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ice-shed particle is still close to the wing surface, there is a high probability of collision with 
the surface.  A linear spring collision model is presented assuming the interacting bodies are 
connected tangentially and normally by linear springs.  The verification of the model is made 
by comparison with literature results and study of ice trajectories around a cylinder and an 
aerofoil. 
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1. INTRODUCTION 
 

Aerodynamic and environment are tightly bound together since the early days of aviation.  In-

flight, except for the pilot competencies, aircraft performances depend mostly on 

aerodynamic, structural, control, and propulsion characteristics.  The environment can affect 

each of these characteristics, but, arguably, aerodynamic is at the heart of aircraft design.  

Atmospheric turbulence and weather conditions can adversely affect aircraft aerodynamic and 

lead to an accident, causing injury, or death to passengers or aircraft crew members. 

 According to a report of the United-States National Transportation Safety Board 

(2011), between 2007 and 2009, atmospheric turbulence encounters during the en route phase 

of flight was the main cause of accidents on commercial flight.  Flying in adverse weather 

conditions is always dangerous, especially weather conditions leading to ice accretion on 

airframe that pose a significant hazard for aircraft operation in the Northern Hemisphere.  

According to a survey of the National Transport Safety Board online database and NASA 

Aviation Safety Reporting System from 1978 to 2005 (Green, 2006), 944 accidents and 

incidents can be imputed to inflight icing.  It gives an average of thirty-five accidents/year.  A 

following study of aircraft icing accidents and incidents using the same databases, but for the 

period 2006 to 2010, found 258 accidents or incidents caused by inflight icing (Appiah-Kubi, 

2011), an average of sixty-four accidents/year.  The increase in yearly accident rate is must 

probably caused by the increase in total flight hours since 1978.  Ice accretions cause most of 

the time aerodynamic performance degradations that lead to aircrafts stall or loss of control.   



 

 2 

Several measures can help to reduce aircraft icing hazard: meteorological prediction to 

help en route aircraft to avoid icing events, increase pilot awareness to icing danger through 

formations, install efficient ice protection system (IPS) on aircraft critical part.  An aircraft 

can only fly in icing condition if IPSs are installed on critical part such as leading edge of 

wing and stabilizers.  Anti-icing type IPS works continuously during an icing event, 

preventing all ice accretion in the critical area. The surface is usually heated such that i) either 

all the water caught on a critical part evaporates (evaporative mode) or ii) the water partially 

evaporates and runs back, freezing on a less critical area (wet mode).  De-icing type IPS 

works periodically, waiting for a small amount of ice to accrete before removing it.   

De-icing systems require less energy than anti-icing systems.  For example, in a 

NASA study (Miller et al., 1997), an electrical IPS was installed on a wing leading edge and 

used in anti-icing and de-icing mode for the same ice accretion conditions.  The goal of this 

study was to build an experimental database to validate a numerical method, but energy 

consumption can be computed from their data for two icing conditions.  The tests were run in 

a wind tunnel.  For a total air temperature of -6.7˚C, a velocity of 44.7 m/s, a liquid water 

content of 0.78 g/m3, and a median volumetric droplet diameter of 20 µm, the energy 

consumption by meter wing span is 10.3 kW for the anti-icing system running in evaporative 

mode, 1.89 kW for the anti-icing system running in wet mode (Al-Khalil et al., 1997).  With 

the same ambient conditions, two de-icing system configurations are tested and the energy 

consumption is 1.05 kW or 0.940 kW (Wright, Al-Khalil and Miller, 1997).  For a colder total 

air temperature -17.8˚C, the evaporative mode uses 11.4 kW, the running wet mode uses 3.53 

kW and the de-icing system configurations use 1.64 kW or 2.15 kW.  Thus, waiting for some 

ice to accrete reduces the IPS energy consumption by a factor between ten and five.  This 

energy reduction is very attractive for engineers that seek to produce green aircraft. 

De-icing systems remove ice formed on aircraft protected surfaces according to a 

periodic cycle by reducing the adhesive force between ice and surface.  Once the adhesive 

force is reduced, aerodynamic forces blow the ice at a distance from the surface.  The use of 

aircraft de-icing system raises the need to predict ice-shedding trajectories to allow assessing 

the risk of impact/ingestion on/in aircraft components located downstream.  Aircraft 

manufacturers rely mainly on flight tests to evaluate the potential negative effects of ice 

shedding because of the lack of applicable numerical tools.  It is difficult for classical CFD 

tools to predict trajectories because of the shapes and sizes randomness of the ice-shed 

particles. 
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In the present work, the motion of the solids (ice blocks) is computed using the basic 

physical laws (CFD) meaning that no database has to be used to predict drag and the lift 

imposed on ice pieces.  The use of level set, and penalisation methods enable a tight coupling 

between airflow and ice pieces.  The tight coupling involves considering the ice piece effects 

on the airflow, contrary to classical method, and the corresponding airflow effects on the ice 

piece, the usual drag and lift forces.  This numerical method has been used successfully to 

predict bluff body motions in a previous study (Beaugendre et al., 2011).  However, this study 

showed that a collision model was needed to consider the ice block interactions with the wall 

at the starting-point of the shedding phenomena.  The goal of the present paper is to develop a 

collision force model that will enable the ice pieces to rebound on the aircraft skin into the 

airflow, considering forces in normal and tangential direction.   

Some models used with CFD calculation in the literature are first reviewed.  Next, the 

three most important collision parameters are presented and typical values for ice bouncing in 

an aircraft de-icing situation are calculated.  Then, the normal and tangential linear spring 

model proposed to model bouncing is presented.  An applicable numerical method is 

afterward proposed to use the linear spring model within the framework of level set functions.  

The model implementation is verified with the test case of a sphere moving at constant speed 

into an empty space, impacting a wall at various angles.  Then, an ice shape impinging a 

cylinder and an aerofoil wall displaced by aerodynamic forces will be studied. 

 

2. LITTERATURE REVIEW 
 

In numerical flow simulations, when two bodies overlap, a collision is considered to occur.  

Most of the viscous flow simulation past moving rigid bodies proposes simple collision 

models.  Glowinski et al. (2001) propose a strategy to consider collision based on a short 

range repulsive force.  The repulsive force acts in the normal direction, and it takes a finite 

value depending on the distance between particle centres.  The force starts acting when the 

space between the two particle surfaces is small but positive, to ensure that no overlap occurs.  

Singh, Hesla and Joseph (2003), and Wan and Turek (2006) present numerical schemes that 

allow particles to overlap slightly.  A repulsive force is introduced to ensure overlapping does 

not exceed one element.  The force acts also in the normal direction, and is proportional to a 

stiffness parameter times the distance between particle centres.  Patankar and Sharma (2005) 
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use the same collision force definition, but apply it in an immersed boundary method based on 

a fractional time stepping strategy.  Sub-steps in the position update are used during the 

collision process to improve accuracy.  The repulsive force methods do not guarantee that the 

particles will not overlap, and the rebound velocity depends strongly on a stiffness parameter, 

not easily linked to material properties. 

Another model is proposed by Ardekani and Rangel (2007) to avoid these two 

weakness’ of repulsive force methods.  The model is based on conservation of linear 

momentum along the line between the centres of the two colliding spherical particles. The 

normal restitution coefficient along the line between the centres depends on the Stokes 

number.  The linear momentum in the tangential direction and the angular velocity are 

conserved for each particle implied in the collision.  However, the extension of the model to 

solids of general shapes needs further investigation. 

The use of level set method opens the possibility to define a repulsive force based on 

distance between solid boundaries instead of solid centres.  Coquerelle and Cottet (2008) use 

a repulsive force model based on a singular function for the calculation of the repulsive force.   

The repulsive force becomes infinite as the distance between the surfaces tends to 0, to avoid 

overlap between particles. However, the repulsive force acts only in the normal direction, 

neglecting tangential forces occurring when tangential velocities at solid boundaries are not 

equal prior to collision. 

Tangential forces are particularly important when collision angles are far from normal 

direction, a situation that occurs frequently for collisions at the starting-point of the shedding 

phenomena. The model proposed in the present paper came from the discrete element method 

field in which various models have been implemented to cater with prediction of granular 

flow, with spherical bodies of known radius (Thornton, Cummins and Cleary, 2011).  A 

commonly used model is the linear spring-dashpot model (Cleary and Sawley, 2002).  A 

further simplification of the model is to neglect the dashpot, thus assuming collision is elastic 

with no dissipation. 

3. COLLISION PARAMETERS 
 

In multiphase flows, when solid particles are free to move, particle-wall interactions play a 

major role in the dynamic of the flow.  For example, in aircraft de-icing CFD simulations, 

shed ice particles must be kept outside the wing by a specific model for these interactions. 
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The bouncing of a solid sphere on a wall in air or in various fluids as been well studied.  The 

studies have shown that the restitution coefficient, the ratio of the velocity after the rebound to 

the approach velocity, depends on the particle Stokes number St : 

 

  (1)
 

 

The restitution coefficient of two colliding objects is a number between 0.0 and 1.0 

representing the ratio of velocities after and before a collision.  Below a critical value for the 

Stokes number, around 10, a no rebound situation occurs, such that the restitution coefficient 

 (Legendre et al., 2006).  At the other extremity, for , the viscous effects are 

supposed to be negligible and the restitution coefficient reach an asymptotic value close to 

one for elastic material.  Between these two values, the restitution coefficient increases 

monotonically.  It is important to notice however that for viscous collision, the velocity starts 

slowing down before the particle touches the wall, leading to a modified definition of the 

restitution coefficient: 

  (2) 

where  is the velocity after the rebound and  is the velocity before its decrease resulting 

from the wall interaction. 

For spherical particles, the Stokes number is defined as 

 

   (3) 

 

where  is the particle density,  is the fluid density, and  the fluid viscosity.  The 

restitution coefficient for collision in air is given by  

 

St = particle inertia
viscous effects

e = 0 St >104

e = −Vres
V∞

Vres V∞

St =
ρp + 0.5ρ( )V∞D

9µ

ρ p ρ µ
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  (4) 

 

according to Legendre et al. (2006). 

Another important parameter for bouncing model is the contact time.  The Hertzian 

theory gives the following relation for solid sphere in gas bouncing on a wall 

  (5) 

where  and  are the modulus of elasticity and the Poisson’s ratio and the sub-indices  

and  refer to the wall and the particle. 

3.1. Ice particle in air 

The three parameters defined by Equations 3, 4, and 5 can be estimated if ice and airflow 

properties are known around the aircraft wing. 

There are several types of microstructure possible for ice, depending on the physical 

scales of the ice studied, the temperature, the pressure, the way it forms or if its ground or 

atmospheric ice (Coles, 2001).  It is a challenging task for the engineer to estimate the 

mechanical properties of ice. For the present work, three properties are of concern, the 

density, the elastic modulus and the Poisson’s ratio.  For ice plates at -10˚C, the Young’s 

modulus of ice is in the range 9.7-11.2 GPa and the Poisson’s ratio is between 0.29 and 0.32 

(Petrovic, 2003).  According to experimental measurements of Gammond et al. (1983) on 

ground ice samples, at -16˚C, the ice density is 919.5 kg/m3, the Young’s modulus is 9.332 

GPa and the Poisson’s ratio is 0.325.  

Consider a large ice accretion removed by aerodynamic forces, a situation that can 

occur if no ice protection system is used and the aircraft simply flies out of in-flight icing 

conditions.  For an ice particle of around 5 cm diameter, impinging on an aluminum wall 

(density 2796 kg/m3, Young’s modulus 71.7 GPa, Poisson’s ratio 0.33), moving at a velocity 

of 30 m/s in air (density 1.23 kg/m3, viscosity 1.9×10-5kg/m s), St is around 8×106.  For this 

high value of St, the value of the restitution coefficient is around 0.91. The contact time is in 

the order of magnitude of 10-4s.   
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Using a Vortex In Cell (VIC) scheme for the CFD solution, see Beaugendre et al. 

(2011), the calculation time step depends mostly on the cell size and viscosity.  If the time 

step used is equal or larger than the contact time, this may lead to non-physical results, where 

the restitution coefficient is larger than one.  In such situation, the contact time is smaller than 

the viscous relaxation time and the collision can be modeled as a discontinuity (Legendre et 

al., 2006), without considering the effect on airflow.  The other possibility is to reduce the 

calculation time step to ensure that the collision phenomenon is discretized with at least ten 

time steps (Patankar and Sharma, 2005). 

4. COLLISION FORCE MODEL 
 

Consider the collision of a spherical body of diameter D with a wall, as shown on figure 1.  

The sphere is moving with a velocity  prior to the contact, without rotation.  The sphere 

collides with the wall at point o.  Under the effects of collision forces, the sphere rebounds 

with a velocity Vr  and an angular velocity ω r .  The angle between the rebound velocity 

vector with the vertical axe, θr , may differ from the angle between the impact velocity vector 

and the vertical axis, θi .  The model allows body overlapping during the contact time.  The 

sphere overlaps with the wall on a distance α   in the normal direction and the relative 

tangential displacement from the collision point is δ  . 

For the linear spring model, the two interacting bodies are connected normally and 

tangentially by linear springs.  The normal and tangential forces, Fn  and Ft   during collision 

are calculated with the following equations: 

 

   (6) 

 

  (7)
 

 

where  and  are the normal and tangential spring stiffness, and µ  is the interface friction 

coefficient. 

Vi

Fn = knα

Ft
new =

Ft
old + ktΔδ if Ft

new < µFn
µFn if Ft

new ≥ µFn

⎧
⎨
⎪

⎩⎪

kn kt
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The normal spring stiffness depends on the mass m of the body, the normal impact 

velocity , the sphere radius R, and a ratio E*, function of Young’s modulus E and Poisson's 

ratio .  For a sphere, Thornton, Cummins and Cleary (2011) proposed an equation based on 

the theory of Hertz :  

   (8) 

where 

   (9) 

The ratio of tangential spring stiffness over the normal spring stiffness relates the value for  

to the Poisson’s coefficient: 

 

   (10) 

 

The normal spring stiffness controls the overlap accepted between the two bodies and the 

duration of the collision.  A stiffer spring means a shorter collision time.  A softer spring 

means a longer collision time and more overlap. 

5. NUMERICAL METHOD 
 

The collision force model is implemented within a code presented earlier in Beaugendre et al. 

(2011).  The code solves the Navier-Stokes equations around rigid bodies in motion using an 

immersed boundary method.  The solid domains are defined using level sets function, and a 

penalisation method enforces rigid velocity inside the solid.  A vortex in cell scheme (VIC) 

solves the flow field on a Cartesian grid (Coquerelle and Cottet, 2008). 

With level set methods, each body is defined with a function  that contains the sign 

normal distance from the body surface, the distance being negative inside the body.  At each 

body-fluid interface, the level set function takes a value of zero. The figure 2 illustrates the 

situation for a circular ice piece, , in contact with an aerofoil wall, .  All the 

Vni

ν

kn =1.2024 m1/2E*2RVni( )2/5

E* = E
2(1−ν 2 )

kt

κ = kt
kn

= 2(1−ν )
2 −ν

φ
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information required by the collision model is already available within the code, but a 

collision force subroutine must be added and integrated within the time splitting algorithm. 

5.1 Collision force and level set function 

Consider the two bodies defined by the level set functions  and in a domain 

discretized by a Cartesian grid illustrated on figure 2.  Each node of the grid stores the values 

of the two level set functions.  The two bodies are in contact if  and  for some 

nodes of the grid.  On figure 2, the nodes , , , , and  are 

in this situation. 

 If there is a contact, a repulsive force must be computed.  Figure 3 defines the 

variables needed for the normal and tangential force calculations.  The normal distance 

deformation  is given by the level set function, , that is the negative distance between a 

point and the body surface.  Here, there is four grid points in contact, and the collision force 

model requires only one distance, thus, the calculations are done at the grid point where the 

value of the level set function is minimum, such that 

   (11) 

Among the five nodes in the contact area on figure 2, the node (i, j)  is the node where the 

force is evaluated. 

 For the tangential force calculation, the velocity at node  is needed.  The gravity 

centre of the body is moving at a velocity  with an angular velocity .  If the node is 

located at a distance  from the gravity centre, then the velocity vector is 

   (12) 

This velocity vector is decomposed in normal, , and tangential, , components, 

relative to the wing body.  The normal direction is obtained with the gradient of the level set 

function, ∇φwing   :  

   (13) 

φice φwing

φice < 0 φwing < 0

(i − 2, j) (i −1, j) (i, j) (i +1, j) (i + 2, j)

α φice

α = −minφice

(i, j)

Vcg ω (i, j)

r

V = (Vx ,Vy ) = Vcg +ωr

Vn Vs

nx =

∂φwing
∂x

∂φwing
∂x

⎛
⎝⎜

⎞
⎠⎟
2

+
∂φwing
∂y

⎛
⎝⎜

⎞
⎠⎟

2
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   (14) 

In 2D, with  and  the Cartesian velocity components, the tangential velocity is obtained 

by 

   (15) 

The discrete normal force is  

    (16) 

The application point of the force is at the node .  For the tangential force, the tangential 

displacement during the time interval  is needed 

   (17) 

such that 

   (18) 

The magnitude of the tangential force cannot exceed the static friction force, thus 

   (19) 

and the force is oriented in the direction of the tangential force. 

Once the normal and tangential force components are known, they are projected on the 

Cartesian axis.  The forces are transformed into a linear acceleration, , using the mass of 

the impinging body, , and into an angular acceleration using the mass moment of inertia of 

the impinging body, .  In 2D, 

   (20) 

and 

  

  .  (21) 
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∂y

∂φwing
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5.2 Time splitting algorithm 

In the context of the VIC scheme presented in Beaugendre et al. (2011), the collision is taken 

into account, if needed, by a modification of the moving body velocity.  The time splitting 

algorithm becomes, for each time step: 

1. Advection of the vortex by the local velocity field; 

2. Computation of the viscous term; 

3. Computation of the pressure gradient effects caused by the density variation from 

fluid to solid; 

4. Computation of an intermediate velocity  from the stream function field computed 

by solving the linear Poisson equation; 

5. Computation of the average linear and angular acceleration inside the solid region 

from the velocity field; 

6. Computation of the solid linear and angular velocities:  and 

; 

7. Move the solid according to  and  to obtain ;  

8. If a contact occurs, then subdivide the time step by a factor  and get solid position 

back to  

a. Computation of the acceleration caused by the collision force;  

b. Computation of the solid linear and angular velocities: 

and ; 

c. Move the solid according to  and  to obtain ; 

d. Repeat  times sub step a, b, and c; 

9. Computation of the penalisation term. 

This algorithm assumes that the velocity field is frozen during the collision.  The collision 

usually occurs for only one or two time steps, and the assumption of a frozen velocity field is 

close to the calculation reality.  The  value should be around ten or twenty to avoid deep 

overlapping between bodies that could create unphysical strong accelerations. 

 

u*

VCG
new = VCG + aΔt

ω new =ω + dω dtΔt

VCG
new ω new (xCG

new, yCG
new )

N

(xCG , yCG )

VCG
new = VCG + (a + acf )Δt / N ω new =ω + dω dt + dω dt( )cf( )Δt / N

VCG
new ω new (xCG
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6. RESULTS 
The numerical method is first validated against a well-documented collision test case from the 

literature.  A sphere bouncing on a flat plate in an empty space ( ) is studied with 

several mathematical models by Thornton, Cummins and Cleary (2011).  Then, the numerical 

method is verified for a particle moving into a viscous fluid and impinging on a cylinder and 

an aerofoil. 

 6.1 Bouncing with negligible viscous effects 

The collision model is validated by comparison with Thornton, Cummins and Cleary (2011) 

results for a sphere that bounce on a flat plate, without gravity.  The sphere is moving freely 

in a vacuum space; thus, no drag is exerted on it.  The sphere radius is , the density 

is , the Young modulus is  and the Poisson's coefficient is .  

The friction coefficient between the wall and the sphere is .  The sphere speed before 

impact is fixed at , however, the impact angle  is a variable.  The normalized 

tangential rebound velocity, the normalized angular rebound velocity, the tangential 

restitution coefficient , and the normal restitution coefficient  are defined for a tangential 

rebound velocity  and a normal velocity before impact  : 

   (22) 

   (23) 

   (24) 

The following relation defines the dimensionless rebound angle: 

    (25) 

Computations are done for impact angle values between 0˚ and 45˚.  The computational 

domain is rectangular ranging from (0m, 0m) to (2m, 6m) discretized by 800×2400 nodes.  

The sphere motion starts at (0.05m,0.03m).  The time steps used for calculation are 0.25×10-6 

s, 2.5×10-6 s, and 10×10-6 s.  The Figures 4, 5, and 6 show the results obtained with the model 

implemented and the three time steps.  The time step influence is small on these 

St ≈ ∞
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µ = 0.1

5m / s θi

et en
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V 'tr =
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2Rω r

(1+ en )µVni
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Vtr
Vti
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Vnr
Vni
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dimensionless results.  However, the time step influence on normal restitution coefficient is 

significant, ranging from 1.005 for the smallest time step to 1.20 for the largest time step. The 

dimensionless tangential velocity and the dimensionless angular velocity values on Figures 4 

and 5 are close to Thornton, Cummins and Cleary (2011) values, obtained with the same 

linear spring model but with a different numerical method.  For the tangential restitution 

coefficient, Figure 6, it is important to notice that for small impact angle, the values are very 

sensitive to the value of the tangential rebound velocity.  The tangential velocity is near 0m/s 

for small impact angles and the results became undetermined for a sphere colliding with 0˚ 

impact angle.  This may explain the difference between the results at low dimensionless 

angles. 

For this test case, a collision model that computes only the normal force will fail to predict 

the rotation of the sphere.  It will also not be able to capture the negative tangential rebound 

velocity after impact and the tangential restitution coefficient will have a constant value of 

one. 

6.2 Viscous bouncing 

The verification of the numerical implementation of the bouncing model coupled with a flow 

stream, and gravity is done with an immersed cylinder.  A body with a shape similar to a 

glaze ice shape is placed in front of the cylinder.  The case has been presented in details, with 

ice shedding but without solid collision, in a previous article (Beaugendre et al., 2011).  A 

schematic representation of the dimensionless computational domain  including the 

cylinder S1 and the ice piece S2, is sketched on Figure 7.  The flow is incompressible inside 

the rectangular box [-3,15] × [-6,6].  The cylinder diameter is ; the far field velocity 

 is used as the reference velocity.  The ice piece is defined by the area between the 

curve:  

   (26) 

and the line of equation y=0.3 followed by a rotation of 45˚ around the cylinder centre.  The 

fluid density is set to 1 and the solid density is set to 2.  The Reynolds number is 550.  The 

whole computational domain is meshed with a uniform Cartesian orthogonal grid.  After a 

grid sensitivity study, the grid with spacing h = 1/100 is selected and the non-dimensional 

time step is set to  for the ice shedding. 

Ω

D = 1

u =1

y = 0.9 − 4
0.3

x2  for x ∈[−0.15;0.15]

0.5 ×10−2
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The Figure 8 shows typical ice piece trajectories for two normal spring stiffness ratios. The 

ratio of tangential spring stiffness over the normal spring stiffness is 0.8235, and the interface 

friction coefficient is 0.1. The normal spring stiffness ratio for a spherical ice shape is related 

to ice physical properties by equation 8. However, the ice shape on Figure 8 is not spherical; 

thus, there are some uncertainties about the normal spring stiffness value that should be used.  

The results clearly illustrate that the ice piece bounces farther from the cylinder surface for 

the higher spring stiffness value.  The two trajectories are different near the cylinder, but 

downstream of the cylinder, they almost collapse together. 

The second test studied for viscous bouncing is the case of a NACA 0015 with a glaze ice 

shape in a uniform flow.  The computation domain, schematically draw on Figure 9, consists 

in a rectangular box of 5.5 m long by 3 m high.  The aerofoil as a 1 m cord length and the 

leading edge is located 1.5 m from entrance.  An ice shape is added on the upper side of the 

aerofoil, near the leading, directly on the aerofoil skin.  A uniform velocity of 1.82 m/s is 

imposed at entrance and symmetry boundary conditions are defined at the top and bottom of 

the rectangular box.  The fluid density is 1 kg/m3 and the ice density is 9.6 kg/m3.  The 

Reynolds number based on cord length is 2000 and the Froude number is 0.6.  The ratio of 

tangential spring stiffness over the normal spring stiffness is 0.8235 and the interface friction 

coefficient is 0.1. 

Details of the flow around the aerofoil and ice shape prior to ice shedding are presented on 

Figure 10.  Because of the small size of the computation domain and the small Reynolds 

number, it does not behave exactly as a free stream flow, but the flow is representative of an 

aerodynamic flow.  The Figure 10 shows the computed vorticity in the computation domain.  

With the penalisation method, the vorticity is also computed inside the bodies. Most of the 

vorticity is confined near the bodies, although vorticity is high in the separated flow area 

behind the ice shape. The streamlines confirm the existence of a separation bubble behind the 

ice shape. As expected, penalisation ensures that no streamline enters the solid regions.  

The figure 11 shows the flow after the ice shedding, when the ice piece is at midway 

location between aerofoil trailing edge and leading edge.  The isocontour of vorticity and the 

velocity vectors show that the flow is now attached at the leading edge of the aerofoil. 

Because the ice piece moves more slowly than the flow field, a wake is visible downstream of 

it.  A large separation bubble exists on the upper side of the aerofoil, between the ice piece 

location and the trailing edge.  The wake and separation bubble are a result of the tight 

coupling between the flow field and the ice piece displacement. 
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Three Cartesian grid sizes are used to study the mesh size effect on the solution: 

2751×1501 nodes (coarse), 4126×2251 nodes (medium), and 6188×3376 nodes (fine). The 

time step for the first two grids is 5×10-4 s, and for the finest grid, the time step has to be 

reduced to 2.5×10-4 s for stability reason.  The physical time duration of all the calculations is 

8s.  The Figure 12 shows the computed drag and lift force on the ice piece.  The computed 

aerodynamic coefficients are based on the cord length of the aerofoil.  After some oscillations 

at the beginning of the computation, the drag and lift coefficients become stable.  The drag 

coefficient is a little more sensitive to the grid size than the lift coefficient, the results on the 

medium size grid being 10% lower than the ones for the coarse and medium grid.  Note that 

the drag coefficient is only slightly larger than the lift coefficient.  The resulting force on ice 

piece is approximately inclined at 30˚ from the horizontal.  The ice shape wills roughly slides 

on the aerofoil surface at the beginning of the shedding motion. 

For the three grids, the ice piece trajectories are computed and shown on Figure 13.  

On the top of the figure the trajectories for the coarse, medium and fine mesh are compared 

together.  On the bottom, the ice piece positions prior to collisions are illustrated.  The ice 

piece first stays close to the surface at the beginning of the motion, until a bounce pushes the 

ice at a distance from the aerofoil.  Because of the gravity, the ice piece falls back on the 

aerofoil surface several times, meanwhile moving downstream.  The computed trajectories are 

quite sensitive to the grid size, but generally, as the grid gets finer, the ice piece stays closer to 

the aerofoil surface.  Because the ice piece is closer to the aerofoil for the fine mesh, it moves 

more slowly. Accordingly, the distance travelled by the ice piece is less at the end of the 

calculation.  As can be seen on bottom figure, the ice piece is too close too the surface to 

rotate.  When it starts to rotate clockwise or counter clockwise, one side of the ice piece hits 

the surface and generates a moment that counters the rotation.   

For the iced cylinder and the iced aerofoil, a collision model that does not take into 

account the tangential force will fail to predict ice piece rotation on impact.  With only a 

normal force computation, the ice bounces away from the surface but the rotations are only 

induced by the airflow.  In reality, a piece of ice that collides with a wall starts to rotate. 
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7. CONCLUSION 
The paper present a collision force model that enables the ice pieces to rebound on the aircraft 

skin into the airflow.  Compare to other CFD works, the model originality consists in the fact 

that both the normal and tangential forces are computed.  The Stoke number, the restitution 

coefficient, and the contact time are the parameters that govern collision.  When an ice piece 

collides with an aerofoil surface, the ice piece bounces almost instantaneously, with almost no 

viscous effects, and the speed is conserved at 91%.  The propose model is based on linear 

spring analogy, a model easy to implement in the context of solid motion based on a level set 

method. The linear spring model assumes that, during contact, the interacting bodies are 

connected tangentially and normally by linear springs.  The model implementation is first 

verified and validated with a sphere bouncing on a wall at various impact angles, at a constant 

speed into an empty space.  The results agree with literature.  Finally, the calculations of ice 

piece motions close to a cylinder and to an aerofoil are carried for verification of the 

numerical implementation and stability of the model equation.  The bouncing ice pieces 

behave as expected.  Trajectories are extremely sensitive to initial conditions and mesh size.  

Future works include validation of the model against experimental data, if any available. 
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Figure 1. Sphere bouncing on a wall with a velocity  and an angle θi  

prior to the contact, without angular velocity.  The sphere collides with 

the wall at point o and rebounds with a velocity Vr  and an angular 

velocity ω r . The sphere overlaps with the wall on a distance α   in the 

normal direction and the relative tangential displacement from the 

collision point is δ  .  
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Figure 2 : Level set functions and Cartesian grid.  Nodes of the Cartesian grid are in the 
overlap region if φwing < 0  and φice < 0 .  
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Figure 3 : Variables definition for collision force calculation. The normal distance 
deformation  is given by the level set function, , that is the negative distance between a 
Cartesian grid point and the body surface. 
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Figure 4. Tangential rebound velocity as a function of the 

dimensionless rebound angle.  Comparison between Thornton 

results(Thornton, Cummins and Cleary, 2011) and actual 

computational method for three time steps 
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Figure 5. Angular rebound velocity as a function of the dimensionless 

rebound angle.  Comparison between Thornton results(Thornton, 

Cummins and Cleary, 2011) and actual computational method for three 

time steps 
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Figure 6. Tangential restitution coefficient as a function of the dimensionless 

rebound angle.  Comparison between Thornton results(Thornton, Cummins and 

Cleary, 2011) and actual computational for three time steps. 
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Figure 7. Cylinder and ice shape. The flow is incompressible 

inside the rectangular box and goes from left to right, with the 

gravity vector from top to bottom. 
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Figure 8. Ice piece trajectories for two normal spring stiffness ratios  

and two ice density ratios after rebound.  
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Figure 9 : Computation domain around the 1 m cord iced aerofoil. The flow is incompressible 

inside the rectangular box and goes from left to right, with the gravity vector from top to 

bottom. 
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Figure 10 : Flow around ice shape and aerofoil before shedding.   The vorticity is computed 
everywhere with the penalisation method, but most of the vorticity is confined near the body 

and in the recirculation area. The streamlines confirm the existence of a separation bubble 
behind the ice shape.  
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Figure 11 : Flow velocity vectors and vorticity around the aerofoil with ice piece in motion 
The flow is now attached at the leading edge of the aerofoil but separated after the ice piece, 
located around X=0.4 on the upper side of the aerofoil. 
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Figure 12 : Effect of grid size on drag and lift exerted on the fixed ice shape for the iced 
aerofoil. Three Cartesian grid sizes are used: 2751×1501 nodes (coarse), 4126×2251 nodes 
(medium), and 6188×3376 nodes (fine). The time step for the first two grids is 5×10-4 s, and 
for the finest grid, the time step has to be reduced to 2.5×10-4 s for stability reason. 
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Figure 13 : Ice piece trajectory and bouncing around aerofoil. On the top of the figure the 
trajectories for the coarse, medium and fine mesh are compared together.  On the bottom, the 
ice piece positions prior to collisions are illustrated for the finest mesh. 
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