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Abstract: Target positioning systems based on MEMS gyros and laser rangefinders (LRs) 

have extensive prospects due to their advantages of low cost, small size and easy realization. 

The target positioning accuracy is mainly determined by the LR’s attitude derived by the 

gyros. However, the attitude error is large due to the inherent noises from isolated MEMS 

gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are 

introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, 

which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are 

designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the 

measurements from the two aiding systems. The KFs can estimate the attitude 

simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the 

redundant attitude estimates to yield globally optimal estimates. Simulation and 

experimental results demonstrate that the FKF-based system can improve the target 

positioning accuracy effectively and allow for good fault-tolerant capability. 
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1. Introduction 

Target positioning is a technique to obtain a geodetic three dimensional (3D) position of a non-contact 

object or point. The position of a target on a building (indoor or outdoor) is essential for civil and military 

applications, such as indoor mapping, localization of a building structure and precision guidance.  

A novel target positioning system based on a laser rangefinder (LR) and Micro Electro Mechanical 

Systems (MEMS) gyros was proposed by Cheng et al. [1]. MEMS gyros are used to derive the attitude of 

LR, and the LR is applied to measure the distance between the observer and the target. In addition, the 

LR’s attitude error dominates the positioning error. However, low-cost MEMS gyros suffer from 

inherently large noises due to the current fabrication limitations of MEMS technologies. This results in 

time-growing LR attitude errors. Therefore, developing accurate MEMS-based attitude determination is a 

key criterion for achieving an accurate low-cost target positioning system. 

To limit the unbounded attitude errors resulting from gyros, an attitude sensor or system is usually used 

to aid gyros. The Global Positioning System (GPS) is used to aid an Inertial Navigation System (INS)  

in [1]. The INS/GPS attitude determination systems are applied in many fields [2–4]. However, GPS 

signals are blocked when a target is positioned indoors or in urban canyons. In this paper, two attitude 

aiding systems are introduced for the attitude determination in GPS-Denied (GPSD) environments. The 

first one is an accelerometer/magnetometer aiding system, and the second one is a LR aiding system. 

The accelerometer/magnetometer aiding system together with gyros constitutes a Magnetic, Angular 

Rate, and Gravity (MARG) sensors-based Attitude Heading Reference System (AHRS). MEMS 

accelerometer/magnetometers have advantages in terms of cost, size, weight, and power consumption. 

They can provide bounded-error attitudes by sensing Earth’s gravity and geomagnetic field. Consequently, 

this aiding system can be applied even in GPSD environments due to the ubiquitous presence of gravity 

and geomagnetic field on Earth [5]. Therefore, MARG sensors-based AHRS have been widely used for 

numerous applications, such as aircraft navigation [2], tracking for human body orientation [5], mobile 

applications [6], and pedestrian navigation [7]. 

The LR attitude aiding system presented in this paper consists of three LRs, which are installed to be 

parallel to each other. When the LRs can project beams on a wall, the attitude of the LR can be obtained 

by the change of the measurements of the LRs. Moreover, LRs possess the high measurement accuracy  

(e.g., ±1.5 mm per 80 m [8]), so the LR aiding system can provide accurate attitude determination for  

target positioning. 

In AHRS, a Kalman Filter (KF) is commonly used to obtain attitude estimates by fusing the outputs 

from gyros and aiding systems. Most of the existing KF models are designed to provide the three attitude 

angles, namely the pitch, roll and yaw angles. However, in target positioning, the needed attitude 

information is three functions of two variables, which are the pitch and yaw angles. Besides, the functions 

are equal to three elements of the Direction Cosine Matrix (DCM). To obtain the direct attitude estimates, 

compact DCM-based KF models must be redesigned. 

Two DCM-based KFs can be designed based on the accelerometer/magnetometer and LR aiding 

systems, respectively. However, both the aiding systems face robustness challenges in real scenarios. For 

instance, when the accelerometer/magnetometer aiding system is close to a ferrous or magnetic object, the 

external magnetic disturbances can make AHRS inaccurate [9]. Besides, the LR aiding system has large 

errors where there are not planar wall constructions. Also, the low reflectivity of wall surfaces can make 
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the LR aiding system unusable [10]. Therefore, the single KF will have large errors when the corresponding 

aiding system fails in practical environments. 

Employing two KFs based on the two aiding systems can improve the system robustness. The two KFs 

can provide attitude estimates simultaneously. Then, a Federated Kalman Filter (FKF) [11] can fuse the 

estimates from the two KFs to yield a globally optimal solution. This sensor redundancy and the FKF 

configuration can allow the whole system to be fault-tolerant. Even if one of the aiding systems has faults, 

the whole system can work effectively. 

To implement an accurate and fault-tolerant target positioning system, this paper proposes a FKF-based 

system using MARG sensors and LRs. The objectives of this paper are: (1) to propose an LR attitude 

aiding system to enable accurate attitude measurements; (2) design DCM-based KF models for attitude 

estimation in the target positioning; and (3) develop a fault-tolerant FKF to improve the system robustness. 

After the literature review in Section 2, Section 3 presents the structure of the proposed target 

positioning system. Section 4 details the positioning algorithm and the aiding systems. In Section 5, the 

FKF algorithms are designed. The simulation and experimental results are presented in Section 6. Finally, 

Section 7 presents our conclusions. 

2. Literature Review 

In the following, we will focus on the work regarding target tracking or positioning based on sensor 

fusion. Also, researches on topics involved in the proposed target positioning system will be discussed, 

namely MARG-based AHRS algorithms, laser aiding approaches and sensor fusion algorithms. 

2.1. Target Tracking/Positioning Based on Sensor Fusion 

Target tracking and positioning systems aim to search for a target and localize its position. Multiple 

sensors are employed to provide original motion and position measurements of targets. Then sensor fusion 

is conducted to obtain optimal position estimates. In [12,13], a Pyroelectric Infrared Radiation (PIR)  

and Radio Frequency (RF) localization system provide position information which is fused by an  

inference-based algorithm. The system modification is developed to successfully locate robots and people. 

In [14,15], Unmanned Aerial Vehicles (UAVs) are used to locate targets by a vision-based system with 

fixed downward-looking cameras. A square root sigma point filtering is used to fuse multiple observations 

and achieve precise positioning. In [16], Shi et al. fused a camera and inertial sensors by using a particle 

filter for long-term pedestrian tracking. In [17], Jing et al. addressed the problem of non-linear and  

non-Gaussian estimation for tracking a random moving object. An Improved Particle Filter (IPF) is 

designed to estimate the system motion parameters by processing the measurements from a sonar sensor 

and camera. In [18], laser scanners and a stereo vision camera are used to estimate the pose of moving 

objects in terrestrial and space applications. Based on the data from the Laser Camera System (LCS), [19] 

presents a closed-loop integrated sensor fusion approach, which consists of a Kalman filter and an Iterative  

Closest Point (ICP) algorithm. This method provides accurate and robust pose estimation in rendezvous  

and docking. 

For the selection of sensors, Infrared Radiation (IR) sensors and RF localization system are available 

options for tracking multiple targets. However, IR signals are limited to the available line of sight. RF 

systems are imprecise in locating targets [12]. Vision sensors (e.g., cameras) can provide accurate target 
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position information, but the corresponding camera modeling and image processing algorithms are 

complex and time-consuming. The laser scanner is a reliable device to provide range and attitude 

information, but it is more expensive and larger than LRs. In our system, MARG sensors and LRs are 

selected. They have advantages such as low cost, small size, system simplicity and being infrastructure 

free. Meanwhile, the accelerometer/magnetometer aiding system can be widely applied, for example in 

GPSD environments. Also, LRs aiding systems can provide accurate attitude information due to their high 

measuring accuracy. 

From the perspective of fusion algorithms, non-linear Bayesian estimators, for instance Extended KF 

(EKF) and Particle Filter (PF), can solve the problem of non-linear estimation in practical target tracking 

or positioning missions. These fusion algorithms eliminate the errors from a stand-alone sensor itself to 

improve accuracy. However, these non-linear Bayesian estimators suffer from computational complexity 

and robustness problems. In this paper, we design a fault-tolerant FKF-based fusion algorithm. The FKF 

consists of two local linear KFs and a master filter. Two linear KFs adopt the same DCM-based dynamic 

model to avoid nonlinear filtering. Meanwhile, two attitude aiding systems provide measurements for the 

two KFs, respectively. Each local KF can independently offer a rough attitude estimate. Then, the master 

filter processes this redundant attitude information to output a globally optimal attitude estimate. As a 

result, the aiding systems and FKF configuration confer the system fault-tolerant capability. 

2.2. MARG-Based AHRS Algorithms 

In our system, the MARG-based AHRS adopts gyros to sense the angular rates of the LR, which are 

required for solving the attitude differential equations [20]. Thus, the attitude derived from the gyros’ 

measurements displays time-growing error properties due to gyro noises. To overcome this problem, 

accelerometers and magnetometers are introduced to constitute an aiding system, which assist MEMS 

gyros in obtaining an accurate LR attitude via a KF estimator. 

Previous researches have focused on the design of flexible Kalman filtering algorithms, which depend 

on different attitude descriptions. Based on Euler angle description, Emura and Tachi used a KF algorithm 

to track human head motions [21]. However, the Euler angles-based dynamic model suffers from 

singularity and nonlinearity. Quaternion-based KF [2] avoids singularity, however, nonlinearity still exists. 

In order to develop a linear KF that requires less computation than nonlinear KF, Han and Wang [22] 

proposed a KF algorithm based on Psi-angle error equations under a small-attitude-error assumption [23]. 

Meanwhile, a similar method is presented by Li and Wang in [24] with modification of the adaptive ability 

of the filter. However, the Psi-angle equations will be inaccurate when the attitude error accumulates to 

violate the small-attitude-error assumption, particularly when MEMS gyros operate continuously for a 

long time. 

The elements of the DCM from the body frame to the local frame can be the KF states. The DCM-based 

KF can directly estimate the three elements of DCM, which are needed in our target positioning as 

illustrated in Section 4. In [25], DCM-based attitude estimation is presented to obtain the pitch, roll and 

yaw attitude angles, and it has successfully applied in land vehicle applications [26]. Two cascaded KFs 

were adopted to reduce the number of the KF states [25,26]. The DCM-based KF models are linear and 

free of singularity. In our target positioning system, the LR has no roll angles, so the DCM can be further 
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simplified. We redesign the DCM-based KF models without the cascaded structure to achieve economical 

computation and precise attitude estimation for target positioning. 

2.3. Laser Aiding Approaches 

LRs can output accurate distance measurements. They can constitute a reliable independent attitude 

aiding system to MEMS gyros. However, LRs are only able to measure the range from an observer to a 

target. In order to realize LR-aided AHRS system, the key is to build the relationship between range 

measurements and the LR’s attitude. 

Cheng et al. have presented a laser-aided attitude calibration method [1]. The 3D target position can be 

calculated by the range measurements and the attitude of the LR. The position error can be obtained when 

positioning an accurately known position. The attitude errors dominate the positioning error, thus the least 

squares method performs an estimation of attitude errors for calibration. However, limited knowledge of 

the target position restrains the application of this method. Besides, laser scanners can provide the changes 

of heading angle directly to aid autonomous relative navigation [27], and similar applications occur in 

indoor navigation [10]. Although a laser scanner allows the convenience of having heading-angle 

observations, it has high cost and large size compared to a LR. 

In [28], two parallel laser pointers project points onto a plane surface. Then, the difference of the two 

distance measurements, the distance of the two lasers and the line on the plane surface form a right triangle. 

The laser distance measurements are used to compute the change of yaw angle of underwater vehicles. 

Inspired by the laser aiding method described in [28], we employ three LRs to compute the changes of 

pitch and yaw angles. Furthermore, combined with the initial attitude alignment, the pitch and yaw angles 

of the LR can be obtained. 

2.4. Sensor Fusion Algorithms 

Sensor fusion algorithms based on linear and nonlinear filters are widely applied in navigation and 

localization. The KF algorithm, as a linear estimator, is used to fuse the data from gyros, accelerometers 

and magnetometers for pedestrian navigation [29]. Non-linear EKF [30,31] and PF [32] are applied in 

indoor positioning and autonomous navigation. In [10,33], two cascaded EKFs are employed to process 

the different device noises and then improve the final accuracy. However, the whole system will be 

inaccurate or even invalid if any fault occurs in each filter. In our target positioning system, two linear KFs 

can be designed based on the accelerometer/magnetometer and LR aiding systems, respectively. Both KFs 

are capable of providing the attitude estimates. Then, a FKF can allow the whole system to be fault-tolerant 

by processing the redundant estimates. 

Since FKF was proposed by Carlson in 1980s [11], it has been used in integrated navigation and target 

tracking [34] due to its efficiency and flexibility. A no-reset FKF configuration [35] is adopted in this paper 

to tolerate the faults of a single KF in practice, for instance when magnetic disturbances occur. In the  

no-reset FKF, there are no feedbacks from the master filter to reset the local filters. This no-reset 

configuration is discussed in [36], which is used to fuse the data of multiple inertial measurement units for 

pedestrian navigation. 

The contributions of this paper are as follows: first, both accelerometer/magnetometer sensors and LRs 

are used to aid the MEMS gyros. The three LRs-based attitude aiding system is especially designed to 
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provide precise attitude measurements. Second, the linear DCM-based KF models are modified for target 

positioning, which can avoid complex calculations. Meanwhile, the positioning accuracy is increased by 

the designed attitude estimation. Third, the no-reset FKF is adopted to process the redundant information 

of local filters. The FKF allows good system robustness. The system can output accurate target positions 

even if one of the aiding systems fails to work. 

3. Overall Design of the Target Positioning System 

The proposed target positioning system consists of MEMS gyros; MEMS accelerometers and 

magnetometers; and three LRs. To aid the MEMS gyros, attitude aiding systems based on 

accelerometer/magnetometer sensors and three LRs are designed, respectively. Besides constituting the 

LR aiding system, one of the three LRs is selected to measure the distance between an observer and a 

target. MEMS sensors are mounted on the LR to sense its angular and linear motion, and the magnetic 

field of its position. Figure 1 shows the structure of the target positioning system. 

 

Figure 1. Structure of the proposed target positioning system. 

The involved algorithms include three parts: target positioning algorithm, two aiding systems for 

attitude determination, and FKF for data fusion. The basic functions of the main parts are: 

(1) Target positioning algorithm: One of the three LRs is selected to provide the distance between the 

observer and the target. In our system, the target position can be obtained by the distance measurement 

from this LR and the attitude angles of this LR. The LR’s attitude angles are estimated by the FKF. 

(2) Aiding systems for attitude determination: Both accelerometer/magnetometer and LR aiding 

systems can offer the LR’s attitude. These two aiding systems provide the observations for the two local 

KF 1 and 2 of the FKF, respectively. 
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(3) FKF for data fusion: MEMS gyros sense the angular rate of the LR. The angular rate is used to 

describe the dynamic models of the two local KFs 1 and 2. Combined with the observation models 

corresponding to the two aiding systems, the two local KFs can estimate the LR’s attitude simultaneously. 

Then, the master filter fuses the redundant estimates to output globally optimal estimates. 

4. Target Positioning Algorithm and Aiding Systems 

4.1. Target Positioning Algorithm 

The underlying idea of target positioning is presented as follows. First, the relation between a target and 

an observer in a frame is built using two major parameters, namely the distance between them and the  

line-of-sight angles (i.e., azimuth and elevation angles) [37]. Second, provided the observer position within 

the frame, the target position can be computed with the built relation. Third, if required, the target position 

in an arbitrary frame can be obtained when knowing the transformation from the original frame to this 

arbitrary frame. The principle of the target positioning is shown in Figure 2. 

LRs
MEMS sensors 

Target

nZ

nX

nY

bZ

bY

bX

ψθ

d

O

r

 

Figure 2. Target positioning using the proposed system. 

The following frames are used in this paper [38]: 

(1) The Earth frame (e-frame OXeYeZe): the frame origin is the Earth center and the axes OXe, OYe, and 

OZe are fixed with respect to the Earth. The axis OZe lies along the Earth’s polar axis, and the axis OXe lies 

along the intersection of the plane of the Greenwich meridian with the Earth’s equatorial plane.  

(2) The navigation frame (n-frame OXnYnZn): this frame is a local geographic frame, whose origin O  

is set at the LR location, and its axes are aligned with the directions of the North, East and the local  

vertical (up). 

(3) The body frame (b-frame OXbYbZb)): this frame is an orthogonal axis set, whose origin is the LR 

mass center, and its axes are aligned with the roll, pitch and yaw axes of the LR. 

An observer holds the target positioning system consisting of LRs and MEMS sensors. When 

positioning a target, the observer can rotate the system to make the LR point to the target and measure the 

distance d between the observer and the target. Meanwhile, MEMS sensors and LRs can provide 

measurements to calculate the LR’s attitude, which are the Euler angles describing the orientation of the 
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b-frame relative to the n-frame. The Euler angles are denoted as pitch angle θ, roll angle r and yaw  

angle ψ. Besides, the laser beam is aligned with the Yb axis of b-frame. Then, the target position within the 
n-frame np  can be expressed as: 

n
n b b= ⋅p C p  (1)

where b (0, ,0)d=p  is the target position in b-frame, and n
bC  is the DCM from the b-frame to the  

n-frame, which is given by: 

n
b

cos cosψ sin sinψ sin θ sinψ cosθ sin cosψ cos sinψ sin θ

cos sinψ sin cosψ sin θ cosψ cosθ sin sinψ cos cosψ sin θ

sin cosθ sin θ cos cosθ

r r r r

r r r r

r r

+ − 
 = − + − − 
 − 

C  

By substituting bp  and n
bC  into Equation (1), the target position in the n-frame is given by the 

following expression:  

[ ] [ ]T T

n sinψcosθ cosψcosθ sin θx y z d d d= =p  (2)

When knowing the position of the observer within the n-frame, i.e., the latitude φ and longitude λ, the 

DCM from n-frame to e-frame equals to: 

e
n

sin λ sinφ cosλ cosφcos λ

cos λ sinφ sin λ cosφsin λ

0 cosφ sinφ

− − 
 = − 
  

C  

(3)

Then, the target position vector with regard to e-frame ep  can be calculated by: 

e
e n n= ⋅p C p  

(4)

Transformation from np  to ep  can be considered as a separate topic from target positioning. 

Obtaining the LR position (i.e., latitude φ and longitude λ) belongs to self-localization, which can be 

realized by mapping, GPS, INS, or GPS/INS solutions. Since self-localization is a separate topic from 
target positioning, this paper only focuses on improving the accuracy of np  in Equation (2). 

Equation (2) implies the requirements for attitude in target positioning system. First, only the pitch 

angle θ and the yaw angle ψ perform the computation of the target position. The roll angle is generated by 

a rotation around laser beam (Yb axis of b-frame). The rotation around Yb causes no changes of the target 

position, so the LR only needs to rotate around Xb and Zb axes of the b-frame to point toward the target. 
Second, instead of attitude, the functions of the attitude angles (i.e., sinψcosθ , cosψ cosθ  and sinθ ) 

are the direct factors influencing the target positioning. Besides, they are the elements in the second column 
of DCM n

bC . 

In [1], Cheng et al. has proved that the accuracy of np  is mainly affected by the errors of the LR 

attitude. MEMS gyros could sense the angular rates of each axis of the b-frame. By the integral of the 

gyros measurements, we can get the rough LR attitude. However, the MEMS gyros noises decrease the 

attitude accuracy, especially in a long-term operation. In MEMS-based AHRS, aiding systems are usually 

needed for offering bounded-error measurements. Then, the unbounded attitude errors from MEMS gyros 

can be limited via a KF, which blends the gyros measurements and aiding systems. 
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4.2. Aiding Systems for Attitude Determination 

4.2.1. Accelerometer/Magnetometer Aiding System 

Accelerometers and magnetometers can be integrated as an attitude aiding system by sensing the gravity 

and the geomagnetic field, respectively. The LR stays stationary when pointing to a target. In this  
case, only the gravity ng  acts on the LR, so the measurements from accelerometers Ax, Ay 

and Az  

represent the components of gravity along the axes of b-frame. The vector of gravity in b-frame bg  can 

be expressed as: 

b n T
b n n b

0 sin cosθ

( ) 0 sinθ

cos cosθ

x

y

z

g r A

g A

g g r A

     
     = = = − =     
     − −     

g C g C  (5)

Then, the roll angle r and pitch angle θ can be given by the accelerometer measurements: 

θ arcsin

arctan

y

x

z

A
g

Ar A

 − =    


−  =    

 (6)

To compute the yaw angle ψ by using the measurements of geomagnetic field, a new frame h-frame is 

introduced. The h-frame is transformed from the b-frame by two rotations. The first rotation acts around 

Xb axis with a pitch angle θ, which generates the coordinate OXbYhZ1. The second rotation performs  

around Yh  with the roll angle r, which generates the coordinate OXhYhZh. With this transformation, the  

h-frame has a horizontal plane OXhYh as shown in Figure 3. 

 

Figure 3. Transformation from the b-frame to the h-frame. 
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T
cos 0 sin 1 0 0

0 1 0 0 cosθ sinθ

sin 0 cos 0 sin θ cosθ

h b
x x
h b
y y
h b
z z

M r r M

M M

M r r M

    −    
       = ⋅ ⋅       

       −       

 (7)

The local Earth’s magnetic field has a fixed component on the horizontal plane pointing to the Earth’s 

magnetic North. The yaw angle ψ of LR can be defined as: 

ψ arctan
h
y

h
x

M
M

D
 

= + 
 

 (8)

where D represents the declination angle relative to the geographic North, which varies and depends on 

the given LR (observer) location [39]. 

As mentioned in Section 4.1, the LR only has the pitch angle θ and the yaw angle ψ in target 

positioning, so the attitude formulations can be simplified. Using Equations (6)–(8), the simplified attitude 

determination can be rewritten as: 

θ arcsin

ψ arctan
cosθ sinθ

y

b
x

b b
y z

A

g

M
D

M M

 − 
=  

 
   = +   − 

 (9)

Under stationary conditions, the accelerometer/magnetometer aiding system can provide the  

bounded-error attitude measurements, which can be used as observations for attitude estimation. Besides, 

the accelerometer/magnetometer aiding system can work even in a GPSD environment. Therefore, the 

accelerometer/magnetometer aiding system is selected for our target positioning. 

However, when this aiding system suffers from external magnetic disturbances from magnetic or 

metallic materials, the yaw angle calculated by Equation (9) will contain errors. Instead of the magnetic 

disturbances detection [9], modeling and estimation [39,40], a LR attitude aiding system is introduced as 

second aiding system to solve this problem. This redundant LR aiding system has high accuracy, which 

enables the system to maintain precise during the magnetic disturbances. 

4.2.2. Laser Rangefinder Aiding System 

A LR is originally used for measuring distance without direct relations with the attitude. To use LRs 

for attitude determination, the distance measurements need to contribute to describing the attitude. 

Inspired by [28], this paper proposes a LR attitude aiding for target positioning. The approach is different 

from the method in [28] in two aspects. First, the attitude angles here represent Euler angles from the  

b-frame to the n-frame. Second, the LR aiding system can determine both pitch and yaw attitude angles. 

The LR aiding system consists of three identical LRs, which are installed in a box which encapsulates 

MEMS MARG sensors, as shown in Figure 4. The three LRs are installed to be parallel (aligned) to each 

other. LR 1 is selected to aim at the arbitrary target and provide the distance between the target and the 

observer. The measurements from the three LRs can be used for determining the attitude of LR 1 directly. 
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Figure 4. LR aiding system for attitude determination. 

Buildings commonly have two consistent construction features: (1) the floors are horizontal; (2) the 

walls are flat and vertical to the floors. Combined with these conditions, the distance measurements can 

structure right triangles, which are used for calculating attitude. Figure 5a,b explains how to obtain the 

changes of the yaw and pitch angles, respectively. 

LR 1

LR 2

TargetWall plane

2d
1 2l −

1d
ψΔ

ψΔ

1 3l −
1d

θΔ
3d

θΔ

(a) (b) 

Figure 5. Calculation of the attitude changes. (a) Calculation of the yaw angle change;  

(b) Calculation of the pitch angle change. 

From Figure 5, the change of yaw angle ψΔ  and the change of pitch angle θΔ  can be calculated by:  

1 31 2

1 2 1 3

ψ arctan ,    θ arctan
d dd d

l l− −

   −−Δ = Δ =   
   

 (10)

where 1d , 2d and 3d  are the measurements from LR 1, 2, and 3, respectively; 1 2l −  represents the 

distance between LR 1 and 2; and 1 3l −  represents the distance between LR 1 and 3. To ensure the 

calculated angles with good precision in practical use, the 1 2l −  and 1 3l −  should be determined by 

considering the measuring errors of LRs. 

Considering the measuring errors of LRs, the change of yaw angle ψΔ   and pitch angle θΔ  can be 

rewritten as: 
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1 1 2 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1 3 3 1 3 1 3 1 3 1 3

1 3 1 3 1 3

( δ ) ( δ ) ( ) (δ δ ) δ
ψ arctan arctan arctan

( δ ) ( δ ) ( ) (δ δ ) δ
θ arctan arctan arctan

d d d d d d d d d d

l l l

d d d d d d d d d d

l l l

− −

− − −

− −

− − −

     + − + − + − +Δ = = =     
     
     + − + − + − +Δ = = =     
     




 (11)

where 1δd , 2δd  and 3δd  represent the measuring errors of LR 1, 2, and 3, respectively; 1 2δd −  and 

1 3δd −  are the total measuring errors in ψΔ   and θΔ , respectively; 1 2d −  is the true difference between 

the measurements from LR 1 and 2; and 1 3d −  is the true difference between the measurements from  

LR 1 and 3. 

Equation (11) shows that the measuring errors 1 2δd −  and 1 3δd −  play the same role in ψΔ   and θΔ , 

respectively. Hence, we analyze the ψΔ  error caused by the measuring error 1 2δd −  for an example. 

Combining Equations (10) and (11), the ψΔ  error can be expressed by: 

1 2 1 2 1 2

1 2 1 2

δ
ψ ψ ψ arctan arctanerror

d d d

l l
− − −

− −

   +Δ = Δ − Δ = −   
   

  (12)

When 1 2δd −  is certain, ψerrorΔ  depends on both 1 2l −  and 1 2d − , and 1 2d −  changes with the ψΔ . We 

analyze the effect of 1 2l −  and ψΔ  on ψerrorΔ , respectively, in the cases of the measuring error  

1 2δd −  = 3 mm, 1.5 mm, 1 mm, 0.5 mm and 0 mm. The distance between LR 1 and 2 1 2l −  is set as  

10 cm. The effects of ψΔ  on ψerrorΔ  are shown in Figure 6. 

Figure 6 shows that with a certain measuring error 1 2δd − , the ψerrorΔ  decreases with the ψΔ  

increasing. Since the ψerrorΔ  is related to both ψΔ  and 1 2l − , the effects of 1 2l −  on ψerrorΔ  is maximized 

when ψΔ  converges to zero. The influence of 1 2l −  on ψerrorΔ  is further investigated  

when ψ 0Δ = ° , as shown in Figure 7. 

 

Figure 6. The effect of ψΔ  on the ψerrorΔ . 
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Figure 7. The effect of 1 2l −  on the ψerrorΔ . 

From the red curve in Figure 7, the ψerrorΔ  significantly decreases before 1 2 0.1l − =  m and the ψerrorΔ  

already equals to 0.8185°  when 1 2 0.2l − =  m. In practice, 1 2 1 2δ δ δd d d− = −  can be smaller than 3 mm 

because 1δd  and 2δd  are random in 1.5 mm~−1.5 mm [8]. Then, the accuracy of the calculated ψΔ  can 

be better in the case of 1 2 0.2l − =  m, as shown in the curves in other colors. 

Notably, the results in the red curve corresponds to the worst situation in both 1 2δd −  and ψΔ .  

Hence, the red curve can be a reference to determine 1 2l −  by trading off between the system accuracy and 

the size. By using the LR aiding system, the steps for determining the LR attitude are: 

(1) Find the initial attitude of the three LRs. Put the LR aiding system on a horizontal plane, and then 

rotate them to emit beams vertical to the wall plane. Observe the measurements from the three LRs while 

rotate them. When the measurements are equal with acceptable biases, stop rotating the LRs and keep 

them stationary. We define the attitude of LRs under this circumstance as the initial attitude. 

(2) Calculate the initial attitude of the LRs. Because of MEMS gyros noises, only coarse initial 
alignment is applied. LR aiding system is static on a horizontal plane, so the initial pitch 0θ  and roll 

angle 0r  are assumed to be zero. Then, the initial yaw angle 0ψ  can be calculated by Equation (9): 

0 0 0θ 0,  ψ arctan
b
x
b
y

M
r D

M

 
= = = +  

 
 (13)

(3) Determine the LR 1 attitude. After initial alignment, LR 1 is used to aim at a target by appropriate 

angular motions. During the angular motions, the pitch and yaw angles of LR 1 can be described as:  

0 0θ = θ θ, ψ ψ ψ+ Δ = + Δ  (14)

By substituting Equations (10) and (13) into Equation (14), the LR 1 attitude can be written as:  
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 (15)

The LR aiding system works on an assumption that the target is located on a plane wall. However, 

there may be the instances where the target is on some special structures, such as a column, water pipes, 

stairs or some decoration with irregular shapes. Besides, when the LRs emit beams on some materials 

like glass on a wall, LRs can provide no data due to the low reflecting capability of glass. Therefore, a 

stand-alone LR aiding system is not reliable enough for target positioning. On the other hand, the LR 

aiding system can provide the attitude with outstanding accuracy. Also, the LR aiding system can provide 

redundant attitude information in addition to accelerometer/magnetometer aiding system. 

5. Design of the Federated Kalman Filter 

This section involves two designs: (1) local KF models; (2) the FKF configuration. The FKF consists 

of two Local Filters (LF) and a Master Filter (MF). As a decentralized filter, the FKF can fuse the 

information that is shared between the LFs and the MF. To implement the system fault-tolerant capability, 

the no-reset FKF configuration is employed. The structure of the FKF is shown in Figure 8. Two local 

linear KFs are designed by using the same DCM-based dynamic equations, as well as the observations 
(i.e., 1z  and 2z ) from the accelerometer/magnetometer and the LR aiding system, respectively. The two 

LFs work independently to give estimates (i.e., 1x̂  and 2x̂ ) and covariance (i.e., 1P  and 2P ) to the MF. 

Then, the MF fuses these data to output the globally optimal estimates ˆ gx  and gP  without feedbacks. 

The local KFs and the FKF fusion algorithms are presented in details in the following subsections. 

 

Figure 8. The FKF structure in the target positioning system. 

5.1. Local Kalman Filters 

As discussed in Section 4.1, the target positioning accuracy mainly depends on the three functions of 

the LR attitude angles in Equation (2). In addition, the functions are the second-column elements of the 

DCM from b-frame to n-frame. Therefore, the DCM-based KF models are designed. Besides, there is  

no roll-angle motion in the target positioning system, so the DCM from b-frame to n-frame can be  

simplified as: 

1z

2z

1 1ˆ ,  x P

2 2ˆ ,  x P

ˆ ,  g gx P
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1,1 1,2 1,3
n
b 2,1 2,2 2,3

3,1 3,2 3,3

cosψ cosθsinψ sinθsinψ

sinψ cosθcosψ sinθcosψ

0 sinθ cosθ

C C C

C C C

C C C

  − 
   = = − −   
     

C  (16)

The differential equation of the DCM can be written as: 
n n b
b b nb( )= ⋅ ×C C ω  (17)

where: 
b b b b b n n
nb ib in ib n ie en( )= − = − +ω ω ω ω C ω ω  (18)

where: 
b
nbω  is the angular rate of the b-frame with respect to the n-frame resolved in the b-frame. 
b
ibω  is the angular rate of the b-frame with respect to the inertial frame resolved in the b-frame, i.e., the 

measurements from gyros. 
b
nC  represents the DCM from the n-frame to the b-frame, i.e., the transpose of n

bC . 
n
ieω  is the angular rate of the Earth resolved in the n-frame. 
n
enω  is the angular rate of the n-frame with respect to the e-frame resolved in the n-frame, which 

depends on the system’s velocity. Since the target positioning system is stationary, this term equals to zero, 

and then the Equation (18) can be rewritten as: 
b b b b b n
nb ib in ib n ie= − = −ω ω ω ω C ω  (19)

b
nb( )×ω  is the skew symmetric cross-product matrix of b

nbω : 

b
nb

0 ω ω

( ) ω 0 ω

ω ω 0

z y

z x

y x

 −
 × = − 
 − 

ω  (20)

To simplify the notations, ω  is used to represent ωb
nb  and the subscripts (x, y and z) represent the 

components of ωb
nb  resolved in the corresponding axis of the b-frame. 

5.1.1. Dynamic Models 

The elements of the simplified DCM in Equation (16) are selected as the states of the two LF, which 

are presented by: 
T

1,1 1,2 1,3 2,1 2,2 2,3 3,2 3,3i C C C C C C C C=   x  

where 1,  2i =  represents LF 1 and 2, respectively. According to Equation (17), the dynamic models are 

expressed in a matrix form as:  

i i i= +x Fx w  (21)

where F  is the transition matrix which can be written as: 
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    0     0        ω

    0   ω     0
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× ×

×

×

 − ×
 

− × =  
 

−  

ω

ω
F  

and iw  are the process noise vectors, which are independent Gaussian white noises: 

~ (0, )i iNw Q  

where iQ  are the process noise covariance matrices. 

5.1.2. Observation Models 

The accelerometer/magnetometer and the LR aiding systems can provide the pitch and the yaw angles 

as shown in Equations (9) and (15), which can be used to calculate the elements of DCM as observations. 

Therefore, the observation models of the LFs can be written as: 

i i i= +z Hx v  (22)

where iz  represent the observation vectors in the LFs, which are defined as: 

T
cosψ cosθ sinψ sin θ sinψ sinψ cosθ cosψ sin θ cosψ sin θ cosθi i i i i i i i i i i i i
 = − − − z             

where 1θ  and 1ψ  are the pitch and the yaw angles calculated by using the measurements from the 

accelerometers and magnetometers, and 2θ  and 2ψ  are the pitch and the yaw angles calculated by using 

the measurements from the LRs. 
Besides, the observation matrix H  in Equation (22) is written as 8 8×=H I , and the measurement noise 

vectors iv  are independent Gaussian white noises: 

~ (0, )i iNv R  

where iR  are the measurement noise covariance matrices. 

5.2. FKF Fusion 

In the no-reset configuration, there are no feedbacks from global estimates to local estimates, as  

shown in Figure 8. This means that the failures in one of the LFs cannot affect the remaining LF, which  

allows the system to be highly fault-tolerant. The process of the no-reset FKF fusion can be formulated  

as follows [34]: 

(1) By using upper-bounding approach, the initial local covariance and the local process noise 

covariance are set to: 

1
,0 ,0

1
,0 ,0

β

β

i i g

i i g

−

−

=

=

P P

Q Q
 (23)

where ,0gP  and ,0gQ  are the common initial covariance and the process noise covariance, respectively; 

the fraction values βi  sum to unity: 
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β 1,        0 < β 1
n

i i
i=

= ≤  (24)

where 1 2β β 0.5= = . 

This approach allows the LF and MF solutions to be statistically independent, so they can be 

combined to yield the globally optimal solution via relatively simple methods. 

(2) The two LFs process their own-sensor measurements via KF algorithms. According to the basic 

equations of KF [41], the algorithms of the LF are shown as follows: 

a. Prediction: 

( , 1) ( , 1) ( 1)

T
( , 1) ( , 1) ( 1) ( , 1) ( 1)

ˆ ˆi k k i k k i k

i k k i k k i k i k k i k

− − −

− − − − −

=

= +

x Φ x

P Φ P Φ Q
 (25)

b. Update: 

T T 1
( ) ( , 1) ( ) ( ) ( , 1) ( ) ( )

( ) ( , 1) ( ) ( ) ( ) ( , 1)

( ) ( ) ( ) ( , 1)

( )

ˆ ˆ ˆ( )
i k i k k i k i k i k k i k i k

i k i k k i k i k i k i k k

i k i k i k i k k

−
− −

− −

−

= +

= + −

 = − 

K P H H P H R

x x K z H x

P I K H P

 (26)

where ( , 1)i k k−Φ  is the discretized state transition matrix, ( 1)i k−Q  is the process noise covariance matrix, 

( )i kR  is the discretized observation covariance matrix, I  is the identity matrix, and ( )i kK  is the filter 

gain matrix. 

(3) The MF fuses the local solutions to provide the globally optimal estimates by using the  

following equations: 

1 1
1 1 2 2

1 1 1
1 2

ˆ ˆ ˆ( )

( )

g g

g

− −

− − −

= ⋅ +

= +

x P P x P x

P P P
 (27)

where ˆ gx  are the global attitude estimates, which are used to calculate the target position; and gP  is 

the process noise covariance matrix. The no-reset FKF allows the system to be highly fault-tolerant, 

especially when LF 1 fails due to magnetic disturbances. As a result, the redundant aiding systems and 

the FKF can allow the system to work robustly, which enhances the practicability and reliability of  

the system. 

6. Simulation and Experimental Results 

6.1. Simulation Results 

The positioning accuracy mainly depends on the attitude estimates provided by the local DCM-based 

KFs. Hence, the performance of the two KFs is presented to show the system accuracy. Then, the system 

fault-tolerant capability is evaluated by the FKF performance during magnetic disturbances. 

6.1.1. Performance of the Two LFs and Positioning Accuracy 

To test the effectiveness of the DCM-based LFs, the accuracy of the attitude estimates from the two 

LFs are shown. The main involved conditions are set as follows. The true pitch and yaw angles are set as 
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θ 54 sin(2π /100)t= °⋅  and ψ 54 sin(2π /100)t= °⋅ , respectively. The gyros noise εg  is modeled as 

ε εg bias gw= + . The constant bias εbias  is set as 5°/h, and gw  is a random white noise of zero mean and 

0.5°/h Standard Deviation (SD). The accelerometers noise aΔ  is modeled as a bias awΔ = Δ + . The 

constant bias biasΔ  is set as 410 g− , and aw  is a random white noise of zero mean and 310 g−  SD. The 

measuring accuracy of LRs is set as 1.5 mm. Figure 9 shows the results of the attitude estimates, and the 

Root Mean Square (RMS) error analysis is shown in Table 1. 

 

Figure 9. Attitude estimates in the target positioning system. 

The results in Figure 9 and Table 1 show that the designed LF 1 and 2 can track suitably the true 

attitude values. This implies that the target positioning accuracy can be satisfactory. 

Table 1. RMS error of the attitude estimates. 

 LF 1 LF 2 

sinθ  0.0010 47.0733 10−×  
cosψsin θ  0.0014 44.8665 10−×  
cosψ cosθ  49.4631 10−×  47.4538 10−×  

The distance from the observer to the target is set to 80 m. By substituting it into Equation (2), we 

can obtain the target position. The position error PΔ  is used to evaluate the positioning accuracy, 

which is defined as: 

2 2 2( ) ( ) ( )c t c t c tP x x y y z zΔ = − + − + −  (28)

where ( , , )c c cx y z  represents the target position calculated by using the attitude estimates, and 

( , , )t t tx y z  represents the true target position calculated by using the true attitude. The positioning errors 

from the attitude estimates are shown in Figure 10 and Table 2. 
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Figure 10. Target positioning errors based on the attitude estimates. 

Table 2. Statistical analysis of the positioning errors. 

 Mean (m) SD (m) 

LF 1 0.06542 0.05014 
LF 2 0.0195 0.0001697 

The LF 2 solutions are smooth and contain less noise. The LF 2 performance benefits from accurate 

attitude observations from the LR aiding system. By using the attitude estimates, the target positioning 

accuracy can be less than 0.1 m within 80 m of distance. The simulation results indicate that the LF 

algorithms can enable the system to perform with high positioning accuracy. 

6.1.2. Fault-Tolerant Capability of FKF 

As mentioned in Section 4.2.2, the failures of the LR aiding system means that it is unusable. 

Therefore, fault tolerance refers to the system capability of maintaining effective especially when LF 1 

is inaccurate during magnetic disturbances. 

Equation (9) shows that magnetic disturbances may result in large errors on the yaw angle.  
To simulate a failure of LF 1, large errors of yaw angle ψ 60Δ = °  with white noise of zero mean and 1° 

SD is added from 10 to 200 s. The resulting attitude estimates from the fault LF 1, LF 2, and the FKF 

are shown in Figure 11. 

Figure 11 shows that during the magnetic disturbances, LF 1 fails to track the true attitude while  

LF 2 works normally to provide the accurate estimates. Moreover, the FKF fuses the estimates from the 

two LFs to realize fault-tolerant capability. The target positioning accuracy based on the different filters 

are shown in Figure 12 and Table 3. 

During the magnetic disturbances from 10 to 200 s, the fault LF 1 leads to the significantly large  

target-positioning errors, namely 18.65 m in average for a target distance of 80 m. However, the FKF 

makes the system avoid the harmful effect from LF 1. The results show that the positioning error based 

on FKF is less than 0.3 m. 
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Figure 11. Attitude estimates when LF 1 fails. 

 

Figure 12. Target positioning errors when LF 1 fails. 

Table 3. Statistical analysis of positioning errors when LF 1 fails. 

 Mean (m) SD (m) 

Fault LF 1 18.63 3.577 
LF 2 0.09069 0.006407 
FKF 0.2573 0.04489 

The accuracy performance based on the FKF benefits from: (1) the redundant LF 2 based on the LR 

aiding system that works normally with high accuracy; (2) the no-reset FKF provides a fault-tolerant 

way of sharing information from the MARG sensors and the LRs. The results demonstrate the FKF 

enables the target positioning system to tolerate magnetic disturbances, and then the system robustness 

is improved. 
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6.2. Experimental Results 

Experiments were conducted outside the ÉTS University building where GPS signal visibility is good. 

The experimental data are logged by using a L3GD20 MEMS gyro, a LSM303DLHC electronic compass 

which consists of a three-axis accelerometer and a three-axis magnetometer, and a BOSCH GLM80 LR. 

The measuring accuracy of the LR is ±1.5 mm per 80 m [8], and the MEMS sensors are integrated on a 

STEVAL-MKI119V1 board. The corresponding datasheets can be seen in [42]. The distance between 

the observer and the target is 9.42 m. 

6.2.1. Accuracy of the Target Positioning System 

After initial alignment as illustrated in Section 4.2.2, the LR performs an angular motion to emit a beam 

to the target on a wall of the building. When positioning the target, stationary data are recorded to obtain 
the position vector in the n-frame np  by using Equation (2). A GPS-WAAS receiver can provide the 

precise position of the observer and the target with regard to the e-frame, which are denoted by o
ep  and 

t
e_GPSp , respectively. The target position within e-frame can by calculated by [1]:  

t o
e e e= +p p p  (29)

where ep  can be given by np , which is detailed in Equation (4). The positioning accuracy can be 
evaluated by comparing the t

ep  provided by Equation (29) and the measured t
e_GPSp . 

Figure 13 shows the positioning errors based on different strategies for attitude determination.  

The strategies refer to: (1) deriving the attitude by only using the gyros (black line); (2) estimating the 

attitude by using the MARG-based AHRS, i.e., using LF 1 (blue line); (3) estimating the attitude by using 

the LR-aided AHRS, i.e., using LF 2 (red line); and (4) estimating the attitude by fusing the MARG sensors 

and LRs, i.e., using the FKF (green line). Table 4 shows the statistical analysis of the positioning errors. 

 

Figure 13. Target positioning errors based on the different strategies. 
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The results show that both the attitude estimates based on the two aiding systems significantly improve 

the positioning accuracy. It firstly implies that the designed DCM-based KF can provide accurate attitudes 

for target positioning. Secondly, the proposed LR aiding system is effective and useful in practical 

applications due to its remarkable accuracy. 

Moreover, the FKF-based positioning system can effectively reduce by about 93.3% the positioning 

error compared to the stand-alone gyros system. Also, the FKF-based system exhibits more stable accuracy 

than the MARG-based AHRS, which benefits from the LR aiding system with little noise. These indicate 

that the FKF algorithms can appropriately fuse the two LFs in terms of the final positioning accuracy. 

Table 4. Statistical analysis of positioning errors. 

 Mean (m) SD (m) 

Only Gyros 15.12 0.5471 
MARG-aided 0.5698 0.01404 

LR-aided 0.5726 118.098 10−×  
MARG and LR 0.5721 0.000169 

The results show that the proposed system based on FKF can significantly improve the positioning 

accuracy. The positioning error is less than 0.6 m for a 9.42 m distance fixed between the observer and 

the target. However, there is a gap between the simulation and the experimental results. From Table 2, 

the theoretical accuracy for a distance of 80 m is already nine times higher than the experimental 

accuracy for a distance of 9.42 m. There are two reasons accounting for this gap. Firstly, only a coarse 

initial alignment is applied in the proposed system. The initial attitude errors are then propagated through 

the system algorithm and thus cause large positioning errors. However, high-accuracy initial alignment 

based on MEMS sensors is a challenge due to the large inherent sensor noises. A large amount of 

research has been conducted to improve the accuracy of MEMS-based initial alignment. Therefore, to 

further improve the positioning accuracy, the initial alignment based on MEMS sensors will be studied 

as a separate topic in the future. Secondly, the laser beam of LR 1 is assumed to align with the Yb axis 

of the b-frame in the system. The errors of the installation angle will break the laws of the target 

positioning algorithm in Equation (2) and then the positioning accuracy is reduced. Therefore, the 

installation errors cannot be ignored and some effective calibration approaches like those described  

in [43] should be added to the proposed system. 

6.2.2. System Fault-Tolerant Capability 

Simulated magnetic disturbances are added to the experimental data from 4 s to the end. The 

simulated disturbances are set as 0.5 G with a white noise of zero mean and 10−2 G SD. Figure 14 

presents the positioning errors to show the fault tolerance. Table 5 gives the statistical analysis of the 

positioning errors during the disturbances. 
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Figure 14. Fault-tolerant capability of the proposed system. 

Table 5. Statistical analysis of positioning errors during the magnetic disturbances. 

 Mean (m) SD (m) 

MARG-aided 5.609 0.1231 
LR-aided 0.5726 118.098 10−×  

MARG and LR 0.5901 0.000271 

It can be seen from Figure 14 and Table 5 that, MARG-based AHRS causes large positioning errors 

during magnetic disturbances, which complies with the theoretical analysis in Section 6.1. However, the 

fault-tolerant FKF can protect the system from the magnetic disturbances. Also, the FKF-based system 

accuracy remains quite satisfactory. 

The fault-tolerant accuracy performance results from the no-reset configuration of the FKF, as well 

as the high accuracy of the LR aiding system as shown in Figure 14 and Table 5. The LR-aided  

AHRS possesses high accuracy, while the MARG-based AHRS can work almost everywhere without 

laser limitations, even in some situations where the LR aiding system fails. The FKF-based system can 

fuse the two complementary attitude aiding systems. The FKF fusion algorithm enables our system to 

benefit from the advantages of both aiding systems, as well as avoid the faults caused by a single aiding 

system. The system robustness is demonstrated by the fault-tolerant results obtained during the  

magnetic disturbances. 

7. Conclusions 

This paper has presented a target positioning system based on MEMS MARG sensors and LRs.  

Two main issues have been addressed to improve the system performance: target-positioning accuracy 

and fault-tolerant capability. The linear DCM-based KF algorithms are designed to limit the errors of 

the LR’s attitude. Then, the accelerometer/magnetometer and the LR attitude aiding system are 

introduced. The LR aiding system is especially designed based on three LRs, which can accurately 

determine attitude. Two local DCM-based KFs can be designed based on the two aiding systems, 

respectively. Then, the no-reset FKF is used to fuse the redundant attitude estimates from the two 
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independent local KFs. The FKF fusion algorithms enable the system to work effectively even when one 

of the LFs has faults. The simulation and experimental results demonstrate that the proposed system can 

improve target-positioning accuracy and perform with high robustness. 

The designed DCM-based KF could be applied in target positioning systems based on 

distance/attitude measurements. Additionally, the LR aiding system could be exploited in the situation 

where the plane construction is available, for instance in indoor navigation and localization. Future work 

should benefit greatly by developing accurate MEMS-based initial alignment and the calibration for the 

installation errors. 
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