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Abstract 

We study an unreliable deteriorating manufacturing system that produces conforming and non-

conforming parts to satisfy a constant demand product rate. The manufacturing system is 

comprised of a failure-prone machine. Due to the combined effect of random availability 

variations and deterioration, the system is not able to fulfill long-term product demand. In 

particular, when finished goods inventory is positive, clients demand are fulfilled on-time and 

without delay. When backlog exists, subcontracting options are available at a higher cost to 

supplement the limited production capacity of the manufacturing system. The effect of 

deterioration is observed mainly in the quality of the parts produced, since the rate of defectives 

increases as the machines deteriorate. Overhaul activities can be conducted to mitigate the effect 

of deterioration. We propose a joint feedback control policy based on a stochastic dynamic 

programming formulation which aims simultaneously to determine the production and overhaul 

rates, and the rate at which subcontractors are requested. The proposed joint control policy 

minimizes the total cost, including the inventory, backlog, repair, overhaul, defectives, production 

and subcontracting costs, over an infinite planning horizon. To determine the optimal control 

parameters, we adopt a numerical scheme to solve the optimality equations and a numerical 

example is presented as an illustration of the approach. The structure of the joint control policy is 

validated through an extensive sensitivity analysis. 
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1. Introduction

In modern organizations, quality and production planning are critical for market survival. 

Typically, a number of disruptions such as deterioration, delays, defectives, failures, etc., 

limit the organization’s ability to satisfy product demand without delays, leading to 

increased lead times and customer dissatisfaction. Therefore, manufacturing systems 

must be designed efficiently to respond quickly to such disruptions, mainly among 

manufacturers with limited capacity. One attractive option is to increase capacity to 

reduce the lead time through the use of subcontractors. The cost associated with 

subcontractors can be justified by the ensuing reduced lost sales and required inventory. 

Furthermore, maintenance strategies are available to improve the system performance. 

Unfortunately, more research is needed to have a better understanding of the connection 

between production and quality, as well as to include the effect of maintenance and 

subcontracting issues in analyzing such relationships. In this study, we therefore aim to 

propose an integrated model that defines the structure of an optimal joint policy for the 

interaction of production, quality, maintenance and subcontracting activities in the 

context of deterioration. 

Closed-form solutions were available for the production control problem with the work of 

Akella and Kumar [1], who addressed the case of a single-machine, one-part type 

considering a discounted cost; as well they determined the structure of the so-called 

Hedging Point Policy. Since quality is a major factor in competitiveness in current 

markets, recent extensions of this research area include connections to quality issues. For 

instance, Inman et al. [2] highlighted the importance of the interaction between 

production and quality issues, and reviewed the limited literature on the intersection of 

quality and production system design. Colledani et al. [3] revised problems, methods and 

tools to support the strong interaction among production logistics, quality and 

maintenance functions; also they highlighted the main challenges and opportunities for 

zero-defect oriented manufacturing industries. Mathematical models integrating 

production and quality issues were presented in Kim and Gershwin [4, 5] where they 

determined several performance metrics for small and larger systems. Other analytical 

models were introduced in the work of Colledani et al. [6], who proposed an integrated 

quality and production logistics model, which significantly reduced the output fraction of 

defectives. With this model improved performance is achieved towards existing 

solutions, which deal only with quality aspects.  Further, some authors have incorporated 

quality issues in the production policy. For instance, Radhoui et al. [7] developed a model 

for lots that are subject to quality control and determined the maintenance strategy and 

the optimal buffer size. Analytical expressions for the production control policy and the 

related total cost are presented in Mhada et al. [8], for a failure-prone machine whose 

final product includes some defective parts. Defective production is also covered in the 

work of Bouslah et al. [9] in which an acceptance sampling plan is used to control the 

quality of the lots produced. They jointly optimize the batch size, the hedging level and 

the sample size. Additionally, Dhouib et al. [10] presented an integrated strategy for the 

production inventory control and preventive maintenance for a manufacturing system 

with imperfect production, using an age-based preventive maintenance policy to reduce 

the shift rate to the out-of-control state. We should note that the above works have a 

restrictive assumption, regarding the rate of defectives which is assumed to be constant 

https://www.researchgate.net/publication/224682435_Optimal_Control_of_Production_Rate_in_a_Failure_Prone_Manufacturing_System?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/253963469_Designing_production_systems_for_quality_Research_opportunities_from_an_automotive_industry_perspective?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/264312901_Design_and_management_of_manufacturing_systems_for_production_quality?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/262019980_Integrated_quality_and_production_logistics_modelling_for_the_design_of_selective_and_adaptive_assembly_systems?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/254409445_Joint_optimal_production_controlpreventive_maintenance_policy_for_imperfect_process_manufacturing_cell_Int_J_Prod_Econ?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
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for the entire time horizon. Obviously, this might not be true in practice, since it is very 

common for manufacturing systems to experience the accumulated effect of 

deterioration, which has serious impacts on several parameters of the system. The 

deteriorating systems field may therefore provide an appealing approach for our research. 

As a matter of interest deterioration has been a major topic in the manufacturing systems 

field. For example, Martinelli and Piedimonte [11] described an optimal 

backlog/inventory problem for a production system whose deterioration depends on its 

production rate. A combination of the replacement planning problem with production 

control and preventive maintenance was presented in Dehayem et al. [12], where they 

focused on a manufacturing system that experienced a double deterioration caused by the 

age of the machine and by imperfect maintenance. A key observation to be made here is 

that the aforementioned papers analyze the effect of deterioration on increasing failure 

rates or decreasing production rates, while disregarding its effect on quality. The 

influence of deterioration on part quality was covered for the case of degrading machines 

in Colledani and Tolio [13], who tackled the production rate of conforming parts of 

deteriorating machines controlled by preventive maintenance and control charts. 

Additionally, a more detailed discussion about quality deterioration can be found in 

Rivera-Gómez et al. [14], who determined production and major maintenance strategies 

for a manufacturing system with increasing defectives caused by the influence of 

deterioration. In spite of these primary attempts to relate deterioration with part quality, 

we believe that more research is required in order to fully understand its effect on the 

control policy, mainly because, in real production, manufacturers encounter a wide 

variety of phenomena. Additionally, it is important to use effective measures to palliate 

limited capacity, and to that end, one option is the use of subcontracting to ensure on-

time fulfillment of product demand. 

Utilizing subcontractors can be a possible option for production systems with limited 

capacity. Tan and Gershwin [15] derived a feedback control policy that determines the 

production rate and the rate at which subcontractors are required to deliver products for a 

random demand scenario. Another subcontracting model was presented in Hajej et al. 

[16], who obtained an optimal production plan and preventive maintenance program, 

where products returned by customers are sent to a subcontractor for recycling and 

remanufacturing. An adjustable capacity for an unreliable manufacturing system was 

treated in the work of Gharbi et al. [17], in which a reserve machine is called upon as 

support to satisfy the product demand if the inventory level falls below a specific 

threshold. Recently, Dror et al. [18], proposed a methodology to determine safety-stock 

level and storage capacity for a multiple manufacturing facilities multiple product with 

subcontracting options. An extension of this model was done by Assid et al. [19] who 

tested different subcontracting policies. One important remark that can be made here 

concerns the fact that none of the works mentioned above considered subcontracting 

actions in the context of progressive limited capacity. Indeed, in these works, 

subcontracting is not studied in the context of machine wear causing a continuous 

deterioration of the part quality. 

Following the above discussion, we can observe that the purpose of this study is to 

develop a stochastic optimal control model allowing us to extend previous contributions, 

https://www.researchgate.net/publication/226778334_Production_and_Subcontracting_Strategies_for_Manufacturers_with_Limited_Capacity_and_Volatile_Demand?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/257580958_Joint_optimisation_of_maintenance_and_production_policies_with_subcontracting_and_product_returns?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/232896942_Production_rate_control_of_an_unreliable_manufacturing_cell_with_adjustable_capacity_Int_J_Prod_Res?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/264459653_Joint_production_and_subcontracting_planning_of_unreliable_multi-facility_multi-product_production_systems?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
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such as [14, 17, 18], in three important directions. First, we cover the impact of quality 

issues on the production control policy, in a bid to further analyze the relationship 

between production and quality. Second, we analyze the impact of the progressive wear 

of the manufacturing system, which leads to a Semi-Markov model where the property of 

memoryless holds for the transition failure rate. However, we keep memory of the age of 

the machine to model quality deterioration. Third, with subcontractors, we provide the 

manufacturer with external product sources. When the demand exceeds the capacity of 

the manufacturing system, subcontractors may be useful for reducing backlog, improving 

customer service, and reducing the number of lost sales. Also, overhaul activities can be 

conducted to mitigate the effect of deterioration. One of our goals is to minimize the total 

incurred cost over an infinite planning horizon comprising the inventory, backlog, repair, 

overhaul, defectives, production and subcontracting costs. To the best of our knowledge, 

this set of characteristics has not been covered jointly in the literature. We use Hamilton-

Jacobi-Bellman equations to determine the structure of the control policy and the results 

obtained are further examined in a sensitivity analysis.  

The rest of the paper is organized as follows. The industrial context of the paper is 

presented in Section 2. The model description and its assumptions are given in Section 3. 

The control problem formulation is presented in Section 4. The joint control policy is 

detailed in Section 5. Additionally, the evaluation of the control policy is described in 

Section 6 through a sensitivity analysis comprising the effect of cost and system 

parameters variation. Section 7 discusses about some managerial implications for the 

obtained results. Section 8 concludes the paper.  

 

2. Industrial context 

The model presented in this paper is suitable for many industries characterized by 

deterioration in which machines are unreliable and their production rates can be 

controlled. Examples of such systems include machining tools (i.e. machining centers, 

grinders, milling, etc) typically comprised by a large number of components which 

stochastically deteriorate over time, as remarked in Dehayem et al. [20]. The 

phenomenon of deterioration is common in the automobile, aircraft, machine tools and 

paper manufacturing plants (Kouedeu et al. [21]). The typical approach with deterioration 

in many industrial and academic studies has been to focus on its effect on the system’s 

reliability, as in Rosenblatt and Lee [22], Sana [23] and Colledani and Tolio [24]. 

In a realistic context, deterioration also limits the production capacity of a manufacturing 

system; hence many firms must react quickly to changes in the demand by carrying some 

inventory or increase its capacity by subcontracting. Thus, this paper has many 

applications in several sectors, such as the textile, retail channel, pharmaceutic, 

semiconductor, etc. Normally, in situations where the production system has a limited 

capacity, subcontracting is used to achieve capacity flexibility to gain and maintain a 

competitive advantage. More specifically, our paper is partly in line with the work of 

Dror et al. [18], in the sense to study a real production system with limited production 

capacity which uses subcontracting to avoid backlog, reduce inventory and improve lead 

time. However, Dror et al. [18] disregarded the effect of deterioration; unfortunately their 

https://www.researchgate.net/publication/259134790_Joint_production_and_major_maintenance_planning_policy_of_a_manufacturing_system_with_deteriorating_quality_Int_J_Prod_Econ?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/232896942_Production_rate_control_of_an_unreliable_manufacturing_cell_with_adjustable_capacity_Int_J_Prod_Res?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/259996775_Stochastic_optimal_control_of_manufacturing_systems_under_production-dependent_failure_rates?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/245314998_Economic_Production_Cycles_with_Imperfect_Production_Process?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/46491848_An_economic_production_lot_size_model_in_an_imperfect_production_system?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==
https://www.researchgate.net/publication/245331600_Integrated_analysis_of_quality_and_production_logistics_performance_in_manufacturing_lines_Int_J_Prod_Res?el=1_x_8&enrichId=rgreq-b13cc2ca-59a6-4931-809a-b3871f259b9e&enrichSource=Y292ZXJQYWdlOzI4Mzc5NjU3NztBUzoyOTU4MjY2OTA3MjM4NDVAMTQ0NzU0MTk4NzgwMQ==


 
 

5 
 

system is subject to a deterioration process with severe effects of the performance of the 

machine. This deterioration could also affect products’ quality. In the next section, we 

formulate a novel stochastic optimal control model and apply appropriate techniques for 

its solution. 

 

3. Notation and problem description 

In this section, we present the notation and the problem statement of the control problem 

under study. 

3.1 Notation 

The following notations are required for the proper formulation of the proposed model: 

𝑥(𝑡)  Inventory level at time t 

𝑎(𝑡)  Age of the machine at time t 

𝑑   Constant demand rate of products 

(𝑡)  Stochastic process 

𝑄(. )  Transition rate matrix of the stochastic process 

𝑢1(·)  Production rate of the manufacturing system 

𝑢2(·)  Subcontracting rate 

u1
max   Maximum production rate of the machine 

u2
max   Maximum production rate for subcontracting 

𝛽(·)  Rate of defectives 

𝜌  Discount rate 

𝜋𝑖  Limiting probability at mode i 

𝑞𝛼𝛼’(·)  Transition rate from mode α to mode α’ 

𝛾𝜉(𝑡)(∙)  Cost rate function associated with the process (𝑡)  
𝐽(·)  Expected discounted cost function 

𝑣(·)  Value function 

𝜔𝑜(·)  Control variable for the overhaul activity 

𝜔𝑚𝑖𝑛  Minimum overhaul rate 

𝜔𝑚𝑎𝑥  Maximum overhaul rate 

𝜏  Jump time of (t) 

𝑐+  
Inventory holding cost / units / time unit 

𝑐−  
Backlog cost / units / time unit 

𝑐𝑟  Repair cost 

𝑐𝑜  Overhaul cost 

𝑐𝑑   Cost of defectives 
𝐶𝑀1 Cost of production of the manufacturing system per unit of 

produced parts 

𝐶𝑀2  Cost of production of subcontracting per unit of produced parts  

𝜃   Adjustment parameter for the rate of defectives 
 

 

 
 

 

 



 
 

6 
 

 

 

3.2 Problem description 

Without loss of generality, we consider the case a manufacturing system producing one 

part type to gain more insight about the effect of deterioration in the system.  

Additionally, the manufacturing system (M1) presented in block diagram of Figure 1, is 

unreliable because it is subject to random failures. Initially, the manufacturing system can 

satisfy the demand, but because of the severe effects of its progressive deterioration, the 

machine eventually begins to wear, decreasing the quality of the parts produced and 

increasing the rate of defectives. Since product demand is satisfied only with flawless 

parts, when the manufacturing system reaches a certain level of deterioration, it is no 

longer capable of fulfilling product demand by its own. In this context of progressive 

deterioration, subcontracting (M2) is an available option to satisfy the part of the demand 

that the manufacturing system is not capable of fulfilling, as illustrated in Figure 1. 

However, the use of subcontracting is limited because it involves a higher cost than the 

manufacturing system (M1). Additionally, major maintenance activities, also known as 

overhaul, can be conducted on the manufacturing system to reduce the effects of 

deterioration and restore the rate of defectives to initial conditions. To complement the 

description of the system, we seek in our integrated model to determine the optimal 

control policy that includes the optimal production plan for the manufacturing system, the 

optimal policy for the subcontracting option, as well as the optimal overhaul strategy 

minimizing the total incurred cost. In this context, the total cost is composed of several 

categories such as the inventory, backlog, repair, overhaul, defectives, production and 

subcontracting costs. 

 

 
Figure 1:  Block diagram of the proposed production system 

 

 

4. Model formulation  

We begin this section by formulating a stochastic model based on the series of features 

discussed in the previous section. The dynamics of the manufacturing system is described 
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by a three-mode stochastic process  (𝑡) ∈ Ω = {1,2,3} . When (𝑡) = 1,  the 

manufacturing system is operational, producing a mix of flawless and defectives 

products. When (𝑡) = 2, the manufacturing system is in failure mode, where a minimal 

repair is conducted, leaving the manufacturing system in as bad-as-old (ABAO) 

conditions before failure. Lastly, when  (𝑡) = 3 , the manufacturing system is in the 

overhaul mode, where a perfect maintenance is carried out, restoring the machine to as-

good-as-new (AGAN) conditions, and palliating completely the effects of deterioration.  

The manufacturing system evolves according to a continuous-time discrete-state Semi-

Markov process, given that it remains in ABAO conditions after repair activities and 

returns to AGAN conditions after overall activities. An ABAO corrective maintenance 

leads to a memory process depending on the repair activities while the perfect 

maintenance (AGAN), provide a memoryless property to dynamics of the system. We 

then describe the dynamics of the overall system by a semi-markovian process which is a 

sequential combination of ABAO and AGAN actions. The manufacturing system may 

stay in any of the three modes over an infinite horizon. The Semi-Markov process implies 

a generator matrix 𝑄 such that 𝑄 = {𝑞𝛼𝛼,}, where 𝑞𝛼𝛼,  indicates the transition rate from 

mode 𝛼 to 𝛼 ,, and 𝑞𝛼𝛼, ≥ 0, 𝑞𝛼𝛼, = −∑ 𝑞𝛼𝛼,𝛼,≠𝛼   and 𝛼, 𝛼 , ∈ Ω.  

A number of researchers assert that the quality of the parts produced is affected by the 

deterioration of the manufacturing systems, as suggested by Kim and Gershwin [4] and 

addressed by Colledani an Tolio [24], thus defining the relationship between deterioration 

and quality.  Furthermore, in the deteriorating systems domain, the age of the machine is 

commonly employed to define the level of deterioration of the system, as in Love et al. 

[25], thus implying an age-deterioration relationship. Hence, based on the relationships 

between deterioration-quality and age-deterioration, the rate of defectives can directly be 

related with the age of the machine. These observations lead us to define an age-quality 

relationship, which in this paper, is modeled with the following increasing function: 

 

β(𝑎) = 𝑏1 + 𝑏2(1 − 𝑒
−𝑘2∙𝜃∙[𝑎(𝑡)

3])                                        (1) 

 

where 𝜃  is an adjustment parameter for the speed of deterioration of the rate of 

defectives, as exemplified in Figure 2 (𝜃 varies in the interval  0 ≤ 𝜃 ≤ 1), 𝑏1  is the 

initial value of the rate of defectives, 𝑏2 represents the upper limit and 𝑘2  indicates a 

given constant. Note that when 𝜃 → 1 , the manufacturing system deteriorates faster, 

producing more defectives, and when 𝜃 → 0, the machine slows down its deterioration 

rate, producing defectives at a lower pace. Maintenance service and quality data are the 

source for determining the value of the parameters 𝑏1, 𝑏2, 𝑘2, 𝜃 for a particular system. 

Equation (1) is an increasing function used in this paper to model the impact of the 

deterioration on the dynamics of the machine. For manufacturing systems such as 

machine tools (i.e. milling machine, lathe, etc.), we can design appropriate maintenance 

policies, with expression similar to Equation (1), as noted in Kenne and Gharbi [26], 

Njike et al. [27] and BenSalem et al [28]. 
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Figure 2: Variation of the rate of defectives for different values of the parameter 𝜽 

 

It should be stated that the manufacturing system studied is subject to deterioration, and 

its effect is mainly reflected on the quality of the parts produced, increasing the rate of 

defectives 𝛽. Therefore, we consider that the dynamic behavior of the stock level evolves 

according to the following differential equations: 

𝑥̇(𝑡) = 𝑢1(𝑡, 𝛼) ∙ [1 − β(a)] + 𝑢2(𝑡) − 𝑑,                𝑥(0) = 𝑥0,                    (2) 

In this expression, 𝑥0  refers to the initial inventory level, 𝑎  is the age of the 

manufacturing system, and 𝛽(𝑎) represents the rate of defectives as a function of the age. 

In Equation (2), we notice that only the manufacturing system produces defectives, while 

the subcontracting option, 𝑢2(𝑡),  is free of this disruption since it is assumed that 

subcontractors provide flawless parts to complete product demand. To complement the 

formulation, we define the age of the manufacturing system at time t as a function of its 

production rate since the last restart, with the following differential equation: 

𝑎̇(𝑡) = 𝑘1[𝑢1(𝑡)],                   a(T)=0                           (3) 

where 𝑘1  denotes a positive constant, and T is the last restart time of the machine 

following overhaul activities. Further, 𝑢1(·) is the production rate of the machine and 

u1
max is the maximum production of the machine, with:0 ≤ 𝑢1(·) ≤ u1

max.                                                       

We assume in the model, that initially the machine has sufficient capacity to satisfy 

customer’s demand but cannot satisfy the demand by its own when the machine is highly 

deteriorated. Therefore, subcontracting can be used as a short-term option to increase 

capacity and satisfy the part of the demand that is not satisfied by the manufacturing 

system. Thus, at time 𝑡, the machine request subcontracting to supply material at rate 

𝑢2(·) ∈ [0, u2
max], as follows: 
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𝑢2(·) = {

  u2
max

𝑑
𝑑 − 𝑢1(·) ∙ [1 − 𝛽(𝑎)] 

0

                                   (4) 

where u2
max ≥ u1

max > 𝑑, the above equation means that the subcontracting rate may be 

any of the following four options: operational at the maximum subcontracting rate, 

producing at the demand rate, producing the difference of demand that the manufacturing 

system is not able to satisfy, and not producing. At time 𝑡, the machine has an initial 

capacity, u1
max, let 𝜋1 denote the steady state availability of the manufacturing system, 

defined by 𝜋1 = 1/(1 + q12/q21). Further, given the effect of deterioration on the machine, 

we rely more and more on subcontracting to fulfill the product demand. Thus, the whole 

capacity constraint of the system, taking into account deterioration and subcontracting, is: 

u1
max(·) ∙ [1 − β(𝑎)] ∙ 𝝅1 + u2

max(·) ≥ 𝑑                                     (5) 

Note that if the condition u1
max(·) ∙ [1 −β(𝑎)] ∙ 𝝅1 ≥ 𝑑,  always holds, the problem is 

trivial, the machine does not use subcontracting and inventory and backlog are negligible. 

Consequently, subcontracting is used to receive additional capacity when the machine is 

no longer capable to fulfill product demand by its own.  

The decision variables of the control model are the production rates (𝑢1, 𝑢2)  for the 

manufacturing system and subcontracting respectively, the third decision variable is the 

overhaul rate 𝜔𝑜(∙) = q13. As mentioned previously, major overhaul involves the 

realization of a perfect maintenance, which mitigates completely the effects of 

deterioration, and restoring the machine to as-good-as-new conditions. In our 

formulation, 𝜔𝑜  defines a decision variable that properly controls the transition to 

overhaul mode, with the constraint 𝜔𝑚𝑖𝑛 ≤ 𝜔𝑜(·) ≤ 𝜔𝑚𝑎𝑥. The reciprocal of 𝜔𝑚𝑖𝑛  and 

𝜔𝑚𝑎𝑥  denotes the minimum and maximum delays before the machine is sent for 

overhaul. 

Furthermore, it follows that for each 𝛼 ∈ 𝛺, with (𝑡) = 𝛼, the set of the feasible control 

policies 𝛤(𝛼), including the decision variables (𝑢1, 𝑢2, 𝜔𝑜), is given by: 

𝛤(𝛼) =                                                                                                                                            (6)                                    

{(𝑢1(a,·), 𝑢2(a,·), 𝜔𝑜(a,·)) ∈  𝑅
3,

0 ≤ 𝑢1(a,·) ≤ u1
max,        0 ≤ 𝑢2(a,·) ≤ u2

max, 𝜔𝑚𝑖𝑛 ≤ 𝜔𝑜(a,·) ≤ 𝜔𝑚𝑎𝑥} 

One important remark is that the production cost of the manufacturing system is assumed 

to be proportional to its production rate (𝐶𝑀1 ∙ 𝑢1), while the cost of the subcontracting 

option 𝐶𝑀2, is assumed to be much higher 0 < 𝐶𝑀1 ≪ 𝐶𝑀2. At any instant of time 𝑡, the 

state of the system is characterized by the state variables ((𝑡), 𝑥(𝑡), a(𝑡)), entailing an 

hybrid condition, with discrete (𝑡) and continuous (𝑥(𝑡), a(𝑡)) components. With such 

problem, it is usually convenient to define the running cost of the model 𝜑𝛼(∙) in state 

𝛼 ∈ 𝛺,  as follows:  

𝜑𝛼(𝛼, 𝑥, 𝑎, 𝑢1, 𝑢2, 𝜔𝑜) =                                                                                                 (7) 
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𝑐+𝑥+ + 𝑐−𝑥− + 𝐶𝑀1 ∙ 𝑢1(𝑡) + 𝐶𝑀2 ∙ 𝑢2(𝑡)+ 𝑐𝑑 ∙ β(𝑎) ∙ 𝑢1(𝑡) + 𝑐
𝛼 ,    ∀ 𝛼 ∈ 𝛺 

with:  

𝑥+ = 𝑚𝑎𝑥(0, 𝑥) 

𝑥− = 𝑚𝑎𝑥(−𝑥, 0) 

𝑐𝛼 = 𝐶𝑟 ∙ 𝐼𝑛𝑑{𝜃(𝑡) = 2} + 𝐶𝑜 ∙ 𝐼𝑛𝑑{𝜃(𝑡) = 3} 

𝐼𝑛𝑑{𝜃(𝑡) = 𝛼} = {
1     𝑖𝑓 𝜃(𝑡) =  𝛼  
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

where 𝑐+ and 𝑐− are the inventory and backlog cost, respectively; 𝐶𝑀1 is the production 

cost of the manufacturing system; 𝐶𝑀2 refers to the cost of subcontracting, and 𝑐𝑑 denotes 

the cost due to the additional inspection and disposal of defective parts. In addition, 𝐶𝑟 

defines the repair cost, and 𝐶𝑜  denotes the overhaul cost. The value function of the 

planning problem is given by: 

𝑣(𝛼, 𝑥, 𝑎) =                                                                                                                                        

  𝑖𝑛𝑓
(𝑢1,𝑢2,𝜔𝑜)∈𝛤(𝛼)

 𝐸 [∫ 𝑒−𝜌𝑡𝜑𝛼(∙)𝑑𝑡 |    

∞

0

𝜉(0) = 𝛼, 𝑥(0) = 𝑥0 , 𝑎(0) = 𝑎0 ] ,   ∀𝛼 ∈ 𝛺 , 𝑥 ∈  𝑅, 𝑎 ∈ 𝑁         (8) 

where 𝜌  is the discount rate and 𝐸[∙ |𝛼, 𝑥0 , 𝑎0 ] symbolize the conditional expectation 

operator. The production, subcontracting and overhaul planning problem is the 

determination of the optimal policy (u1
∗ ,u2

∗ ,ωo
∗ ) corresponding to the value function given 

by (8). In Appendix A, the value function is shown to be continuously differentiable and 

viscosity solution to the following Hamilton-Jacobi-Bellman (HJB) equations: 

𝑣(𝛼, 𝑥, 𝑎) = 

𝑖𝑛𝑓
(𝑢1,𝑢2,𝜔𝑜) ∈  𝛤(𝛼)

{𝑔[𝛼, 𝑥, 𝑎, 𝑢1, 𝑢2, 𝜔𝑜] +
𝜕𝑣

𝜕𝑥
[𝛼, 𝑥, 𝑎]𝑥̇ +

𝜕𝑣

𝜕𝑎
[𝛼, 𝑥, 𝑎]𝑎̇    

+ 𝑄(∙)𝑉[𝛼, 𝑥, 𝜑(𝜉, 𝑎)](𝛼)}                                                                                            (9) 

With  

 

𝜑(𝜉, 𝑎) = {
0    𝑖𝑓 𝜉(𝜏+) = 1 𝑎𝑛𝑑 𝜉(𝜏−) = 3

𝑎(𝜏−)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
                                             (10) 

 

Where 𝜑(𝜉, 𝑎) defines a reset function that describes the benefit of the overhaul in the 

system. Hence, when the value function is available, an optimal control policy can be 

obtained, as in equation (9). However, an analytical solution of equations (9) is almost 

impossible to obtain. They have been solved only by Akella and Kumar [1] and Bielecki 

and Kumar [29], for the simplest single machine and single part-type manufacturing 

system under specific assumptions which are not appropriate for the complex system 

considered in this paper. Given the importance of the considered planning problem for 

the manufacturing industries (as stated in Section 2), we adopted numerical methods to 
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obtain the structure of the control policies. Since it is requested both for the operation of 

systems in real time and by researchers, in order to attempt the objectives of the 

production firms and to contribute in the control literature. Nevertheless, analytical 

solutions of the HJB equations (9) is a challenge considered unsurmountable in the 

literature, as noted by Olsder and Suri [30] and Wang and Gershwin [31]. Fortunately, 

the HJB equations have motivated a number of methods to approximate a solution. More 

specifically, Boukas and Haurie [32] showed that implementing the Kushner’s method 

can solve such a problem in the context of production planning. Following the works of 

Boukas and Haurie [32], Dehayem et al. [20] and references therein, the numerical 

methods used to solve the proposed optimality conditions are presented in Appendix B.  

 

5. Optimal control policy 

As mentioned previously the purpose of this study is to analyze simultaneously the 

production, subcontracting and overhaul strategies for a manufacturing system subject to 

deterioration by utilizing a stochastic optimal control formulation. To this end, we 

conduct a numerical example to solve the discrete version of the HJB equations (9).  A 

finite grid 𝐺𝑥a is needed to define the computational domain for the state variables (𝑥, 𝑎): 

 

𝐺𝑥a = {(x, a) : − 5 ≤ x ≤ 10,       0 ≤ a ≤ 100}                                                                   (11) 

 

We shall display the control policy of the simultaneous production, overhaul and           

subcontracting through numerical results. Table 1 shows the set of parameters needed in 

the numerical example. 

 
 

Parameter: c+  
($/products/time units) 

c-  
($/products/time units) 

cr    

($/repair) 
co  

($/overhaul) 
CM1   

($/product) 
Value: 1 250 4 8 4 

Parameter: CM2  

($/product) 
cd 

($/product) 
ℎx ℎa θ 

Value: 40 10 0.5 0.5 0.4 

Parameter: q 12   (1/time units) q 21   (1/time units) 𝜔𝑚𝑖𝑛  

(1/time units) 
𝜔𝑚𝑎𝑥  

(1/time units) 
u1
max 

(product/time 

units) 
Value: 0.4 5 10

-6 
20 9 

Parameter: q 31   (1/time units)                𝑑 

(products/time units) 
u2
max 

(product/time units) 

𝜌 

 

Value: 4 4           20 0.9  

Table 1. Parameters for the numerical example 

Additionally, we define 𝑘1= 0.1 for Equation (3) and 𝑘2 = 15𝑥10
−6.2  , 𝑏1 = 0.01  and 

𝑏2 = 0.99   for Equation (1). The reciprocal 1/𝜔𝑚𝑎𝑥  denotes the delay for sending the 

machine to overhaul activities; in this case, for 𝜔𝑚𝑎𝑥, this delay is insignificant, while for 

the case of 𝜔𝑚𝑖𝑛  the delay (1/𝜔min ) will take such a long time (10
6 

times units), that it can 

be assumed that the overhaul will not be conducted. With these values, the capacity 
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constraint (5) is satisfied. In the remainder of this section, we detail the production, 

subcontracting and overhaul policies, and also we discuss how they are implemented 

simultaneously in a joint control policy. 

5.1 Production policy 

We proceed by first examining the obtained production policy 𝑢1
∗(𝛼, 𝑥, 𝑎),  which 

indicates the production rate applied in operational mode 𝛼 = 1, for any stock level 𝑥 and 

age 𝑎 of the manufacturing system, as illustrated in Figure 3. Such policy divides the plan 

(𝑥, 𝑎)  into three regions, where the production rate is set to three possible options; 

u1
max, 𝑑/[1 − 𝛽(𝑎)], and 0, respectively. In Region I the stock level surpasses the production 

threshold, and then the machine is not operational. In Region II, the stock level is equal to 

the production threshold, where the machine first operates at rate 𝑑/[1 − 𝛽(𝑎)] from age 

𝑎=0 to 𝑎=60, and then after 𝑎=60, it works at the maximum rate due to its high level of 

deterioration. When the stock level is below the production threshold, the machine 

always produces at the maximum rate, as denoted in Region III. Moreover, in Figure 3, 

we can observe that the trend in the production threshold decreases as the age of the 

manufacturing system increases, until a point where the machine no longer operates. This 

reduction clearly reflects the effect of the quality deterioration on the production policy. 

We analyze the trace of the production policy from three different perspectives to 

facilitate its characterization, as presented in Figure 4. For the plan (𝑢1, 𝑎), if we set the 

value of the stock level to 𝑥 = −5, the dotted line in Figure 4a represents the production 

rate as observed in Figure 3. However, at considering the quality deterioration and 

Equation (5), such a boundary actually decreases progressively by a factor [1 − β(𝑎)] ∙
𝝅1 , until it reaches the point 𝐵 , where the manufacturing system stops functioning, 

because it is no longer profitable to operate the machine due to the high level of 

defectives that it produces. 
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Figure 3: Production rate for the manufacturing system   

The solid line in Figure 4a denotes the production rate for the manufacturing system, 

considering the progressive reduction caused by deterioration. We complement the 

results with Figure 4b, where we use the plan (𝑢1, 𝑎) when the stock level is equal to the 

production threshold 𝑥 = 𝑍1(𝑎) . In this instance, we can clearly observe how the 

production rate 𝑢1
∗ increases by an amount of  1/[1 − 𝛽(𝑎)] until it reaches  𝑢1

𝑚𝑎𝑥 at point 

A, and is finally set to 𝑢1
∗ = 0  at point B. Moreover, we use Figure 4c to display the trace 

of the production policy in the plan (𝑥, 𝑎), which helps us identify two zones: 

 Zone 𝐴𝑢1 : the manufacturing system operates at maximum rate to reach the 

production threshold 𝑍1
∗(∙). 

 

 Zone 𝐵𝑢1 : the optimal production policy recommends that the manufacturing 

system should not be operated. 

  

Region I 

 

  

Region II 

 

  

Region III 
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             a) Plan (𝒖𝟏, 𝒂) and 𝒙 < 𝒁𝟏(𝒂)                            b) Plan (𝒖𝟏, 𝒂) and  𝒙 = 𝒁𝟏(𝒂) 

 

 
c) Plan (𝒙, 𝒂)                                                    

Figure 4: Production trace 

 

In a practical sense, the progressive reduction observed in the production threshold in 

Figure 4c can be explained because as the rate of defectives increases with the age, this 

also increases the total cost, thus making it more expensive to operate the manufacturing 

system. Therefore, after point 𝐵, it is no longer profitable to continue its operation. Based 

on these results, it can be stated that the production policy follows an age-dependent 

hedging point policy, which is determined in three intervals: 𝑎 ≤ 𝐴,  𝐴 < 𝑎 < 𝐵  and 

𝑎 ≥ 𝐵; point A indicates the age when 𝑢1
𝑚𝑎𝑥 =  𝑑/[1 − 𝛽(𝑎)], at which subcontracting is 

required. The production policy is thus defined as below: 

 For the case where 𝑎 ≤ 𝐴, we have 𝑢1
𝑚𝑎𝑥 ≥  𝑑/[1 − 𝛽(𝑎)], hence the production 

policy is: 

𝑢1
∗(1, 𝑥, 𝑎) = {

𝑢1
𝑚𝑎𝑥

𝑑/[1 − 𝛽(𝑎)] 
0

𝑖𝑓    𝑥 < 𝑍1(𝑎)  

𝑖𝑓   𝑥 =  𝑍1(𝑎)  

 𝑖𝑓  𝑥 >  𝑍1(𝑎)  

                                         (12) 

𝑍1
∗(∙) 

 𝐵 
 𝐵 

 𝐴  𝐴 

 𝐵 
 𝐴 

𝑢1
∗(∙) 

 𝑢1
𝑚𝑎𝑥[1 − 𝛽(𝑎)]

≥  𝑑  

 

𝑢1
∗(∙) = 𝑑/[1 − 𝛽(𝑎)]  

 

𝑢1
∗(∙) = 𝑢1

𝑚𝑎𝑥 

  

 

 𝑢1
𝑚𝑎𝑥[1 − 𝛽(𝑎)] <  𝑑 

  

Zone 𝐵𝑢1 

 

  

Zone 𝐴𝑢1 
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 For the case where 𝐴 < 𝑎 ≤ 𝐵, the machine is no longer capable of satisfying the 

product demand on its own because  𝑢1
𝑚𝑎𝑥 <  𝑑/[1 − 𝛽(𝑎)]; the production policy 

is therefore: 

𝑢1
∗(1, 𝑥, 𝑎) = {

𝑢1
𝑚𝑎𝑥

0
𝑖𝑓    𝑥 ≤ 𝑍1(𝑎)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                   (13) 

 For the case where 𝑎 > 𝐵 , it is not profitable to continue operating the 

manufacturing system, which must then be stopped: 

𝑢1
∗(1, 𝑥, 𝑎) = {0 in any case                                                       (14) 

In the production policy 𝑍1(𝑎) represents the trace function that delimits the zone for the 

optimal production threshold at the operational mode as presented in Figure 4c. From the 

results obtained, it is clear that the production policy denotes multiple threshold levels 

influenced by the deterioration of the quality of the parts produced. 

 
5.2 Subcontracting policy 

The next step in our analysis covers the subcontracting policy. From the numerical 

results, we observe that this policy is controlled, as presented in Figure 5. This policy 

divides the plan (𝑥, 𝑎) in three regions. The first one is defined when the age of the 

manufacturing system is below a certain limit, and where subcontracting is not required 

(i.e., before age 60 in Figure 5, Region I). Then in Region II, the machine has 

deteriorated, and the subcontractor works first on the difference of demand that the 

machine is not capable of satisfying (𝑑 −  𝑢1
𝑚𝑎𝑥 ∙ [1 − 𝛽(𝑎)]), and then it works at the 

demand rate. In Region III, the subcontractor works at its maximum rate 𝑢2
𝑚𝑎𝑥. 

  
Figure 5: Subcontracting policy  

  

Region I 

 Region II 

Region III 
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To better illustrate the subcontracting policy, we need to consider it simultaneously with 

the production policy of the manufacturing system. We present the related traces for the 

plan (𝑢2, 𝑎)  in Figure 6a and Figure 6b, and for the plan (𝑥, 𝑎)  in Figure 6c. If we 

observe the plan (𝑢1, 𝑎), and if the stock level is 𝑥 < 0, the subcontractor operates at the 

maximum rate  𝑢2
𝑚𝑎𝑥 from point A to 𝑎 = 100 (age limit of the numerical example), as 

presented in Figure 6a.  When the stock level is  𝑥 = 0, we observe in Figure 6b that from 

age 𝑎 = 60  to 𝑎 = 70,  the subcontractor first produces the difference 𝑑 −  𝑢1
𝑚𝑎𝑥 ∙

[1 − 𝛽(𝑎)]  that the machine is not capable of satisfying due to its high level of 

deterioration, then when          𝑎 > 70 the subcontractor produces at the demand rate. We 

complement the results with Figure 6c to display the trace of the production and 

subcontracting policies in the plan (𝑥, 𝑎), which helps us identify two zones: 

 Zone 𝐴𝑢2 : The rate of defectives 𝛽  is low and the manufacturing system has 

enough capacity to satisfy the demand, hence subcontracting is not needed. 

 Zone 𝐵𝑢2 : The manufacturing system is no longer capable of satisfying the 

products demand on its own, the age of the manufacturing system has reached 

point 𝐴, and so subcontracting is needed to fulfill the demand. 

 

 
a) In plan (𝒖𝟏, 𝒂) and  𝒙 < 𝟎                                           b) In plan (𝒖𝟏, 𝒂) and 𝒙 = 𝟎 

 

 
c) In plan (𝒙, 𝒂)                                                    

Figure 6: Production and sub-contracting trace 

 𝐴 

 𝐵 

 𝐴 

 𝐵 

𝑍1
∗(∙) 

 𝐴 
  

Zone 𝐴𝑢2 

 

  

Zone 𝐵𝑢2 

 

𝑢2
∗(∙) = 𝑑 −  𝑢1

𝑚𝑎𝑥 ∙ [1 − 𝛽(𝑎)]  

 𝑢2
∗(∙) = 𝑑 

𝑢2
∗(∙) = 𝑢2

𝑚𝑎𝑥 
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The underlying pattern of the subcontracting policy stems from the fact that the cost of 

subcontracting 𝐶𝑀2 is higher than the production cost of the manufacturing system 𝐶𝑀1. 
Subcontracting is only triggered when the manufacturing system is not capable of 

satisfying the demand, and when the stock level is lower than zero, since subcontracting 

is free of disruptions (such as defectives and failures). Thus, subcontracting is conducted 

at a rate 𝑢2
∗  as indicated in the following two intervals: 

 

 For the case where 𝑎 ≤ 𝐴, we may recall that 𝑢1
𝑚𝑎𝑥 ≥  𝑑/[1 − 𝛽(𝑎)], and hence the 

subcontracting policy is: 

𝑢2
∗(1, 𝑥, 𝑎) = {0 in any case                                                     (15) 

 

 For the case where 𝐴 < 𝑎,  we have   𝑢1
𝑚𝑎𝑥 <  𝑑/[1 − 𝛽(𝑎)], and subcontracting is 

required, as follows: 

𝑢2
∗(1, 𝑥, 𝑎) = {

𝑢2
𝑚𝑎𝑥

𝑑 −  𝑢1
𝑚𝑎𝑥 ∙ [1 − 𝛽(𝑎)]

𝑑
0

𝑖𝑓    𝑥 < 0  

𝑖𝑓   𝑥 =  0  𝑎𝑛𝑑 𝑍1
∗(∙) = 0

𝑖𝑓   𝑥 =  0  𝑎𝑛𝑑 𝑍1
∗(∙) < 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (16) 

 

From the subcontracting policy obtained, we can clearly observe the dependence of the 

level of deterioration of the manufacturing system on the decision to trigger 

subcontracting activities; we note that with more deterioration come more defectives, and 

the age of the machine represents a control parameter for this policy. 

 

 

5.3 Overhaul policy 

We concentrate now on the characterization of the optimal overhaul. From the results of 

the numerical example, we obtain Figure 7, which illustrates when to conduct overhaul 

activities; we observe that an overhaul is only conducted when the level of deterioration 

of the manufacturing system (in other words, its age) has reached a certain limit 𝑆𝐴. 

Since the cost of a major overhaul is high, the manufacturing system must have 

deteriorated enough to justify its realization. The pattern of the overhaul policy divides 

the plane (x, 𝑎) into two regions, described as follows: 
 

 Zone 𝐴𝑜 : The recommendation is to perform overhaul activities, because the 

amount of defectives justifies the cost for this type of maintenance. 

 Zone 𝐵𝑜: In this zone of the plane, an overhaul is not recommended, and it is 

more profitable to continue operating the manufacturing system. 

 

Considering the production threshold, we can additionally determine: 

 

 Zone 𝐴𝑜
′ : Defined with the intersection of the production and overhaul policies, 

because the stock level is always restricted by the production threshold 𝑍1
∗(∙), and 

only a section of the overhaul zone 𝐴𝑜 is active. 



 
 

18 
 

 

Additionally, when the manufacturing system has stopped its operation (after point B), it 

is sent automatically to overhaul maintenance to restore the machine to initial conditions. 

 
Figure 7: Overhaul policy 

The logic behind the results obtained indicates that overhaul activities are conducted at a 

rate 𝜔𝑜
∗(∙) given by the following equation: 

 

𝜔𝑜
∗(1, 𝑥, a) = 

{
  𝜔𝑚𝑎𝑥              𝑖𝑓 { [𝑎(𝑡) > 𝑆𝐴  𝑎𝑛𝑑  𝑥(𝑡) ≥ 𝑠(𝑡)  ]   𝑜𝑟  [a(𝑡) ≥ 𝐵 ]}  
 𝜔𝑚𝑖𝑛             𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒                                                                             

            (17) 

 

where s(∙) is the boundary of the feasible zone 𝐴𝑜
′ . Equation (17) leads to the observation 

that the realization of overhaul activities involves two conditions; first, the manufacturing 

system is send for an overhaul when the machine has deteriorated enough (in this case, 

the age of the machine has reached a certain level defined by 𝑆𝐴) to justify the high cost 

of an overhaul. Moreover, a certain amount of stock (defined by 𝑠(𝑡)) is needed to 

compensate for the lack of product while the machine is sent for overhaul. The second 

condition refers to the case where the manufacturing system has deteriorated so much (its 

age has surpassed point B) that it produces a lot of defectives, and so the machine is sent 

immediately for overhaul, while subcontracting satisfies the entire product demand.  

 

5.4 Joint control policy 

In this section, we clarify how the obtained control policy operates simultaneously in our 

system. Recall that Equations (12)-(17) characterize the production, subcontracting and 

overhaul strategies. However, since such policies are inter-related, we display them 

simultaneously in Figure 8 to facilitate the analysis. At considering the policies jointly, 

the control parameters involved are 𝑍1
∗(∙) and point B for the production rate of the 

manufacturing system, points (𝐴, 𝐵) for subcontracting, and points SA and 𝑠(𝑡) for the 

overhaul policy, as presented in Figure 8. 

Zone 𝐴𝑜 

  

Zone 𝐵𝑜  
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Figure 8: Joint control policy 

 

The main observation in Figure 8, is that the overhaul trace is limited by the production 

boundary, because the stock level is always restricted by the production threshold 𝑍1
∗(∙). 

Thus, only a section of the overhaul zone 𝐴𝑜  is active, because the production, 

subcontracting and overhaul strategies are inter-related, this defines the feasible overhaul 

Zone 𝐴𝑜
′ . Physically, such joint control policy implies that the manufacturing system (M1) 

begins by producing all the product demand, then the machine gradually deteriorates, 

reducing its production capacity. When the age of the machine reaches point A, the 

production capacity of the machine is so reduced that subcontracting (M2) is needed to 

aid to satisfy the product demand. Since the machine continues deteriorating, the cost of           

in-house production is so elevated in point B, that the machine (M1) stops its operation. 

Then overhaul is conducted to restore the age to zero, mitigating all the effects of 

deterioration. This sequence of events implies a cycle for the deterioration process, which 

reinitiates with the conduction of the overhaul. Moreover, overhaul can be conducted 

from age SA if the stock level 𝑥 > 𝑠(∙).  

 

 

6. Sensitivity and results analysis 

In this section a set of numerical examples are examined with respect to different 

variations of the inventory, backlog, overhaul, defectives, production and subcontracting 

costs. The objective of this sensitivity analysis is to compare the effect of the variation of 

different cost categories and two system parameters, namely the adjustment parameter 𝜃, 
which allows the adjustment of the trend of the ageing process, and the transition failure 

rate 𝑞12. The sensitivity analysis presents the benefits sought from the joint policy and 

allows us to confirm and validate its structure.  

 

6.1 Effect of the cost variation 

In this part of the sensitivity analysis, we aim to demonstrate the robustness of the 

obtained joint control policy, when we vary a number of cost parameters such as: 𝑐+, 𝑐−, 

 𝐵   
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𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑍𝑜𝑛𝑒 𝐴𝑜
′  
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co, CM1  , CM2 and cd. We develop several cost parameters configurations, derived from a 

basic case by changing them to a high or low level. The results of the sensitivity analysis 

are presented in the following subsections. 

 

6.1.1 Variation of the backlog and inventory cost  

Following our analysis we note that the influence of the backlog cost 𝑐−  on the 

production policy is significant, as can be seen in Figure 9, where we present the 

production traces for the instances 𝑐− = 250, 350 and 450. In observing the results, we 

realize that if the backlog cost is moderate, 𝑐− = 250 , the production trace is less 

extended on the plane (𝑥, 𝑎). If we increase the backlog cost to 𝑐− = 350, the stock level 

increases because the product backlog is more highly penalized, and mainly because the 

system utilizes more stock for protection against product shortages. The observed trend 

maintains if we increase the backlog cost to 𝑐− = 450, where the production threshold 

increases even more. Further, with higher backlog costs, we prefer to operate the machine 

over a longer time period to help to avoid expensive backlogs, It is for this reason that 

point B moves to the right when the backlog cost increases. The backlog cost has an 

effect on the subcontracting policy, since point B, where the machine stops operating, 

moves to the right as the backlog cost increases, because in the case of backlogs both the 

machine and subcontracting must work simultaneously to increase the stock level. The 

effect of deterioration is clear on the results, since the production threshold decreases as 

the age of the manufacturing system increases. 

 
Figure 9: Influence of the backlog cost on the production and subcontracting policy 
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To complement the analysis, in Figure 10, we present the overhaul trace for two different 

instances, 𝑐− = 250 and 450. At the lower value 𝑐− = 250 , it is apparent that the 

feasible overhaul zone 𝐴𝑜
′  is the smallest of the analysis, conducting overhaul activities at 

age 𝑆𝐴 =50, and when we increase the cost to 𝑐− = 450, the zone increases further on 

the grid, reducing the required age to around 𝑆𝐴=40. The observed pattern is derived 

from the fact that since the production threshold increases when the backlog cost 

increases, such an increase extends the feasible overhaul zone 𝐴𝑜
′ , because when the 

backlog cost increases, product shortage is more penalized, and the production threshold 

is increased as protection. Additionally, the increase in the production threshold also 

increases the feasible overhaul zone because as the machine remains operational for a 

longer time period at 𝑢1
𝑚𝑎𝑥 with higher backlog cost, it deteriorates more, needing extra 

overhaul. For the subcontracting policy, it starts at the same point A in both cases. 

However, the machine continues operating to a higher age when the backlog cost rises, 

increasing point B from 𝑎 = 80 to 𝑎 = 90. A sensitivity analysis was conducted on the 

effect of the inventory cost. We noticed that the effect of the inventory cost (𝑐+) on the 

production, overhaul and subcontracting policies is the inverse of that of the backlog cost. 

 
a) 𝒄− = 𝟐𝟓𝟎                                                                 b) 𝒄− = 𝟒𝟓𝟎 

Figure 10: Influence of the backlog cost on the overhaul policy 

 

6.1.2 Variation of the overhaul cost  

Next, we turn our attention to the sensitivity of the overhaul cost 𝑐𝑜. For this stage, we 

examine two different scenarios using the cost values 𝑐𝑜 = 5 and 15. The results obtained 

are presented in Figure 11, where we show the obtained overhaul policy. When we set the 

overhaul cost to the lower value of 𝑐𝑜 = 5,  the result indicates that the feasible overhaul 

zone 𝐴𝑜
′  covers a greater surface area on the grid, starting overhaul activities at around age 

SA=47. If the overhaul cost is increased to  𝑐𝑜 = 15 , the feasible zone 𝐴𝑜
′  decreases, 

changing the minimum required age to SA=52, and then requiring fewer overhaul 

activities, something that is normal to expect. The observed pattern in the overhaul policy 

implies that with higher overhaul cost, the machine must attain higher levels of 

deterioration, in this case the age must reach a higher level defined by 𝑆𝐴, to justify the 
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high cost of an overhaul. With respect to the production and subcontracting policies, we 

note that the overhaul cost has no effect on them, since their respective traces remain the 

same for both cases, because 𝑐𝑜 only affects the overhaul zone.  
 

 
a) 𝒄𝒐 = 𝟓                                                                 b) 𝒄𝒐 = 𝟏𝟓 

Figure 11: Influence of the overhaul cost on the overhaul policy 

 

6.1.3 Variation of the production and subcontracting cost  

The variation of the production cost CM1 of the manufacturing system highlights the fact 

that it has an effect on the control policy, as can be seen in Figure 12. For this cost, we 

analyze two instances with cost values CM1=2 and 10. At the lowest value of CM1=2, the 

production threshold of the manufacturing system is the greater of the results, since it is 

less expensive to operate the machine. With these higher production thresholds, it is 

normal to observe that the feasible overhaul zone 𝐴𝑜
′  also extends further on the grid. By 

increasing the cost value to CM1=10, we are reducing the production threshold of the 

machine. Because when the production cost rises, it becomes more expensive to operate 

the manufacturing system, and as a consequence, the production threshold decreases to 

just keep the bare minimum in terms of the necessary amount of products. The 

production cost CM1 also has an effect on the overhaul policy; the feasible overhaul zone 

𝐴𝑜
′  contracts as the production costs rises, because with a higher production cost CM1, the 

machine operation is penalized more, and this reduces the production thresholds such that 

the machine remains operational for a shorter time, needing less overhaul. If less 

overhaul is required, the feasible overhaul zone reduces, from a starting age of 𝑆𝐴=46 to 

an age of 𝑆𝐴  = 50. The reported effect of the production cost CM1 , is more clearly 

observed on the production and overhaul policy. The subcontracting policy is also 

affected; when the production cost CM1 rises, the advantage of machine M1  over 

subcontracting M2 decreases, leading to conduct more subcontracting, and reducing the 

age at which the machine stops operating (point B) from 𝑎=82 to 𝑎=74. Point A remains 

in the same position, since the rate of deterioration of the machine (illustrated in Figure 2) 

is the same in both cases, and thus the machine is unable to satisfy demand at the same 

point A. Moreover, a sensitivity analysis was conducted on the variation of the 

subcontracting cost (CM2) , and we noticed that the effect of the subcontracting cost 
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(CM2) on the production, overhaul and subcontracting control policies is the opposite of 

that of the production cost (CM1). 

 
a) 𝑪𝑴𝟏 = 𝟐                                                                 b) 𝑪𝑴𝟏 = 𝟏𝟎 

Figure 12: Influence of the production cost of the machine on the joint policy 

 

 

6.1.4 Variation of the cost of defectives  

In this subsection, we discuss the main results of the effect of variation of the cost of 

defectives on the obtained control policy. We use two different cost values, 𝑐𝑑 = 5 and 

15,  for the analysis. The results of Figure 13 clearly show that the production trace is  

extented further on the grid when the cost of defectives is set to the lower value 𝑐𝑑 = 5. 

Nevertheles, it can be observed that if we increase the defectives cost to 𝑐𝑑 = 15,  the 

production thresholds reduces considerably, and even the manufactuing system stops its 

operation at an early age, because it is more penalized defective production. To clarify 

matters, when we increase the defectives cost, we engange in more subcontracting, since 

the advantage of machine M1 over subcontracting M2 decreases, as subcontracting is free 

of defectives. The influence on the subcontracting policy is clear in Figure 13, since point 

B, where the manufacturing system stops producing, is reduced when we increase the 

defectives cost, thus acelerating its stoppage at an early age, from 𝑎 = 86 to 𝑎 = 77. 

Considering the overhaul policy, this actity is also influenced by the defectives cost. 

From the results, it follows that if we increase the defectives cost, the feasible overhaul 

zone 𝐴𝑜
′  increases, varyng the starting age from 𝑆𝐴=50 to SA=44. This is because when 

the defectives cost is high, there is more emphasis on defectives, and more overhaul is 

conducted to improve the rate of defectives. 
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a) 𝒄𝒅 = 𝟓                                                                 b) 𝒄𝒅 = 𝟏𝟓 

Figure 13: Influence of the defectives cost on the joint policy 

 

6.2 Effect of the system’s parameters variation 

In the last subsection we discussed the effect of the variation of several cost parameters 

on the control policy. We complement our sensitivity analysis with an analysis of the 

variation of two system parameters, the adjustment parameter 𝜃, the failure transition 

rate, and the production rate of the machine 𝑢1
𝑚𝑎𝑥. Another set of instances were thus 

conducted to have a better understanding of the impact of the variations of these two 

parameters on the joint control policy. 

 

6.2.1 Variation of the adjustment parameter 𝜽 

As a matter of interest, we analyze the effect of the adjustment parameter 𝜃 on the control 

policy obtained. As stated earlier, the parameter 𝜃 changes the pace of deterioration of 

the manufacturing system, by modifying the trend of the rate of defectives as a function 

of the age of the machine. To keep things simple, we examine two different scenarios 

with values 𝜃 = 0.4  and 1, as presented in Figure 14. Whenever the adjustment 

parameter is set to the smaller value of 𝜃 = 0.4, the production threshold is the most 

extensive of the analysis. On increasing the parameter to 𝜃 = 1, the production threshold 

is reduced considerably, because at increasing 𝜃 , the pace of deterioration of the 

manufacturing system increases considerably, leading to an earlier production of 

defectives, and thus stopping the machine. Based on these results, the subcontracting 

option is also largely affected by the parameter 𝜃, since when we increase this parameter, 

the machine stops earlier, because it produces defectives earlier. With this it changes the 

stoppage point B, from 𝑎 = 80 to age  𝑎 = 60. Additionally, the adjustment parameter 𝜃 

modifies the point A, from age 𝑎 = 60 to age 𝑎 = 43. When 𝜃 increases, the machine 

deteriorates earlier, producing defectives, and as a result subcontracting is needed sooner 

to ensure demand is met with flawless units. A close examination of Figure 14 shows that 

the overhaul policy also is affected, because when the parameter 𝜃  is increased, the 
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machine stops earlier due to its rapid deterioration, thus reducing the production trace. As 

a result, the feasible overhaul zone 𝐴𝑜
′  changes, decreasing the starting age for overhaul 

activities from 𝑆𝐴 = 48 to 𝑆𝐴 = 35 . This pattern is due to the fact that with higher 

values of the parameter 𝜃, the machine will deteriorate earlier, and overhaul activities 

must be conducted sooner in order to restore the machine to as-good-as-new-conditions.  

 
a) 𝜽 = 𝟎. 𝟒𝟎                                                                 b) 𝜽 = 𝟏 

Figure 14: Influence of the adjustment parameter on the joint policy 

 

 

6.2.2 Variation of the failure transition rate 

We complement the analysis with a variation of the transition failure rate 𝑞12 . This 

transition is responsible for determining the time to failure of the manufacturing system, 

in addition to affecting the availability of the machine, which is reflected in its effective 

working time. We analyze two different cases, with values 𝑞12 =0.3 and 𝑞12 =1.2, 

presented in Figure 15. When we set the transition rate to 𝑞12=0.3, 𝜋1 reported an 

availability of around 94% of the operational time. With such a high availability, the 

production threshold was naturally the smallest in the analysis. When we increased the 

transition failure rate to 𝑞12=1.2, we had an availability of 80%, meaning that the 

production thresholds increased to protect the system against the product shortages. With 

respect to the subcontracting policy, we found that when we increase the transition rate 

𝑞12 , subcontracting activities starts earlier, changing point A from age of 𝑎 = 58  to 

𝑎 = 52 , because the machine earlier is no longer capable of satisfying the product 

demand on its own. The increment of the transition rate 𝑞12 also modifies point B, which 

changes from age  𝑎 = 82  to 𝑎 = 78.  The overhaul policy is also affected by this 

parameter; we observe that when increasing the transition rate 𝑞12 , we need more 

overhaul, and this changes the minimum required age for this activity from age 𝑆𝐴 = 48 

to 𝑆𝐴 = 37. The reason behind these changes lies in the fact that when we increase the 

transition rate 𝑞12 , the production thresholds increases as protection against backlogs, 

causing the machine works more frequently at  𝑢1
𝑚𝑎𝑥 , and so deteriorating more. To 

counteract the effect of deterioration, therefore, A, B and SA change in response. 
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a) 𝒒𝟏𝟐 = 𝟎. 𝟑                                                                 b) 𝒒𝟏𝟐 = 𝟏. 𝟐                                                                  

Figure 15: Influence of the failure transition rate on the joint policy 

 

6.2.3 Variation of the capacity of the machine  

The effect of the variation of the subcontracting cost was discussed in Section 6.1.3, now 

if we focus on the capacity of the machine we can consider the variation of the rate 

𝑢1
𝑚𝑎𝑥 as a long-term strategy for capacity planning. An increment in the capacity 𝑢1

𝑚𝑎𝑥 

incurs in a much higher cost than subcontracting, because it is implied a new machine 

with a superior performance to increment the rate 𝑢1
𝑚𝑎𝑥.  In the hypothetical case where 

we can invest unlimited resources for a new machine to increase its capacity and avoid 

the use of subcontracting, we analyze two cases with values 𝑢1
𝑚𝑎𝑥(·) = 9 and 

𝑢1
𝑚𝑎𝑥(·) =15 as presented in Figure 16. When we set the capacity of the machine to 

𝑢1
𝑚𝑎𝑥(·) =9, the production, subcontracting and overhaul traces are the most extended in 

the grid, because we need more stock as protection against machine failures. At 

increasing the capacity to 𝑢1
𝑚𝑎𝑥(·) =15 with the investment of a new machine, it have 

several benefits, the production threshold decreases, because the system has more 

capacity to satisfy product demand and less stock is needed as protection against failures. 

Further, with 𝑢1
𝑚𝑎𝑥(·) =15 the machine works less time at its maximum rate, so it 

deteriorates less, thus less overhaul is needed, and this changes point 𝑆𝐴 , from age 

𝑎 = 44  to 𝑎 = 53 . Also the subcontracting trace is modified, because with more 

capacity, subcontracting is less needed, hence changing point A, from age 𝑎 = 58 to 

𝑎 = 68. Based on these results, we can state that the system will be certainly more 

capable with a higher capacity 𝑢1
𝑚𝑎𝑥. Nevertheless, given the investment involved, it will 

be considerably limited the use of this capacity strategy. In this context, subcontracting is 

an attractive option to satisfy product demand at a reasonable cost. 
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a) 𝑢1

𝑚𝑎𝑥(·) = 𝟗                                                                 b) 𝑢1
𝑚𝑎𝑥(·) = 𝟏𝟓                                                                  

Figure 16: Influence of the capacity of the machine 

 

 

7. Managerial implications 

Some implementations in real production systems of derivations of the Hedging Point 

Policy are the Boeing Flap Support Business Unit, reported in Gershwin [33], which 

focused solely in production strategies. Other efforts include the work of Dror et al. [18] 

for an implementation of production and subcontracting strategies for a chemical 

company. Managerial implications into business practice for our paper require full 

information about the state of the production system to implement the obtained results. 

The manager can control the system with our joint policy by observing the inventory and 

backlog level as well as the age of the machine. In light of this discussion, our policy 

proposes three levels; one for deciding on the safety stock, other to decide when to call 

subcontracting and other to indicate when to perform overhaul. The obtained dynamic 

programming-based policy, is reasonable for practical factory control, because it enables 

the system to run more smoothly and predictably, and mainly because of its ease to be 

implemented.  

The implementation of our joint control policy is further facilitated with the use of an 

implementation logic chart, presented in Figure 17, which leads us through decision 

making. Assuming that the machine is operational and is waiting for its next failure at its 

age (𝑎), and with a stock level of (𝑥), the production, subcontracting and overhaul rates 

can be easily defined in four different intervals denoted by the points (𝑆𝐴, 𝐴, 𝐵), as 

follows: 𝑎 < 𝑆𝐴,  𝑆𝐴 ≤ 𝑎 < 𝐴, 𝐴 ≤ 𝑎 < 𝐵, and 𝐵 ≤ 𝑎, as indicated in equations (12)-(17). 

Hence, the implementation logic chart implies: 
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Figure 17: Implementation logic chart 
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In the implementation logic chart, the production threshold  𝑍1(𝑎)  must be updated 

continually as the age of the machine (𝑎) increases. As an illustration, we determine the 

control rates for seven different points located on the grid (𝑎, 𝑥) with the data of Table 1 

(when CM1 = 1) as presented in Figure 18.  

 
Figure 18: Implementation of the joint control policy 

 

The different control variables are shown in Table 2 for the selected points, the logic of 

the policy is straightforward. For instance, in point IV, where the stock level is 𝑥 = 2, and 

the age is 𝑎=55, the production threshold is 𝑍1 = 3, overhaul will be conducted, and so     

𝜔𝑜
∗(∙) = 𝜔𝑚𝑎𝑥, due to the stock level is within the interval (𝑠 = 0) ≤ 𝑥 ≤ (𝑍1

∗ = 3). Hence, 

there is no production, and 𝑢1
∗(∙) = 0. At this age, 𝑎=55, the machine has deteriorated 

significantly, with a rate of defectives of 𝛽(55) = 0.47, (given by Equation 1), but it is 

still capable to satisfy the product demand by its own, since  𝑢1
𝑚𝑎𝑥 ∙ 𝜋1 ≥  𝑑/[1 − 𝛽(55)],     

8.33 ≥  7.54 therefore, subcontractors are not required.  

 

 

Point 

 

 

(𝑥, 𝑎) 
 

 𝛽(𝑎) 
 

𝑍1
∗ 

 

𝑢1
∗(∙) 

 

𝑢2
∗(∙) 

 

ωo
∗ (∙) 

I (2, 10) 0.01 4 𝑢1
𝑚𝑎𝑥 = 9 0 𝜔𝑚𝑖𝑛 = 10

−6          

II (4, 20) 0.05 4 𝑑/[1 − 𝛽(20)] = 4.21 0 𝜔𝑚𝑖𝑛 = 10
−6 

III (-2, 40) 0.22 3 𝑢1
𝑚𝑎𝑥 = 9 0 𝜔𝑚𝑖𝑛 = 10

−6 
IV (2, 55) 0.47 3 0 0 𝜔𝑚𝑎𝑥 = 20           

V (-3, 65) 0.65 -1 0 𝑢2
𝑚𝑎𝑥 = 20 𝜔𝑚𝑎𝑥= 20           

VI (-2, 80) 0.85 - 0 𝑢2
𝑚𝑎𝑥 = 20 𝜔𝑚𝑎𝑥 = 20 

VII (0, 90) 0.93 - 0 𝑑 = 4 𝜔𝑚𝑎𝑥 = 20 

Table 2: Control parameters for three different instances 
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8. Conclusions 

From what has been presented, we can state that our general aim in this research was to 

analyze the simultaneous production planning, overhaul and subcontracting problem for 

the case of an unreliable machine subject to progressive deterioration, problem that is 

motivated from a real production context. Fundamentally, the central premise of the 

paper is to devise a connection between the deterioration of the machine and its quality 

throughput, and to allow subcontracting activities as an option to avoid backlog and 

fulfill product demand. The production control problem was formulated as a stochastic 

dynamic programming problem, which integrates the machine’s history with the age of 

the manufacturing system, thus leading to the formulation of a Semi-Markov decision 

model. A numerical approach was adopted to solve the derived HJB equations of the 

problem, defining the control parameters of the joint policy. In general, we observe that 

the production threshold of the machine decreases as a function of its level of 

deterioration, and the conduction of overhaul and subcontracting activities, increases as 

an alternative to palliate the level of deterioration. A close examination of the control 

parameters was performed in an extensive sensitivity analysis, in which we confirmed the 

structure of the control policy, as well we noticed the remarkable effect of deterioration 

on the joint production, overhaul and subcontracting control rules. In a sense, the 

obtained results are quite satisfactory and point the way to further research in this 

domain. Future research include extending our model to the case where subcontracting is 

not always available due to serving other customers. Also subcontracting can be 

significantly influenced, when the deterioration of the machine impacts several 

performance indices such as the quality of the parts produced, reliability, etc., as well as 

their variable lead time. Another area of future research is to consider the maximum 

production rate of the machine as a design parameter to be optimized, since the 

production rate is penalized in the objective function, hence performance could be 

improved at optimizing the production rate. For more complex systems, the structure of 

the control policy developed in this paper could be the main frame for another class of 

future studies. For such systems, heuristic methods based on the structure of the policy 

could be developed. We could then consider the optimization of manufacturing systems 

with more general failures/repairs distributions, non-homogenous stochastic processes 

and large scale systems impossible to tackle only with analytical tools. The method used 

in such a heuristics consists of an analytical formalism, combined with 

discrete/continuous simulation modeling, design of experiments and response surface 

methodology 

 

Appendix A. Optimality conditions  

The model denoted in equations (1-10) refers to a stochastic dynamic programming 

problem since the minimization operation takes into account the randomness of 𝛼.  The 

optimality conditions of the model can be derived by the principle of optimality, if 𝑣(·, 𝑡) 

denotes a cost-to-go function at time 𝑡, and breaking up the integral of equation (8), we 

have that 𝑣(𝛼(0), 𝑥(0), 𝑎(0), 0) =  
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𝑖𝑛𝑓
𝑢1(𝑡),𝑢2(𝑡),𝜔𝑜(𝑡)

0≤𝑡≤∞

 𝐸

{
 
 

 
 
∫𝑒

−𝜌𝑡𝑔[(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝜔𝑜(𝑡)]𝑑𝑡
+

𝑡

0

 ∫ 𝑒−𝜌𝑡𝑔[(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝜔𝑜(𝑡)]𝑑𝑡

∞

𝑡

|

|
𝛼(0), 𝑥(0), 𝑎(0)

}
 
 

 
 

                (𝐴. 1) 

 

Since the integral in the interval [𝑡,∞]  is the value function, at considering the discounted 

rate 𝜌, and if we perturb 𝑡, we can obtain the one-step counterpart of 𝑣(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡) in 

the interval [𝑡, 𝑡 + 𝛿𝑡], with  𝑣(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡) =  

𝑖𝑛𝑓
𝑢1(𝑠),𝑢2(𝑠),𝜔𝑜(𝑠)

𝑡≤𝑠≤𝑡+𝛿𝑡

 𝐸

{
 
 

 
 ∫ 𝑒−𝜌𝑡𝑔[(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝜔𝑜(𝑡)]𝑑𝑠

𝑡+𝛿𝑡

𝑡

+

 
1

1 + 𝜌𝛿𝑡
𝑉[𝛼(𝑡 + 𝛿𝑡), 𝑥(𝑡 + 𝛿𝑡), 𝑎(𝑡 + 𝛿𝑡), 𝑡 + 𝛿𝑡]

|

|
𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡)

}
 
 

 
 

            (𝐴. 2) 

 

where 𝑢1(𝑠), 𝑢2(𝑠)  and 𝜔𝑜(𝑠)  are treated as constants in the interval 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝛿𝑡 . By 

applying the conditional expectation operator  𝐸̃  (i.e., for any function                                  

𝐻(𝛼),  𝐸̃ 𝐻(𝛼(𝑡 + 𝛿𝑡)) = 𝐸{𝐻(𝛼(𝑡 + 𝛿𝑡))|𝛼(𝑡)} ), and considering small 𝛿𝑡,  and after some 

manipulations, leads to, 𝜌𝑣(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡) = 

𝑖𝑛𝑓
𝑢1(𝑡),𝑢2(𝑡),𝜔𝑜(𝑡)

𝐸̃  {

𝑔[(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝜔𝑜(𝑡)]𝛿𝑡 +
+

𝑣[𝛼(𝑡+𝛿𝑡),𝑥(𝑡+𝛿𝑡),𝑛(𝑡+𝛿𝑡),𝑡+𝛿𝑡]−𝑣[𝛼(𝑡),𝑥(𝑡),𝑛(𝑡),𝑡]

𝛿𝑡

} + 𝑜(𝛿𝑡)                  (𝐴. 3)   

 

We can apply the full derivative of the value function, since the second term in Equation 

(A.3) denotes the derivative of 𝑣(𝛼, 𝑥, 𝑎). Further, at expanding the expectation operator 

(i.e., with 𝐸̃ 𝐻(𝛼(𝑡 + 𝛿𝑡))  =   𝐻(𝛼(𝑡)) + ∑ 𝐻(𝑗)𝑗 𝜆𝑗𝛼(t)𝛿𝑡 +  𝑜(𝛿𝑡)), we get, 𝜌𝑣(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡 ) =
                                                                                                         

    𝑖𝑛𝑓
𝑢1(𝑡),𝑢2(𝑡),𝜔𝑜(𝑡)

 

{
 

 
𝑔[(𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝜔𝑜(𝑡)]𝛿𝑡 +

𝜕𝑣

𝜕𝑥
[𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡]𝛿𝑥(𝑡) +

𝜕𝑣

𝜕𝑎
[𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡]𝛿𝑎(𝑡)

𝜕𝑣

𝜕𝑡
[𝛼(𝑡), 𝑥(𝑡), 𝑎(𝑡), 𝑡]𝛿𝑡 + ∑ 𝑣[𝛼′, 𝑥(𝑡), 𝑎(𝑡), 𝑡]𝜆𝛼′𝛼(t)𝛿𝑡𝛼′ }

 

 
+ 𝑜(𝛿𝑡)                    (A.4)    

 

The expectation symbol is replaced with the summation term. Furthermore, at replacing 

𝛿𝑥(𝑡)  by 𝛿𝑥(𝑡) = 𝑥̇(𝑡)𝛿𝑡  and 𝛿𝑎(𝑡)  by 𝛿𝑎(𝑡) = 𝑎̇(𝑡)𝛿𝑡 , move 
𝜕𝑉

𝜕𝑡
 to the left, let 𝛿𝑡  approach 

zero. After some manipulations, we have that  𝜌𝑣(𝛼, 𝑥, 𝑎, 𝑡) −
𝜕𝑣

𝜕𝑡
[𝛼, 𝑥, 𝑎, 𝑡] = 

𝑖𝑛𝑓
𝑢1(𝑡),𝑢2(𝑡),𝜔𝑜(𝑡)

 {𝑔[𝛼, 𝑥, 𝑎, 𝑢1, 𝑢2, 𝜔𝑜]  +
𝜕𝑣

𝜕𝑥
[𝛼, 𝑥, 𝑎, 𝑡]𝑥̇ +

𝜕𝑣

𝜕𝑎
[𝛼, 𝑥, 𝑎, 𝑡]𝑎̇ + ∑ 𝑉[𝛼′, 𝑥, 𝑎, 𝑡]𝛼′ 𝜆𝛼′𝛼}       (A.5) 

Given that none of the functions 𝑔(∙), 𝑥̇(∙) and 𝑎̇(∙) are functions of t explicitly, and given 

that the time horizon is infinite and a steady-state distribution exists for 𝛼, equation (A.5) 

is independent of t. Additionally, the summation term can be replaced by the generator 

Q(·) = {λα𝛼′(·)}, hence this leads to the so-called Hamilton-Jacobi-Bellman (HJB) equations 

given by equation (9), their importance relies on the fact that it is a necessary and 
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sufficient condition for an optimum. In consequence, the HJB equations, describe the 

optimally conditions of the problem, thus control policies obtained from the HJB 

equations are optimal, as indicated by Gershwin [34], Dehayem et al. [20], and references 

therein. 

 

Appendix B. Numerical approach 
 

Nevertheless, the HJB equations (9) generally lead to intractable solutions. Fortunately, 

Boukas and Haurie [32] have successfully found an approximate solution by applying the 

Kushner approach, reported in Kushner and Dupuis [35], where the central premise is to 

apply an approximation scheme for the gradient of the value function, 𝑣(𝛼, 𝑥, 𝑎) by a 

discrete function 𝑣ℎ(𝛼, 𝑥, 𝑎) and the partial derivatives 𝜕𝑣
𝜕𝑥
  and  

𝜕𝑣

𝜕𝑎
  by: 

 

𝜕𝑣

𝜕𝑥
(𝛼, 𝑥, 𝑎) =

{
 

 
1

ℎ𝑥
[𝑣ℎ(𝛼, 𝑥 + ℎ𝑥 , 𝑎) − 𝑣

ℎ(𝛼, 𝑥, 𝑎)]      𝑖𝑓    𝑥̇ ≥ 0

1

ℎ𝑥
[𝑣ℎ(𝛼, 𝑥, 𝑎) − 𝑣ℎ(𝛼, 𝑥 − ℎ𝑥 , 𝑎)]      𝑖𝑓    𝑥̇ < 0

                      (B. 1)  

and 

𝜕𝑣

𝜕a
(𝛼, 𝑥, 𝑎) =

1

ℎ𝑎
[𝑣ℎ((𝛼, 𝑥, 𝑎 + ℎ𝑎) − 𝑣

ℎ(𝛼, 𝑥, 𝑎)]                            (B. 2) 

where ℎ𝑥 and ℎa indicate the length of the finite differential interval for the state variables 

(𝑥, 𝑎). Using the Kushner technique, the HJB equations (9) can be expressed in terms of 

the discrete function 𝑣ℎ(𝛼, 𝑥, 𝑎) with step size ℎ𝑥 and ℎa on a discrete grid, as follows: 

𝑣ℎ(𝛼, 𝑥, a) =                                                                                                                                                                (B. 3) 

min
(𝑢1,𝑢2,𝜔𝑜) ∈ 𝛤(𝛼)

[(ρ+ |q𝛼𝛼| +
|y|

ℎ𝑥
+
𝑘1 ∙ 𝑢1
ℎ𝑎

)

−1

(𝜑𝛼(∙) + 𝑣ℎ(𝛼, x, 𝑎 + ℎ𝑎)
𝑘1 ∙ 𝑢1
ℎ𝑎

+ 𝑣ℎ(𝛼, 𝑥 + ℎ𝑥 , 𝑎)
|𝑦|

ℎ𝑥
Ind{y ≥ 0 } + 𝑣ℎ(𝛼, 𝑥 − ℎ𝑥 , 𝑎)

|𝑦|

ℎ𝑥
Ind{y < 0 }

+ ∑ 𝑞𝛼𝛼′(∙)

𝛼′≠𝛼

𝑣(𝛼′, 𝑥, 𝜑(𝜉, 𝑎)))]  ∀  𝛼 ∈  𝛺, 𝑥 ∈ 𝑅,   𝑎 ∈ 𝑁              

Where y= 𝑢1(𝑡, 𝛼) ∙ [1 − β(a)] + 𝑢2(𝑡) − 𝑑. Equation (B.3) is the discrete version of the HJB 

equations (9).  The policy improvement method is used then to determine the structure of 

the control policy. The optimality of our results is a consequence of (u1
∗ ,u2

∗ ,ωo
∗ ) and 

𝑣(∙) satisfying the HJB equation. The next theorem shows that ( , , )hv x a  is an 

approximation to ( , , )v x a for small step size h (with ( , )x ah h h .  

 

Theorem A.1.  Let ( , , )hv x a  denotes a solution to HJB equations (9). Assume that there 

are constants gC  and  g  such that 
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0 ( , , ) (1 | | )gh

gv x a C x


    

         then  

 0
lim ( , , ) ( , , )h

h
v x a v x a 


   

Proof:  

The proof of this theorem is similar to the one presented in Yan and Zhang [36].                
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