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ABSTRACT

In still-to-video face recognition (FR), the faces captured with
surveillance cameras are matched against reference stills of target
individuals enrolled to the system. FR is a challenging problem
in video surveillance due to uncontrolled capture conditions (vari-
ations in pose, expression, illumination, blur, scale, etc.), and the
limited number of reference stills to model target individuals. This
paper introduces a new approach to generate multiple synthetic
face images per reference still based on camera-specific capture
conditions to deal with illumination variations. For each reference
still, a diverse set of faces from non-target individuals appearing in
the camera viewpoint are selected based on luminance and contrast
distortion. These face images are then decomposed into detail layer
and large scale layer using an edge-preserving image decomposi-
tion to obtain their illumination dependent component. Finally, the
large scale layers of these images are morphed with each reference
still image to generate multiple synthetic reference stills that incor-
porate illumination and contrast conditions. Experimental results
obtained with the ChokePoint dataset reveal that these synthetic
faces produce an enhanced face model. As the number of syn-
thetic faces grows, the proposed approach provides a higher level
of accuracy and robustness across a range of capture conditions.

Index Terms— Video Surveillance, Face Recognition, Image
Morphing, Synthetic face generation

1. INTRODUCTION

Face recognition (FR) in video surveillance has received significant
interest due to covert capture using surveillance cameras, flexible
control, high performance to cost ratio as well as the possibility
of analysis of live feeds [1]. Watchlist screening is a common ap-
plication of still-to-video FR systems, where facial modelﬂ used
for matching are designed using regions of interest (ROIs) isolated
from reference still images of target individual enrolled to the sys-
tem. Then, FR system seeks to determine if faces captured using
video surveillance cameras correspond to facial models of target in-
dividuals [2]].

In recent years, public security organizations have deployed
several video surveillance cameras. Despite major advances that
occurred in FR systems, [3] (4] [5] [6] [7], designing a robust sys-
tem for FR in video surveillance under semi-controlled and uncon-
trolled capture conditions remains a challenging problem. This is
due in part to the limited number of representative reference stills
per target individuals. In addition, ROIs isolated from reference still
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1A facial model of an individual is defined as either a set of one or more reference
face samples (used in template matching systems), or a statistical model estimated
through training with reference captures (used in neural statistical classification sys-
tems) coresponding to a target individual

images may differ significantly from those captured in videos, due
to camera inter-operability. Finally, faces captured in operational
videos vary due to pose angle, expression, illumination, blur, reso-
lution, scale and occlusion.

This paper focuses on the variations in facial appearance related
to changes in illumination and contrast. These are among the most
significant factors affecting FR performance. Variations in illumi-
nation and contrast are typically caused by operational conditions
that are specific to a camera viewpoint, such as lighting condition,
shadow, scale and proximity of faces to the camera [8]].

Over the past few decades, a wide variety of approaches have
emerged to compensate lighting variations that affect FR perfor-
mance. These methods can be grouped into techniques for (1) il-
lumination normalization, (2) illumination invariant feature extrac-
tion, (3) modeling the illumination conditions, and (4) face image
synthesizing. Normalization approaches try to adjust the images to
a normal lighting condition. Histogram equalization, gamma cor-
rection, histogram specification/matching, and oriented local his-
togram equalization are basic methods in this area [9] [10]. These
techniques are effective, but their ability to handle uneven illumi-
nation variations remains limited [11] [[12]. Illumination-invariant
representation strategies extract facial descriptors that are robust to
variant lighting such as edge maps, geometrical features, deriva-
tives of the gray-level e.g., the local binary patterns (LBP) and Ga-
bor features [13]] [14]. Due to the change in the illumination direc-
tion, these methods are insufficient to overcome lighting variations
in practical applications. Another strategy in this domain is mod-
eling the illumination conditions that allows restoring illumination
invariant features. The features, are then deployed for recognition
[15]. These techniques are however seen as ill-posed, and it is dif-
ficult to estimate the lighting and reflectivity source from a single
face image. Finally, face image synthesizing approaches attempt
to generate virtual images under different appearance. Adding ex-
tra samples to the gallery produces diverse face representations and
accordingly improves the robustness to various capture conditions
[16]. The benefit of synthesizing approach compared to other il-
lumination compensation methods is that the generated sample for
an input face image is still an image, instead of abstract features.
Moreover, this is useful for the single sample per person (SSPP)
scenario in which there is only one sample for each enrolled indi-
vidual into the gallery and there are several novel probe images for
recognition. A common approach for synthetic face generation is to
reconstruct the 3D model of the face from its 2D face image. The
major drawback of 3D-based techniques, such as the 3D Morphable
Model [17]), is their high computational cost.

This research aims to address variations in illumination and
contrast, as well as the related SSPP problem (limited reference
still ROI) by generating multiple synthetic face images per refer-
ence still in order to improve the representativeness of face models.
To this end, a novel approach is introduced to generate virtual face
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images under different lighting and contrast conditions based on the
abundance of unconstrained face captures in videos of non-target
individuals. With the proposed approach, a set of non-target face
ROIs from video sequences with diverse illumination and contrast
are selected and their large scale layers are extracted to obtain their
illumination dependent component. Each reference image of the
gallery is morphed with the decomposed large scale layers to trans-
fer the operational environment conditions (illumination, contrast,
noise) of non-target samples to virtual samples that are then added
to gallery.

The contributions of this paper include: (1) a method for se-
lecting a set of facial ROIs from videos with non-target individuals
that incorporates a diversity in illumination and contrast, as found
in the operational environment; (2) a 2D image morphing technique
to generate a set of synthetic face images from a reference still ROI
and diversified video ROI; (3) show experimentally that adding syn-
thetic reference faces to a watchlist can improve FR performance.
In contrast to face synthesizing approaches based on 3D reconstruc-
tion, the proposed approach allows generating new samples without
any knowledge of 3D shape.

2. A SYNTHETIC FACE GENERATION METHOD

This study introduces a new face synthesizing approach that gener-
ates multiple synthetic face images per reference still, each one un-
der different illumination and contrast conditions that are specific
to an operational condition. The overall process of the proposed
approach is depicted in Figure 1.

According to this approach, several ROIs are isolated from
video sequences where non-target individuals appear in a specific
camera viewpoint. Video ROIs that incorporate the most diverse
variations in illumination and contrast w.r.t. a reference still ROI,
with almost frontal face poses, are selected as follows. Video ROIs
are extracted ROIY (x, i), and the head pose of each ROI in each
frame is estimated. The ROI with frontal viewpoint are selected.
Then, the illumination distortion between each ROI still image in
the watchlist RO}y (z,y) and each video ROI% (x,%) are mea-
sured using global luminance quality (GLQ) factor [18]. GLO(z, y)
measures the proximity of the average luminance between a still
and probe video ROIs locally by utilizing sliding window:
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where p(x) and p(y) denotes mean values of image block of ref-
erence and input images respectively, and m is sliding step cor-
responding to block size. C' is constant value defined as C'y =
(K1L)? that L is the dynamic range of the pixel values and K is
experimentally determined [19].

Next, the contrast distortion between each ROI%, and each
ROI (z, ) are measured using global contrast quality (GCQ) fac-
tor [IL8]] defined as:
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where o(z) and o(y) denotes standard deviation of image block
of reference and input images respectively, and p is sliding step
corresponding to block size. (2 is constant value defined as
Cy = (K2L)* where L is the dynamic range of the pixel val-
uesand K3 < 1.

Afterwards, GLO(ROIy,ROIy) and GCQ(ROIw , ROIy)
are normalized. Then, clustering of the non-target ROIs is per-
formed on the normalized GLQ and GCQ in 2D space using K-
means to allow selection of diverse illuminations and contrasts. In

order to determine an optimal number of clusters, Dunn index is
exploited. The aim of this index is to discover clusters that are com-
pact, and well separated, where the means of different clusters are
sufficiently far apart, as compared to the internal cluster variance.
For a given assignment of clusters, a higher Dunn index indicates
better clustering [20]. Then, the representative ROIs of each cluster
(the ROI closest to the cluster’s centroid) are determined. This pro-
cess is repeated 7" times for non-target videos employed for design
process.

Next, their illumination dependent component is extracted. To
do so, ROIs are decomposed into two layers including large-scale
layers Li(z,y) (similar to shading) and detail layers LY (con-
taining reflectance) using weighted least square (WLS) filter[21].
The LY(x, y) can be considered as illumination independent, and
L{(x,y) as illumination dependent. Edge-preserving filter is further
applied to smooth the L (z,7). Edge-preserving filters preserve
the edges of the image [22].

After extracting large scale layers, each ROIY is then mor-
phed with the L{(x, y) to generate multiple virtual samples under
new illumination conditions. The morphing process is performed
according to the following steps:

1. detect the landmark points using active shape model to locate
corresponding feature points in ROIs [23]);

2. define a triangular mesh over feature points via the Delaunay
triangulation technique;

3. coordinate transformations between triangles, with affine
projections on points;

4. warp each triangle separately from the source to destination
using mesh warping technique. This method moves trian-
gular patches to the newly established location to align two
ROIs before cross-dissolving;

5. cross-dissolve the triangulated ROIs considering warped
pixel locations:

Jmorpn(2,y) = afi(z,y) + (1 — ) fa(z,y)  (3)

where fi(x, y) and f2(z, y) are the pixels of reference and destina-
tion images of the still and video ROIs respectively and o is mor-
phing weight (0 < a < 1). This equation demonstrates moving the
feature points at new location f,,,0,,1 (7, y) takes o percentage from
fi(z,y) and 1 — o from f2(z, y) [24]. The output is a set of syn-
thetic ROI Is with smooth variations of illumination and contrast.
The face generation process is formalized in Algorithm 1.

3. EXPERIMENTAL ANALYSIS

3.1. Methodology and Dataset

In this work, a particular implementation of the proposed system
has been proposed to assess the performance of the synthesizing
method and assess our hypothesis that generating synthetic refer-
ence faces can improve recognition performance. The presented
system for FR is composed of a group of matchers dedicated to
each individual enrolled to the system. (original image and syn-
thetic ones). During the design phase, few synthetic samples are
generated from each single high-quality reference still. The gener-
ated samples are then added to the gallery to enlarge the training set
and consequently improve the representative ability of face models.
The facial models are designed using ROIs extracted from refer-
ence still and corresponding virtual ones. During operations, ROIs
captured from faces of probe individuals are matched against the
enrolled facial models during enrollment to detect the presence of
watchlist individuals.
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Fig. 1. Block diagram of the proposed system applied to illumination sythnesis.

Algorithm 1: Algorithm for synthetic face generation

Input: Gallery frames {Iy, (z,y) : i = 1,...,n},
Non-target videos with different illumination conditions
{In(z,y):i=1,..,N}
Output: Set of synthetic face images under different illumination
{Ig(z,y) :i=1,...,m}
1 for each {I'y (z,y)} frames do
2 Apply segmentation to {Iy (x, y)} to detect ROIs
{ROI} (z,y) : ¢ = 1, ..., m} corresponding to faces in the frames
count = 0
while count < T do

3
4
5 Estimate head pose of the ROIs {P; : 4 = 1, ..., m}
6 while {P;} < T° do
7 Measure illumination of the selected non-targets
{GLQ; (z,y) :i=1,...,m}
8 Measure contrast of the selected non-targets
{GCQ,(x,y) :i=1,...,m}
9 Normalize GLQ; (x, y)} and {GCQ; (z, y)
10 Find optimal number of clusters n, based on Dunn index
11 Perform clustering (k=nx ) on the normalized
{GLQ;(x,y)} and {GCQ; (z,y)}
12 Determined the representative images of each cluster
L {Tr(z.y)}
13 Extract large-scale layer {Lf(m7 y)} of the {I’é(m, y)}
14| Perform edgepreserving filter on {Li(z,y)}
15 for each {Ii, (x,y)} frames do )
16 Apply segmentation to {Iy;, (x, y)} to detect ROIs {ROIy,, (x, y) }
17 for each {L}(z,y)} do ) )
18 Detect landmark points of {ROI}, (z, y)} and L} (z, y)
19 V; = ASMLandmarks({ROI; (z, y)})
20 Vy = ASMLandmarks(L} (z, y))
21 Define a triangular mesh over the points V1 and V2
22 D; =Delaunay(V1), D2 = Delaunay(Vs)
23 Coordinate transformations between triangles
24 Dyew1 = Affine(V1) , Dpew2 = Affine(V2)
25 Warp each triangle from source to destination
26 Wi =Meshwarp (V1 ,Dypew1 )
27 Wy = Meshwarp (V2 , Dy cw2 )
28 Cross-dissolve W1 and W1
29 L {I5(x,y)} = CrossDissolve (Wy , W2 , @)

The overall block diagram of the proposed FR system is shown
in Figure 2. During the enrollment, a set of non-target videos are
collected and their ROIs are extracted and the head pose of each
ROI in each frame is estimated. The ROI with the face pose angles
less than 3° are selected. Then, GLQ,(x,y) and GCQ,(x,y) be-
tween each ROI isolated from still, and the video ROIs of various
non-target individuals are measured. Next, clustering is performed
on the normalized GLQ, (z,y) and GCQ,(z,y) in 2D space using
K-means and the representative image of each cluster is determined.

The optimal number of clusters obtained using Dunn index is typ-
ically around k = 4. This process is repeated 3 times for 10 dif-
ferent sets of non-target videos. So, for each watchlist individual,
12 non-target images are selected. Each watchlist individual is then
morphed with the decomposed large scale layers. A total of 12 syn-
thetic face images with diverse illumination and contrast for each
still individual are generated and added to the watchlist gallery to
create a new gallery. During design phase, for each face of gallery,
segmentation is performed and the ROI is then scaled to a common
size 48 x 48 to limit processing time. Next, a division into 3x3 = 9
uniform non-overlapping patches is performed on each ROI repre-
sentations. Next, uniform pattern of 59 local binary pattern features
of face patches using in the single reference ROI and corresponding
synthetic ones are extracted to generate diverse face representations.
The extracted features are normalized to range between 0 and 1, and
assembled into a ROI pattern of features for matching. The latter are
then stored as a template into a gallery. The enrollment phase pro-
duces a template gallery with 13 different templates per watchlist
person (the original image plus 12 synthetic images). During the
operational phase, frames undergo the same processing steps as for
the enrollment and following that, template matching is applied that
matches the facial models of probes against those models stored in
the gallery during enrollment. Each matcher provides a similarity
score between every patch of the input vector and the correspond-
ing patch template in the gallery via Euclidian distance. Output
scores from matchers are fed into the fusion module after score nor-
malization. A face tracker also regroups faces from each different
person and accumulates positive predictions over time for robust
spatio-temporal recognition. A positive prediction is produced if a
matching score surpasses an individual-specific threshold. Finally,
the decision function combines the tracks and matching predictions
in order to recognize the most likely individuals in the scene.

To assess the transaction-level performance of the proposed
FR system, partial ROC curve (pAUC), area under precision-recall
space (AUPR) and Fl-measure for a desired false positive rate
of 1%, are considered. Prior to each replication, 5 persons are
randomly selected as target watchlist individuals. The remaining
individuals are used in the operational phase as non-target subjects.
This process is repeated 5 times.

In order to validate of the performance achieved by devel-
oped FR system for watchlist screening applications, ChokePoint
video dataset has been employed. The dataset includes an array of
three cameras placed above two portals to capture subjects walking
through them. It contains 54 video sequences in portal 1 and 29
subjects in portal 2. Captured face frames have variations in terms
of illumination conditions, pose, sharpness, as well as misalignment
due to automatic face localization/detection [23]].
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Fig. 2. Synthetic-based still-to-video face recognition system

Table 1. Average transaction-level results of the proposed system
with 12 synthetic images on 5 replications with ChokePoint dataset

Recognition system pAUC(20%) AUPR Fl-measure
BFR 0.298 £ 0.105 | 0.160 £ 0.054 | 0.187 £ 0.068
synthetic FR 0.401 £0.096 | 0.218 £0.029 | 0.278 £ 0.046
patch-based BFR 0.461 £0.462 | 0.293 £0.283 | 0.331 £ 0.330
patch-based synthetic FR | 0.547 +0.169 | 0.367 +0.145 | 0.363 £ 0.139

3.2. Results and Discussion

Figure 3 represents examples of the images generated with assis-

tance of the proposed synthesizing algorithm.
(a) (b) (e) (d)

Fig. 3. Synthetic face images with different illumination; (a) orig-
inal image, (b-d) synthetic relighted images (ID#1 ChokePoint
dataset)

Results in Table 1 present the average transaction-level perfor-
mance (pAUC(20%), AUPR and F1-measure) in the baseline FR
system (BFR) with only one sample per person and the FR sys-
tem with extra images under various illumination conditions. More-
over, it compares the results obtained with and without patching. As
shown in Table 1, the recognition system with extra samples under
varying illumination outperform the baseline system because of its
robustness to the illumination variations. Furthermore, the results
achieved via the patch-based technique provide a higher level of
performance compared to the baseline system.Since, the extracting
features from each patch allow exploiting more discriminant infor-
mation and consequently yield better matching performance.

Table 2 compares the average transaction-level performance in
the synthetic FR system based on the number of synthetic samples.
It can be concluded that the number of images added to the gallery
has a direct impact on the recognition rate and time complexity. In-
creasing synthetic images enhances the system performance; how-

ever, reduces time efficiency. Therefore, there should be a trade-off
between performance and computational cost associated with in-
creased number of samples.

Table 2. Average transaction-level results of proposed FR system
based on number of synthetic images with ChokePoint dataset

Number of images | pAUC(20%) AUPR F1-measure
1 (baseline) 0.298 +0.105 | 0.160 £ 0.054 | 0.187 + 0.068
4 0.315+0.042 | 0.187 £0.032 | 0.228 + 0.083
8 0.378 £ 0.071 | 0.201 £ 0.103 | 0.255 = 0.037
12 0.401 +0.096 | 0.218 £ 0.029 | 0.278 + 0.046

It can however be observed that the results vary according to
the watchlist individuals. This is demonstrated by the results, for
instance, with individual ID#01, adding extra images improve the
performance pAUC=0.118 to pAUC=0.378, but in individual ID#04
from pAUC=0.319 to pAUC=0.339.

4. CONCLUSION

Given the challenges of still-to-video FR in video surveillance ap-
plication, a new approach is proposed in this paper to generate
multiple synthetic face images per reference still based on camera-
specific capture conditions. This approach exploits the abundance
of diverse facial ROIs from non-target individuals that appears in a
specific camera viewpoint. An extension of image morphing allows
to generate a set of diverse images with a smooth transition of illu-
mination. It is able to accurately convey a range of synthetic face
images with diverse illumination and contrast.

Experimental results with the ChokePoint dataset show that the
proposed approach is an effective approach to improve the represen-
tativeness under illumination and contrast conditions found in many
video surveillance applications, for instance in watchlist screening
only one reference face still, captured under controlled condition,
is available during enrollment. It is worth mentioning that, this
method can be generalized to transfer other appearance variations
such as shadow and blur to any objects for a wide range of appli-
cations. In order to design a more robust still-to-video FR system,
future research should include methods to generate even more syn-
thetic faces based on variations in pose and expression of a target
individual.
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