the leasing horizon 𝐿.
Formally, the stochastic production model is defined as

follows:

Minimize 𝑍 =

𝐿

∑

𝑘=0

𝑓𝑘 (𝑈𝑘, 𝑆𝑘) = 𝐶𝑠 ⋅ 𝐸 {𝑆
2

𝐿
}

+

𝐿

∑

𝑘=0

𝐶𝑠 ⋅ 𝐸 {𝑆
2

𝑘
} + 𝐶pr ⋅ 𝑈

2

𝑘

(1)

subject to
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(i) inventory balance equation constraints

𝑆𝑘+1 = 𝑆𝑘 + 𝑈𝑘 − 𝑑𝑘 𝑘 ∈ {0, 1, . . . , 𝐿 − 1} ; (2)

(ii) service level requirement for each period

Prob [𝑆𝑘+1 ≥ 0] ≥ 𝛼 𝑘 ∈ {0, 1, . . . , 𝐿 − 1} ; (3)

(iii) capacity constraints

0 ≤ 𝑈𝑘 ≤ 𝑈
max

𝑘 ∈ {0, 1, . . . , 𝐿 − 1} . (4)

(ii) Deterministic Production Model. An approach that trans-
forms the stochastic problem into a deterministic equivalent
is necessary. This deterministic problem maintains the main
properties of the original problem.

The quadratic total expected cost of production and
inventory over the leasing periods 𝐿 can be expressed then
as follows:

𝑍 (𝑢) = 𝐶𝑠 × (𝑆
2

𝐿
) +

𝐿−1

∑

𝑘=0

𝐶𝑠 ⋅ 𝑆
2

𝑘
+ 𝐶pr × 𝑢

2

𝑘

+ 𝐶𝑠 × 𝜎
2

𝑑
×

𝐿 (𝐿 + 1)

2

(5)

with the following.

(i) It has mean variables

𝐸 {𝑆𝑘} = 𝑆𝑘, 𝐸 {𝑢𝑘} = 𝑢𝑘 (6)

and variance variables 𝑉𝑢𝑘
= 0. (Variable 𝑢𝑘 is

deterministic.)

(ii) The inventory balance (2) can be reformulated as

𝑆𝑘+1 = 𝑆𝑘 + 𝑢𝑘 − 𝑑𝑘 𝑘 = 0, 1, . . . , 𝐿 − 1. (7)

Proof. See the Appendix.

(iii) Service Level Constraint. As another step to transform
the stochastic problem into an equivalent deterministic one,
we consider a service level constraint in a deterministic form
by determining a minimum cumulative production quantity
depending on the service level requirements.

For 𝑘 ∈ {0, 1, . . . , ℎ𝑖 − 1} we have

Prob (𝑆𝑘+1 ≥ 0) ≥ 𝛼 󳨐⇒ (𝑈𝑘 ≥ 𝑉𝑑,𝑘 ⋅ 𝜑
−1

𝑑,𝑘
(𝛼) + 𝑑𝑘 − 𝑆𝑘) , (8)

where 𝜑𝑑,𝑘: cumulative Gaussian distribution function with
mean 𝑑𝑘 and finite variance Var(𝑑𝑘) = 𝑉𝑑,𝑘 ≥ 0 and 𝑉𝑑,𝑘:
variance of demand 𝑑 at period 𝑘.

Proof. See the Appendix.

3.2. Maintenance Policy. Based on the work of Wu and
Longhurst [10], the maintenance strategy considers the man-
ufacturing system’s degradation according to the production
rate during the leasing horizon L. The correlation of the
degradation of the machine production rates is manifested
by an increased failure rate according to both time and
production rate.

We assume that, during the machine life cycle, perfect
preventive maintenance or replacement is performed peri-
odically at times 𝑖 ⋅ 𝑇, 𝑖 = 0, 1, . . . , 𝑁𝑗 (with 𝑁𝑗 number of
preventive maintenance over each interval during the leasing
periods: basicwarranty, extendedwarranty, andpostwarranty
and 𝑇 preventive maintenance action interval) following
which the unit is as good as new.

The evolution of the machine failure rate according to
its use (which is in our case the production rate for each
period) respecting at the same time the continuity of the
equipment reliability from a period to another is presented
by an analytical equation.

The failure rate in the interval k is expressed as follows:

𝜆𝑘 (𝑡) = 𝜆𝑘−1 (Δ𝑡) +
𝑈𝑘

𝑈max
⋅ 𝜆𝑛 (𝑡) ∀𝑡 ∈ [0, Δ𝑡] (9)

with

𝜆𝑘=0 = 𝜆0, Δ𝜆𝑘 (𝑡) =
𝑈𝑘

𝑈max
⋅ 𝜆𝑛 (𝑡) , (10)

where 𝜆𝑛(𝑡) is the nominal failure rate corresponding to the
maximal production rate.

Allowing maintenance strategy, we can define the differ-
ent numbers of preventive maintenance over each interval
during the leasing periods given by the following:

𝑁1: number of PM actions during the basic warranty
periods [0, X) with a value equal to In(𝑋/𝑇);
𝑁2: number of PM actions during the leasing periods
[0, 𝐿) with a value equal to In(𝐿/𝑇);
𝑁3: number of PM actions between the end of basic
warranty and the end of the leasing periods [𝑋, 𝐿)

with a value equal to In((𝐿 − 𝑋)/𝑇);
𝑁4: number of PM actions during the basic and
extended warranty periods [0, 𝑋𝑒) with a value equal
to In(𝑋𝑒/𝑇);
𝑁5: number of PM actions during the extended
warranty [𝑋,𝑋𝑒)with a value equal to In((𝑋𝑒−𝑋)/𝑇);
𝑁6: number of PM actions between the end of
extended warranty periods and the end of leasing
periods [𝑋𝑒, 𝐿) with a value equal to In((𝐿 − 𝑋𝑒)/𝑇),

with In: integer part of a real number.
We express below the analytic expression of the total

maintenance cost incurred by each side during the leasing
period of machine where 𝜑𝑀(𝑈,𝑁𝑖) corresponds to the
expected number of failures that occur during the different
intervals defined above, considering the production rate in
each production period Δ𝑡:

𝜉 (𝑈,𝑁𝑖) = 𝐶pm × (𝑁𝑖 − 1) + 𝐶cm × 𝜑𝑀 (𝑈,𝑁𝑖) . (11)
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Let In denote the integer part of (⋅).Then the average number
according to failure rate defined above is

𝜑𝑀 (𝑈,𝑁𝑖)

=

𝑁𝑖−1

∑

𝑗=0

[

[

In((𝑗+1)×(𝑇/Δ𝑡))

∑

𝑖=In(𝑗×(𝑇/Δ𝑡))+1
∫

Δ𝑡

0

𝜆𝑖 (𝑡)

+ ∫

(𝑗+1)×𝑇−In((𝑗+1)×(𝑇/Δ𝑡))×Δ𝑡

0

𝜆In((𝑗+1)×(𝑇/Δ𝑡))+1 (𝑡) 𝑑𝑡

+ ∫

(In((𝑗+1)×(𝑇/Δ𝑡))+1)×Δ𝑡

(𝑗+1)×𝑇

((In ((𝑗+1)×(𝑇/Δ𝑡))+1))

𝑈max

×𝜆𝑛 (𝑡) 𝑑𝑡
]

]

.

(12)

Using the total cost, we can determine the zone of possible
compromise yielding a win-win relationship between the
lessor and the lessee characterized by the maximum addi-
tional cost for the lessee who should pay for the extended
warranty and the minimum price at which the lessor should
sell it. There are different cases of maintenance strategy
adopted during the leasing horizon taking into account the
impact of preventive maintenance on the warranty servicing
cost.

The followingmaintenance policies will be considered for
lessor and lessee sides.

(i) Policy I. Periodic PM actions during the post–basic
warranty period: for this policy we consider the
following possibility.

(a) Policy I-1. PM actions are performed during the
extended warranty [𝑋,𝑋𝑒) at times 𝑖 ⋅ 𝑇, 𝑖 =

0, 1, . . . , 𝑁5, supported by the lessor and PM
actions are performed from the end of extended
warranty [𝑋𝑒, 𝐿) at times 𝑖 ⋅ 𝑇, 𝑖 = 0, 1, . . . , 𝑁6,
supported by the lessee (Figure 2).

(ii) Policy II. Periodic PM actions during the warranty
period: for this case we consider two different possi-
bilities.

(a) Policy II-1. PM actions are performed only
during the basic warranty period [0, 𝑋) at times
𝑖 ⋅ 𝑇, 𝑖 = 0, 1, . . . , 𝑁1, supported by the lessor.

(b) Policy II-2. PM actions are performed during
both the basic and the extended warranty peri-
ods [0, 𝑋𝑒) at times 𝑖 ⋅ 𝑇, 𝑖 = 0, 1, . . . , 𝑁4,
supported by the lessor.

3.3. Maximum Additional Cost Paid for Extended Warranty:
Lessee Side. The subsection determines the maximum addi-
tional cost that the lessee should pay for the extended
warranty during the leasing periods. The comparison of the
total maintenance costs acquired to the lessee between the
case in which he does not take the extended warranty period

0 T

supported by the

0 T

supported by the
lesseelessor

. . .

L

X = a · = b · Δt

2 · TN5 · T

N5 · T N6 · T

N5 PM actions N6 PM actions

Δt Xe

Figure 2: Evolution of failure rate for Policy I-1.

0

L

T

A

B C

N3 PM actions supported by the lessee
· T

2 · T N3

N3

T

X = a · Δt

. . .

Figure 3: Average number of failures for the case in which he does
not take the extended warranty period.

and the case in which he takes it is necessary to determine the
cost of the extendedwarranty period paid by the lessee. In this
case, side of lessee, we state for each maintenance policy that
the best situation for buying the extended warranty period
would be least cost for the lessee. This is the best situation
obtained, where the total maintenance cost incurred to him
in the case of purchase of extended warranty would be lower
than in the case he does not take it.

We assume that 𝜉𝑐𝑃𝑛 and 𝜉𝑐𝑃𝑦 are the total maintenance
costs acquired to the lessee for maintenance policy (𝑃),
respectively, for the case in which he does not take the
extended warranty period (𝑛) and the case in which he takes
it (𝑦).

We recall that 𝑁1 = 𝑋/𝑇; 𝑁3 = (𝐿 − 𝑋)/𝑇; 𝑁5 = (𝑋𝑒 −

𝑋)/𝑇;𝑁6 = (𝐿 −𝑋𝑒)/𝑇;𝑋 = 𝑎 ⋅ Δ𝑡;𝑋𝑒 = 𝑎1 ⋅ Δ𝑡; Δ𝑡 is length
of production period.

(i) Policy I (see Figures 3 and 4).

(a) Policy I-1. Consider

𝜉𝑐𝐼−1𝑦 + 𝜉𝑐𝑋 ≤ 𝜉𝑐𝐼−1𝑛

󳨐⇒ 𝜉𝑐𝑋 ≤ 𝜉𝑐𝐼−1𝑛 − 𝜉𝑐𝐼−1𝑦 󳨐⇒ 𝜉𝑐𝑋 ≤ 𝐴𝑐𝐼,

(13)

where

𝜉𝑐𝐼−1𝑛

= 𝐶cm × [

In(𝑋/Δ𝑡)
∑

𝑖=1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
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0 LT 0 T

B
A

C

D
= b · Δt

N5 · T N6 · T

2 · T N5T

X = a · Δt

. . .

Xe

Figure 4: Average number of failures for the case in which he takes
the extended warranty period.

+

(𝐿/Δ𝑡)

∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝑁3 × 𝐶pm,

𝜉𝑐𝐼−1𝑦

= 𝐶cm × [

[

In(𝑋/Δ𝑡)
∑

𝑖=1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁5 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

(𝐿/Δ𝑡)

∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝑁6 × 𝐶pm,

𝐴𝑐𝐼

= 𝐶cm × [

[

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁5 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × (𝑁3 − 𝑁6) .

(14)

(ii) Policy II.

(a) Policy II-1. Consider

𝜉𝑐𝐼𝐼−1𝑦 + 𝜉𝑐𝑤 ≤ 𝜉𝑐𝐼𝐼−1𝑛

󳨀→ 𝜉𝑐𝑋 ≤ 𝜉𝑐𝐼𝐼−1𝑛 − 𝜉𝑐𝐼𝐼−1𝑦 󳨀→ 𝜉𝑐𝑋 ≤ 𝐵𝑐1

𝜉𝑐𝐼𝐼−1𝑛

= 𝐶cm × [

[

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝑁3 × 𝐶pm,

𝜉𝑐𝐼𝐼−1𝑦

= 𝐶cm × [

[

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

(𝑋𝑒/Δ𝑡)

∑

𝑖=(𝑤/Δ𝑡)

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝑁6 × 𝐶pm,

𝐵𝑐1

= 𝐶cm × [

[

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
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+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑋/Δ𝑡)
∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × (𝑁3 − 𝑁6) .

(15)

(b) Policy II-2. Consider

𝜉𝑐𝐼𝐼−2𝑦 + 𝜉𝑐𝑋 ≤ 𝜉𝑐𝐼𝐼−2𝑛

󳨀→ 𝜉𝑐𝑋 ≤ 𝜉𝑐𝐼𝐼−2𝑛 − 𝜉𝑐𝐼𝐼−2𝑦 󳨀→ 𝜉𝑐𝑋 ≤ 𝐵𝑐2

𝜉𝑐𝐼𝐼−2𝑛

= 𝐶cm × [

[

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝑁3 × 𝐶pm,

𝜉𝑐𝐼𝐼−2𝑦

= 𝐶cm × [

[

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁5 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝑁6 × 𝐶pm,

𝐵𝑐2

= 𝐶cm × [

[

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁5⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × (𝑁3 − 𝑁6) .

(16)

3.4. Minimum Price for Selling the Extended Warranty: Lessor
Side. The same as lessee side, this subsection determines the
minimum price at which the lessor can sell the extended
warranty during the leasing periods. We establish, for each
maintenance policy, the best situation so that selling the
extended warranty period would be winning for the lessor.
This best situation is acquired where the total maintenance
cost incurred to him during the leasing horizon in the case
of selling the extended warranty would be less than what it
would cost him in the case in which he does not sell it.

We assume that 𝜉𝑀𝑃𝑛 and 𝜉𝑀𝑃𝑦 are the total maintenance
costs acquired to the lessor for maintenance policy (𝑃),
respectively, for the case without the extended warranty
period (𝑛) and the case with the extended warranty period
(𝑦).

(i) Policy I.

(a) Policy I-1. Consider
𝜉𝑀𝐼−1𝑦 − 𝜉𝑀𝑋 ≤ 𝜉𝑀𝐼−1𝑛

󳨀→ 𝜉𝑀𝑋 ≥ 𝜉𝑀𝐼−1𝑦 − 𝜉𝑀𝐼−1𝑛 󳨀→ 𝜉𝑀𝑋 ≥ 𝐴𝑀1,

𝜉𝑀𝐼−1𝑛 = 𝐶cm × [

In(𝑋/Δ𝑡)
∑

𝑖=1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡] ,

𝜉𝑀𝐼−1𝑦

= 𝐶cm × [

[

In(𝑋/Δ𝑡)
∑

𝑖=1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
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+

𝑁5−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × 𝑁5,

𝐴𝑀1 = 𝐶cm

× [

[

𝑁5−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × 𝑁5.

(17)

(ii) Policy II.

(a) Policy II-1. Consider

𝜉𝑀𝐼𝐼−1𝑦 − 𝜉𝑀𝑋 ≤ 𝜉𝑀𝐼𝐼−1𝑛

󳨀→ 𝜉𝑀𝑋 ≥ 𝜉𝑀𝐼𝐼−1𝑦 − 𝜉𝑀𝐼𝐼−1𝑛 󳨀→ 𝜉𝑀𝑋 ≥ 𝐵𝑀1,

𝜉𝑀𝐼𝐼−1𝑛

= 𝐶cm × [

[

𝑁1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × 𝑁1,

𝜉𝑀𝐼𝐼−1𝑦

= 𝐶cm × [

[

𝑁1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑋/Δ𝑡)
∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × 𝑁1,

𝐵𝑀1 = 𝐶cm × [

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑋/Δ𝑡)
∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡] .

(18)

(b) Policy II-2. Consider

𝜉𝑀𝐼𝐼−2𝑦 − 𝜉𝑀𝑋 ≤ 𝜉𝑀𝐼𝐼−2𝑛

󳨀→ 𝜉𝑀𝑋 ≥ 𝜉𝑀𝐼𝐼−2𝑦 − 𝜉𝑀𝐼𝐼−2𝑛 󳨀→ 𝜉𝑀𝑤 ≥ 𝐵𝑀2,

𝜉𝑀𝐼𝐼−2𝑛

= 𝐶cm × [

[

𝑁1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × 𝑁1,

𝜉𝑀𝐼𝐼−2𝑦

= 𝐶cm × [

[

𝑁4

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁4 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × 𝑁4,

𝐵𝑀2

= 𝐶cm × [

[

𝑁4

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁4 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+𝐶pm × (𝑁4 − 𝑁1) .

(19)

3.5. Win-Win Interval for the Extended Warranty Cost. The
existence of win-win interval of the extended warranty cost is
determined according to the previous subsections, where we
have determined, for eachmaintenance policy, themaximum
additional cost that the lessee must pay and the minimum
price at which the lessor can sell the extended warranty. We
determine a theoretical sufficient condition under which a
win-win interval will exist and with which the maximum
buying additional cost for the lessee is greater than the
minimum selling price for the lessor.

(i) Policy I-1.Using (14) and (17), the compromise interval for
the extended warranty cost exists if

𝐴𝑀1 ≤ 𝐴𝑐𝐼 󳨐⇒ 𝐶cm

× [

In(𝑋/Δ𝑡)
∑

𝑖=1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
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+

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁5 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁5−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × (𝑁3 − 𝑁6 − 𝑁5) ≥ 0.

(20)

(ii) Policy II-1. Using (15) and (18), the compromise interval
for the extended warranty cost exists if

𝐵𝑐1 ≥ 𝐵𝑀1 󳨐⇒ 𝐶cm

× [

[

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

− 2 ×

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑋/Δ𝑡)
∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × (𝑁3 − 𝑁6) > 0.

(21)

(iii) Policy II-2. Using (16) and (19), the compromise interval
for the extended warranty cost exists if

𝐵𝑐2 ≥ 𝐵𝑀2 󳨐⇒ 𝐶cm

× [

[

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁3−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁3 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁5 ⋅(𝑇/Δ𝑡))+(𝑋/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁6−1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝐿/Δ𝑡)
∑

𝑖=In(𝑁6 ⋅(𝑇/Δ𝑡))+(𝑋𝑒/Δ𝑡)+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

𝑁4

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

−

In(𝑋𝑒/Δ𝑡)

∑

𝑖=In(𝑁4 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

𝑁1

∑

𝑗=0

In((𝑗+1)⋅(𝑇/Δ𝑡))

∑

𝑖=In(𝑗⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡

+

In(𝑋/Δ𝑡)
∑

𝑖=In(𝑁1 ⋅(𝑇/Δ𝑡))+1

∫

Δ𝑡

0

𝜆𝑖 (𝑡) 𝑑𝑡
]

]

+ 𝐶pm × (𝑁3 − 𝑁6 − 𝑁4 + 𝑁1) > 0.

(22)

4. Numerical Example

In order to illustrate the model developed previously, we
consider a forecasting production/maintenance problem for
a company represented by a leasing machine which has to
satisfy a stochastic demand assumed Gaussian, under service
level, over a finite leasing horizon. The number 𝐿 of leasing
periodsΔ𝑡 is equal to 24, withΔ𝑡 = 1 um.The leasingmachine
has a degradation law characterized by aWeibull distribution
with shape parameter𝛼 and scale parameter𝛽 (with these two
parameters, the degradation is linear 𝛾 = 2). From the failure
rate equation, we determined the average number of failures
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Table 1

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

15 17 15 15 15
𝑑6 𝑑7 𝑑8 𝑑9 𝑑10

14 16 14 16 13
𝑑11 𝑑12 𝑑13 𝑑14 𝑑15

15 14 15 12 15
𝑑16 𝑑17 𝑑18 𝑑19 𝑑20

13 15 11 16 13
𝑑21 𝑑22 𝑑23 𝑑24 𝑑25

15 12 14 16 14

Table 2

𝑢
∗( 1) 𝑢

∗(2) 𝑢
∗(3) 𝑢

∗(4) 𝑢
∗(5)

9 14 8 12 12
𝑢
∗(6) 𝑢

∗(7) 𝑢
∗(8) 𝑢

∗(9) 𝑢
∗(10)

15 9 13 14 11
𝑢
∗(11) 𝑢

∗(12) 𝑢
∗( 13) 𝑢

∗(14) 𝑢
∗(15)

10 5 11 12 5
𝑢
∗(16) 𝑢

∗(17) 𝑢
∗( 18) 𝑢

∗(19) 𝑢
∗(20)

15 16 12 10 6
𝑢
∗(21) 𝑢

∗(22) 𝑢
∗(23) 𝑢

∗(24) 𝑢
∗(25)

2 5 17 3 14

assuming that after each preventive maintenance action the
equipment is in state “as good as new.”

The following arbitrarily chosen input data are also
considered:

Cpr1 = 3mu, Cpr2 = 10mu, service level 𝛼 = 0.95,
𝐶𝑠 = 5mu, initial inventory 𝑆0 = 20, the variance of
demand 𝑉𝑑𝑘

= 1.21, 𝑋 = 2, 𝑋𝑒 = 6, 𝐶cm = 1500, and
𝐶pm = 200.

To compute the failure rate, we assume that the nominal
degradation follows a Weibull distribution given by

𝜆𝑛 (𝑡) =
𝛾

𝛽
⋅ (

𝑡

𝛽
)

𝛾−1

. (23)

The average of forecasting demand is presented in Table 1.
Applying our analytical model, we used the numerical

algorithms for constrained global optimization with MATH-
EMATICA, in order to realize this optimization. Firstly, we
are interested to find the forecasting optimal production plan,
which is presented in Table 2. According to the production
plan obtained, we have observed, for each maintenance
policy, the optimal preventive maintenance interval 𝑇∗ and
the existence of a win-win interval where lower and upper
boundaries are, respectively, the minimum price at which the
lessor should sell the extended warranty and the maximum
additional cost that the lessee should pay for the extended
warranty.

The forecasting production plan is presented in Table 2.
From Table 3, we canunderstand, for example, that,

for Policy II-2 (preventive maintenance performed during

[0, 𝑋𝑒)), the optimal preventive maintenance interval for
lessor is equal to 𝑇

∗

𝑀
= 3 and for the lessee is equal to

𝑇
∗

𝐶
= 2, and the win-win interval for the extended warranty

cost existed between 202.25 and 203.476mn units (Figure 5)
which characterizes the threshold values, respectively, for
the lessor and the lessee. In this case, the best compromise
corresponds to the middle of this interval with an extended
warranty cost of 202.863mn units.

In fact, from the lessor side, as preventive maintenance
actions becomemore efficient, the average number of failures
gets lower. Consequently, he would pay less for minimal
repairs and therefore his threshold value for the extended
warranty cost becomes lower. From the lessor side, taking the
extended warranty will result in having the leasing machine
entering the postwarranty period with a higher reliability,
thanks to preventive maintenance actions performed during
[𝑋,𝑋𝑒]. Consequently, the lessee is willing to paymore for the
extendedwarranty whereas preventivemaintenance becomes
more efficient giving a higher reliability and minimal average
number of failures and hence leastminimal repairs during the
postwarranty period.

As another example, for Policy II-1, since the period
during which PM is performed is related only to the basic
warranty period, the win-win interval for the extended
warranty cost is found between 3.41471 and 200.238; since
there is no preventive maintenance for lessor side, the
expected number of minimal repairs during this period
remains obviously the same with or without the extended
warranty whereas on the lessee side the optimal preventive
maintenance interval is equal to 𝑇

∗

c = 3.
Also, from Figure 6, we can notice, for Policy I-1, that

choosing an extended warranty period would be interesting
neither for the lessee nor for the lessor. The win-win interval
does not exist because the minimum price at which the lessor
should sell the extendedwarranty (equal to 202.347) is greater
than the maximum additional cost that the lessee should pay
for the extended warranty (equal to 194,706). The extended
warranty would not be as advantageous for the lessor as for
the lessee due to the fact that since there is no preventive
maintenance, the average number of failures during [𝑋,𝑋𝑒]

remains obviously the same with or without the extended
warranty.

For 𝐶𝑝𝑚 = 200 and 𝐶𝑐𝑚 = 1500. For compromise intervals for
the extended warranty cost see Table 3.

Variation of PM and CM Costs. We identify the impact
of varying the maintenance preventive cost (𝐶pm) and the
maintenance corrective cost (𝐶cm) during the leasing hori-
zon. Besides the nominal values (𝐶pm = 200, 𝐶cm = 1500),
we consider a higher value (𝐶pm ∈ {300, 400, 600}; 𝐶cm ∈

{1700, 1900, 2000}). Obviously, the effect of varying themain-
tenance costs can be observed for different policies. Certainly,
for these different policies, we note that the period over which
preventive maintenance is performed has a direct impact on
the average number of failures and on the number ofminimal
repairs during the extended warranty period [𝑋,𝑋𝑒].

We can look at Tables 4 and 5 that for Policy I-1 (preven-
tive maintenance actions are performed during [𝑋𝑒, 𝐿) the
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Table 3

𝑇
Policy I-1 Policy II-1 Policy II-2

Lessor Lessee Lessor Lessee Lessor Lessee
1 803.724 804.288 3.41471 800.309 803.194 803.194
2 403.72 404.288 3.41471 400.309 403.194 203.476
3 202.347 0 194.706 3.41471 200.238 202.25 403.759
4 203.724 204.288 3.41471 200.309 203.759 403.194

Lessor (Policy II-2)

202.25

1

2

3

4

5

6
7

T

𝜉mX

Lessee (Policy II-2)

𝜉CX

203.476

T

Extended warranty for the lessor

Extended warranty for the lessee

202.25 202.863 203.476
𝜉X

1

2

3

4

5

6

7

T∗
M

T∗
c

Figure 5: Win-win interval for the extended warranty for option II-2.

202.347
Extended warranty for the lessorExtended warranty for the lessee

194.706 𝜉X

Figure 6: Absence of a win-win interval for the extended warranty
cost for Policy I-1.

preventive maintenance interval is increased if the preventive
and corrective costs are increased but it is beneficial for
neither the lessee nor the lessor to adopt the extended
warranty periodwhatever themaintenance costs are.This can
be explained by the fact that, at the end of warranty period
𝑋𝑒, it would be too late to start preventive maintenance
action and the degradation of leasing machine increased
and the preventive maintenance action cannot improve the
reliability of leasingmachine even if they are performedmore
frequently during [𝑋𝑒, 𝐿].

For Policies II-1 (preventive maintenance performed
during [0,𝑋)) and II-2 (preventive maintenance carried out
during [0,𝑋𝑒)), we can remark differing trend compared to
Policy I-1, since the win-win intervals exist for any values of
𝐶pm and 𝐶cm. These intervals become larger as the mainte-
nance costs increase but for Policy II-1, the minimum price
at which the lessor should sell the extended warranty is fixed

for any values of 𝐶pm and 𝐶cm; since there is no preventive
maintenance for the lessor side, the expected number of
minimal repairs during this period remains obviously the
same with or without the extended warranty.

𝐶𝑐𝑚 = 1500. See Table 4.

𝐶𝑝𝑚 = 200. See Table 5.

Effects of the Variation of Production Period Length Δ𝑡. In this
section, we investigate the effects of varying the periodicity
length (Δ𝑡) of production during the product’s life cycle.
Beside the nominal value (Δ𝑡 = 1 um), we consider a higher
value (Δ𝑡 = 2).

Obviously, the effect of varying production period can
only be observed for Policy II-1 and Policy II-2. The optimal
preventive maintenance interval for lessor is decreased for
production period Δ𝑡 = 2 (Policy II-1: 𝑇∗

𝑀
= 2 and 𝑇

∗

𝐶
= 2)

(Table 6) with a higher cost relative to Δ𝑡 = 1 (Policy II-1:
𝑇
∗

𝑀
= 3 and 𝑇

∗

𝐶
= 3) (Table 3). The compromise interval

for the extended warranty cost gets larger as the number
of PM actions increases (production period increasing). In
fact, if the production period length or the demand increases,
the principal machine produces more to meet the customers’
demands; thus the machine will undergo more failures and
the preventive maintenance interval increases. According to
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Table 4

𝐶pm
Policy I-1 Policy II-1 Policy II-2

Lessor Lessee Lessor Lessee Lessor Lessee
200 202,347 0 194,706 3.41471 200.238 202.25 203.476
300 302,34 0 294,706 3,41471 300,238 300,282 303,759
400 402,34 0 394,706 3,41471 400,238 400,282 403,759
600 602,347 0 594,706 3,41471 600,238 600,282 603,759

the previous results presented through the variability of Δ𝑡,
the production period length is really impacted visibly.

For 𝐶𝑝𝑚 = 200 and 𝐶𝑐𝑚 = 1500 and Δ𝑡 = 2. For compromise
intervals for the extended warranty cost, see Table 6.

5. Conclusion

Thispaper treats a forecasting production/maintenance prob-
lem correlated to the adoption of an extended warranty
period for a leasing machine during a finite leasing horizon.
Firstly, we have developed a mathematical model for a
forecasting problem in order to determine a forecasting
production plan. Secondly, an analytical model has been
proposed in order to present a study of the opportunity
provided by the extended warranty in leasing contract from
both the lessee and the lessor. We proposed different main-
tenance policies during the finite leasing horizon, which we
have considered to be the influence of production rates on
the degradation degree of leasing machine and including
periodic preventive maintenance actions with different costs.
For each maintenance policy, we expressed the total cost
incurred by the lessee and by the lessor in order to determine
the maximum additional cost the lessee should pay for the
extended warranty and the minimum price at which the
lessor should sell it. For each policy and for any given situ-
ation, conditions of existence of a win-win interval between
the lessee and the lessor have resulted.

For future research, we will consider a more complex
system with other types of warranty policies (including the
number of warranty dimensions, the renewability of a war-
ranty, and thewarranty compensationmethods). Concerning
the maintenance strategy, we will consider new hypotheses:
the corrective and preventive times are not negligible.

Appendix

Proof of (5). The inventory variable 𝑆𝑘 is statistically
described by its mean 𝐸{𝑆𝑘} = 𝑆𝑘 and variance

𝐸 {(𝑆𝑘 − 𝑆𝑘)
2

} = Var (𝑆𝑘) . (A.1)

The expected inventory cost is

𝐶𝑠 ⋅ 𝐸 {𝑆
2

𝑘
} = 𝐶𝑠 ⋅ 𝑆

2

𝑘
. (A.2)

Balance equation (2) 𝑆𝑘+1 = 𝑆 𝑘 + 𝑈𝑘 − 𝑑𝑘 𝑘 ∈ {0, 1, . . . , 𝐿 −

1} can be converted into an equivalent inventory balance
equation, as follows:

(2) 󳨐⇒ 𝐸 {𝑆𝑘+1} = 𝐸 {𝑆𝑘} + 𝑈𝑘 − 𝑑𝑘

󳨐⇒ 𝑆𝑘+1 = 𝑆𝑘 + 𝑈𝑘 − 𝑑𝑘.

(A.3)

Equation (A.3) represents the mean variation of inventory
at each period k, 𝑘 ∈ {1, 2, . . . , 𝑁 − 1}. Furthermore, 𝑢𝑖,𝑘

is deterministic, since it does not depend on the random
variables 𝑑𝑘 and 𝑆𝑘. That is, 𝐸{𝑈} = 𝑈𝑘 with 𝑉(𝑈𝑘) =

0 for all 𝑘. Taking the difference between (2) and (A.3)

𝑆𝑘+1 − 𝑆𝑘+1 = 𝑆𝑘 − 𝑆𝑘 − (𝑑𝑘 − 𝑑𝑘)

󳨐⇒ (𝑆𝑘+1 − 𝑆𝑘+1)
2

= ((𝑆𝑘 − 𝑆𝑘) − (𝑑𝑘 − 𝑑𝑘))
2

󳨐⇒ 𝐸((𝑆𝑘+1 − 𝑆𝑘+1)
2

)

= 𝐸 ((𝑆𝑘 − 𝑆𝑘) − (𝑑𝑘 − 𝑑𝑘)
2

)

󳨐⇒ 𝐸((𝑆𝑘+1 − 𝑆𝑘+1)
2

)

= 𝐸 ((𝑆𝑘 − 𝑆𝑘)
2

+ (𝑑𝑘 − 𝑑𝑘)
2

−2 ⋅ (𝑆𝑘 − 𝑆𝑘) ⋅ (𝑑𝑘 − 𝑑𝑘))

󳨐⇒ 𝐸((𝑆𝑘+1 − 𝑆𝑘+1)
2

)

= 𝐸 ((𝑆𝑘 − 𝑆𝑘)
2

) + 𝐸 ((𝑑𝑘 − 𝑑𝑘)
2

)

− 2 ⋅ 𝐸 ((𝑆𝑘 − 𝑆𝑘) ⋅ (𝑑𝑘 − 𝑑𝑘)) .

(A.4)

Since 𝑆𝑘 and 𝑑𝑘 are independent random variables we can
deduce that

𝐸 ((𝑆𝑘 − 𝑆𝑘) ⋅ (𝑑𝑘 − 𝑑𝑘)) = 𝐸 ((𝑆𝑘 − 𝑆𝑘)) ⋅ 𝐸 ((𝑑𝑘 − 𝑑𝑘)) . (A.5)

Also, it is easy to see that

𝐸 ((𝑆𝑘 − 𝑆𝑘)) = 𝐸 (𝑆𝑘) − 𝐸 (𝑆𝑘) = 0,

𝐸 ((𝑑𝑘 − 𝑑𝑘)) = 𝐸 (𝑑𝑘) − 𝐸 (𝑑𝑘) = 0.

(A.6)
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Table 5

𝐶cm
Policy I-1 Policy II-1 Policy II-2

Lessor Lessee Lessor Lessee Lessor Lessee
1500 202.34 0 192.915 4.55294 200.238 200.282 203.759
1700 202.66 0 191.97 4.55294 200.27 200.32 204.26
1900 202,973 0 191,025 4.55294 200.302 200.358 204.761
2000 203.129 0 190,553 4.55294 200.318 200.376 205.012

Table 6

𝑇
Policy I-1 Policy II-1 Policy II-2

Lessor Lessee Lessor Lessee Lessor Lessee
1 903,830 904,180 3.41471 800.309 803.194 803.194
2 303,27 0 305,28 4.7141 500.39 504.194 504.76
3 345,347 304,706 4.91471 501.238 522.25 503.759
4 360,724 306,288 4.94417 511.309 533.759 513.140

Consequently,

𝐸((𝑆𝑘+1 − 𝑆𝑘+1)
2

) = 𝐸 ((𝑆𝑘 − 𝑆𝑘)
2

) + 𝐸 ((𝑑𝑘 − 𝑑𝑘)
2

)

󳨐⇒ (𝜎𝑠𝑘+1
)
2

= (𝜎𝑠𝑘
)
2

+ (𝜎𝑑𝑘
)
2

.

(A.7)

If we assume that 𝜎𝑠(0) = 0 and 𝜎𝑑𝑘 is constant and equal to
𝜎𝑑 for all 𝑘’s, we can deduce that

(𝜎𝑠𝑘
)
2

= 𝑘 ⋅ (𝜎𝑑)
2

󳨐⇒ 𝐸(𝑆
2

𝑘
) − 𝑆
2

𝑘
= 𝑘 ⋅ (𝜎𝑑)

2

󳨐⇒ 𝐸(𝑆
2

𝑘
) = 𝑘 ⋅ (𝜎𝑑)

2
+ 𝑆
2

𝑘
.

(A.8)

Substituting (A.3) in the expected cost (1)

𝑍 = 𝐶𝑠 ⋅ 𝐸 (𝑆
2

𝐿
) +

𝐿

∑

𝑖=0

𝐶𝑠 ⋅ 𝐸 (𝑆
2

𝑘
) + 𝐶pr ⋅ 𝑈

2

𝑘
,

𝑍 (𝑢) = 𝐶𝑠 × (𝑆
2

𝐿
)+

𝐿−1

∑

𝑘=0

𝐶𝑠 ⋅ 𝑆
2

𝑘
+𝐶pr × 𝑢

2

𝑘
+𝐶𝑠 × (𝜎𝑑)

2
×

𝐿

∑

𝑖=0

𝑘,

𝑍 (𝑢) = 𝐶𝑠 × (𝑆
2

𝐿
) +

𝐿−1

∑

𝑘=0

𝐶𝑠 ⋅ 𝑆
2

𝑘
+ 𝐶pr × 𝑢

2

𝑘
+ 𝐶𝑠 × 𝜎

2

𝑑

×
𝐿 (𝐿 + 1)

2
.

(A.9)

Proof of (8). Consider

𝑆 (𝑘 + 1) = 𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘)

󳨐⇒ Prob (𝑆 (𝑘 + 1) ≥ 0) ≥ 𝛼

󳨐⇒ Prob (𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘) ≥ 0) ≥ 𝛼

󳨐⇒ Prob (𝑆 (𝑘) + 𝑈 (𝑘) ≥ 𝑑 (𝑘)) ≥ 𝛼

󳨐⇒ Prob (𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘) ≥ 𝑑 (𝑘) − 𝑑 (𝑘)) ≥ 𝛼

󳨐⇒ Prob(
𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘)

𝑉𝑑,𝑘

≥
𝑑 (𝑘) − 𝑑 (𝑘)

𝑉𝑑,𝑘

) ≥ 𝛼

(A.10)

with 𝑑(𝑘) average demand at period 𝑘 and Var(𝑑(𝑘)) = 𝑉𝑑,𝑘 ≥

0 variance of demand 𝑑 at period 𝑘.
This equation is in the form of Prob[𝑌 ≥ 𝑋] ≥ 𝛼,

with 𝑋 = ((𝑑𝑘 − 𝑑𝑘)/𝑉𝑑𝑘
) being a Gaussian random

variable representing the demand 𝑑𝑘, and 𝜑𝑑𝑘
is a cumulative

Gaussian distribution function of the form 𝐹(𝑌) ≥ 𝛼 such as

󳨐⇒ 𝜑𝑑,𝑘 (
𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘)

𝑉𝑑,𝑘

) ≥ 𝛼. (A.11)

Since lim𝑑𝑘→−∞𝜑𝑑𝑘
= 0 and lim𝑑𝑘→+∞𝜑𝑑𝑘

= 1, the function
𝜑𝑑𝑘

is strictly increasing, and we note that it is indefinitely
differentiable. That is why we conclude that 𝜑𝑑𝑘

is invertible.
Thus,

𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘)

𝑉𝑑,𝑘

≥ 𝜑
−1

𝑑,𝑘
(𝛼)

󳨐⇒ 𝑆 (𝑘) + 𝑈 (𝑘) − 𝑑 (𝑘) ≥ 𝑉𝑑,𝑘 ⋅ 𝜑
−1

𝑑,𝑘
(𝛼)

󳨐⇒ 𝑈 (𝑘) ≥ 𝑉𝑑,𝑘 ⋅ 𝜑
−1

𝑑,𝑘
(𝛼) + 𝑑 (𝑘) − 𝑆 (𝑘) .

(A.12)
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Notation

Δ𝑡: Length of a production period
𝐿: Number of leasing periods
𝑋: Warranty periods
𝑋𝑒: Warranty period including both basic

period 𝑋 and extension
𝑈𝑘: Production rate by machine 𝑀 during

period 𝑘 (𝑘 = 0, 1, . . . , 𝐿)
𝑑(𝑘): Average demand during period 𝑘

(𝑘 = 0, 1, . . . , 𝐿)
𝑉𝑑(𝑘): Variance of demand during period 𝑘

(𝑘 = 0, 1, . . . , 𝐿)
𝑆𝑘: Inventory level of 𝑆 at the end of period 𝑘

(𝑘 = 0, 1, . . . , 𝐿)
𝑆𝑘: Average inventory level of 𝑆 during period

𝑘 (𝑘 = 0, 1, . . . , 𝐿)
𝐶pr: Unit production cost of leasing machine
𝐶𝑠: Holding cost of product unit during one

period
mu: Monetary unit
𝑈

max: Maximal production rate of leasing
machine

𝑈
min: Minimal production rate of leasing

machine
𝛼: Probability index related to customer

satisfaction and expressing the service
level

𝑆0: Initial inventory
𝐶pm: Preventive maintenance cost
𝐶cm: Corrective maintenance cost.
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