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ABSTRACT

Lossy image compression is increasingly used in medical ap-
plications, but great care must be taken to ensure that no diag-
nostically relevant features are altered. Guidelines based on
compression ratios are often use to mitigate this issue, but are
criticized due to the considerable compressibility variations
between images. Objective image quality assessment metrics
should be used instead, but the most common, mean squared
error, is known to be poorly correlated with our perception of
quality. Structural similarity (SSIM) is probably currently the
most popular alternative, but it is also increasingly criticized.
Using computed tomography simulations, this paper shows
some of the limitations of SSIM when used with medical im-
ages : uniform pooling, distortion underestimation near hard
edges, instabilities in regions of low variance and insensitivity
in regions high intensities. Furthermore, this paper demon-
strates the effect of these limitations when SSIM is used to
bound compression in a block coder such as JPEG 2000.

Index Terms— SSIM, diagnostic imaging, medical imag-
ing, image compression, image quality assessment

1. INTRODUCTION

Efficient image compression is required in the medical do-
main to handle the increasing amount of data generated by
diagnostic imaging devices. Lossless compression techniques
can help reduce storage requirements and increase effective
transfer rates by reducing file sizes by up to two thirds, but
lossy compression is needed to achieve better performance.
However, in doing so, great care must be taken to ensure that
no diagnostically relevant features are altered.

To address this issue, many two-alternative forced choice
(2AFC) studies were conducted with trained radiologist in or-
der to find safe and optimal compression ratios for different
modalities. These studies are now the basis of local and na-
tional guidelines. However, it has been suggested[1] that im-
age compressibility varies widely with image content, even
within modalities, and that the use of accurate quality met-
rics is required to establish viable guidelines. The current
go-to objective quality metric, mean squared error (MSE), is

widely known to be poorly correlated with human perception
of image quality and many alternatives have since been pro-
posed. Structural similarity[2] (SSIM) is one of these new
metrics that are getting the most attention, but its limitations
are not well understood. This paper will shed lights on some
of these limitations from the perspective of diagnostic imag-
ing. Specifically, we will explore the issues related to uniform
pooling, distortion underestimation near hard edges and re-
gions of insensitivity or instabilities using computed tomog-
raphy phantom simulations. Furthermore, we will illustrate
the challenges of using SSIM to replace MSE to bound com-
pression in block coder such as JPEG 2000.

2. PREVIOUS WORK

Since its publication, SSIM has grown increasingly popular
in the image and video compression fields. It has already
been used to replace MSE in rate-distortion optimisation
algorithms[3, 4] in order to optimize or bound compression.
However, the effectiveness of SSIM was mostly demonstrated
with natural image databases subjected to heavy distortions
such as the LIVE image quality assessment database[5].
These databases are important tools used to evaluate the
performance of image quality assessment (IQA) metrics in
the context of streamed videos or pictures displayed on web
pages, but their results may not translate well to text images,
graphics or diagnostic images. Some studies involving diag-
nostic images and trained radiologist have shown SSIM to be
either on par[6, 7] with or better[8] than MSE, but they have
not explored its limitations.

SSIM is computed from three distinct terms : luminance
(mean), contrast (variance) and structure (correlation) which
are respectively defined as follow :
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Fig. 1. Source images and their associated SSIM maps. a) Noise (top-left), grating signal (center) and background water cylinder
(bottom-right) used to compose image b). ¢) SSIM map using low (bottom-left) and high (top-right) contrast grating signals.
d) individual SSIM components of c). e) Noise (top-left), lung (center) and thoracic (bottom-right) phantom simulations used
to compose image f). g) SSIM maps of the lung only(bottom-left) and complete thoracic simulations(top-right). h) individual

SSIM components of g).

The statistics, i, o and 0,, are all computed in a sliding
Gaussian weighted window usually about 11 pixels wide. The
three terms are then multiplied together at each pixel loca-
tion to produce a SSIM map which is subsequently uniformly
pooled to obtain a single SSIM index. An index of one indi-
cates a perfect reconstruction while zero is the lower bound.

An empirical and formal analysis[9] showed evidence of
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Fig. 2. I(yy, py) and ¢(oy, 0y) terms with g, = p1, + 5 and
0y = 0, + 5 plotted against low values of mean and variance
with recommended stabilising parameters Cy and Cs.

a close relationship between SSIM and MSE suggesting that
the performance of the SSIM may be much closer to the MSE
that we might expect. Furthermore, a thorough theoretical
investigation[10] of SSIM showed that 1) SSIM and MSE
are composed of the same parameters combined in different
ways, 2) luminance and variance terms of SSIM are dice co-
efficients and depends on the absolute values of the input pa-
rameters (¢ and o) and 3) it is unstable when these input pa-
rameters are close to zero. SSIM’s dependence on input pa-
rameters may be especially problematic with diagnostic im-
ages because of the increased dynamic range and the pres-
ence of large regions of low variance or average. Figure 2
shows the effect of this dependency when distortions of 5 in
average and variance, i, = [z + 5 and 0y = 0, + 5, are
plotted against base parameters, p, and o,, ranging from 0
to 30. Even with recommended regularisation parameters C
and Cs, which were introduced for this purpose, the steep
slopes means that SSIM is still very unstable when the vari-
ance or luminance of the reference image are low. Further-
more, these terms become insensitive when the base variance
or mean are very high. These conditions are fairly uncommon
in natural images, but are ubiquitous in medial imaging.
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Fig. 3. SSIM index of the center region of Fig. 1b with con-
stant noise and a grating pattern of varying contrast and hard-
ness.

3. METHODOLOGY

The following experiments were performed to illustrate the
aforementioned limitations of SSIM in the medical domain.
In both cases, the SSIM index were computed on the full
range images and was configured for a dynamic range of
2500. Several stabilisation parameters were tested, but de-
fault values were used as they provided the best compro-
mise between sensitivity and instability. SSIM indexes were
computed using uniform pooling, however distortion (DW-
SSIM) and information (IW-SSIM)[11] wighted techniques
showed similar results. Both phantoms are simulated using
a GPU-accelerated Monte Carlo x-ray transport simulation
(MC-GPU)[12] to generate a realistic computed tomography
image.

The first phantom(Fig. 1b) is composed of a water cylin-
der surrounded by air with an added grating pattern of dif-
ferent hardness, simulated by a Gaussian filter with a sigma
ranging from 0.3 to 2.7, and a contrast between 0 and 1000.
Such high contrast is common in computed tomography im-
age which are represented on the Hounsfield scale where air
is defined as —1000 Hounsfield Unit (HU), water as 0 HU
and bones are represented by value above 1000 HU. The
same noise image (Fig. 1a, top-left), obtained by extracting
the difference image between the reference phantom and a
24:1 JPEG 2000 compressed version, was used throughout
the experiment. SSIM indexes were computed for the entire
image and for a region of interest (ROI) shown in Figure 1b
with dashed lines. The SSIM index of the entire image is
higher because the region outside of the acquisition field of
view (FOV) is mostly unaffected by compression. The I(x, y)
term has almost no influence in the ROI because (i, is in the
insensitive zone of the dice coefficient. On the other hand,
outside of the FOV where there is little variations, [(z, y) and
¢(z,y) are in their unstable zones leaving almost only the
stabilising terms. Figure Ic and d shows SSIM maps with
different contrast and, even though the noise is strictly iden-

(a) Constant MSE

(b) Constant SSIM

Fig. 4. Random Gaussian noise independently generated on
blocks of 16 x 16 pixels to obtain a) constant MSE and b)
constant SSIM.

tical, they are significantly different in the ROI because hard
edges propagate high SSIM values across the sliding window.
Figure 3 show the SSIM indexes of the ROI with different
hardness and contrast.

The second phantom was used to simulate the type of im-
ages used by radiologists to search for lung nodules. The
background is a thoracic phantom complete with bone, mus-
cles and soft tissues (Fig. 1e, bottom-right) and randomly gen-
erated additive Gaussian noise with a variance of 20 (Fig. le,
top-left) is used. An offset is added to both reference and dis-
torted images to ensure there are no negative values. In this
case, the diagnostically relevant information is exclusively lo-
cated in the low contrast structures of the lungs shown in Fig-
ure. le (center). The lung and background are simulated sep-
arately using MC-GPU and fused together in the sinogram
domain thus keeping the diagnostically relevant information
and the background apart. Fusing the background to the lung
simulation increases the SSIM index from 0.9395 to 0.9628
in the center ROI (shown in Fig. 1f) even though the noise re-
mains constant and the diagnostic value in unchanged. SSIM
maps in Fig. 1 g) and h) shows the same behavior around edge
as in the previous example. Again, [(z, y) does not contribute
in the ROI and ¢(x, y) is in the unstable zone outside of the
FOV and for most of the lung only image.

Finally, because it has been suggested that SSIM is bet-
ter correlated with our perception of quality than MSE, it is
tempting use it to replace MSE in the post compression rate-
distortion optimisation algorithms of image coders. Unfor-
tunately, the limitations exposed earlier have an almost pro-
hibitive effect on this approach. Figure 4 compares the noise
needed to a) produce a constant PSNR of 30 and b) a constant
SSIM of 0.99 on the thoracic phantom in non-overlapping
windows of 16 x 16 pixels. This results is similar to what
would have been obtained with a JPEG 2000 coder bounded
by SSIM with code-blocks of 8 x 8 coefficients. SSIM pro-
duces significantly more artefacts around edges in accordance
with the visual masking model traditionally used with natural



images. In practice, however, the level of distortion intro-
duced around edges is not visually equivalent.

4. DISCUSSION

Several observations can be derived from these results. In
both our experiments, the luminance terms did not contribute
to the SSIM index in the ROI because the average pixel val-
ues placed it in the insensitive zone of the dice coefficient.
Conversely, the area outside of the phantoms are in the un-
stable zone of both luminance and variance terms because
their mean values are very close to zero. Because the im-
age statistics are heterogeneous, it was not possible to adjust
the stabilising parameters to obtain good performance across
all regions. These conditions, common to diagnostic images,
combined with uniform pooling results in unreliable SSIM
measurements.

Furthermore, hard edges saturates the ¢(x, y) and s(x, y)
terms for the width of the sliding window resulting in over-
estimation of the SSIM index. This may be considered in
line with the principles of visual masking that occurs when
a strong signal overshadows another, but, in this case, the ef-
fect appears too severe. Assumptions based on natural images
and typical imaging applications may be inappropriate for the
medical domain. For instance, a faint signal essential to di-
agnostic close to a high contrast structure (ex. a lung nodule
near soft tissues) could be considered visually masked and of
no value in another context. This issue could be mitigated by
slightly modifying the SSIM algorithm to use edge preserving
filtering techniques instead of the Gaussian weighted average
window to compute the required statistics.

5. CONCLUSION

In this paper, we have shown through analytical and empiri-
cal evidence that : 1) because dice coefficients are dependent
on the base value, the luminance term can be either unstable
or insensitive in regions of low or high average intensities,
2) the variance term can be unstable in regions of low vari-
ance, 3) the variance and structure terms underestimate dis-
tortions near hard edges and finally 4) uniform pooling should
be avoided when image statistics are not fairly homogeneous.
These characteristics are common with diagnostic imaging
and, consequently, great care must be taken when using SSIM
in the medical domain. Moreover, SSIM, in its current form,
in not well suited to replace MSE in rate-distortion allocation
algorithms of image coders. Future work should include de-
veloping alternative pooling techniques and exploring the use
of edge preserving filtering techniques in SSIM.
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