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École de technologie supérieure, 1100 Notre-Dame Ouest, Montreal (Québec), H3C 1K3 Canada

Abstract

The speed of graph-based segmentation approaches, such as random walker (RW) and graph cut (GC), depends strongly on image
size. For high-resolution images, the time required to compute a segmentation based on user input renders interaction tedious.
We propose a novel method, using an approximate contour sketched by the user, to reduce the graph before passing it on to a
segmentation algorithm such as RW or GC. This enables a significantly faster feedback loop. The user first draws a rough contour
of the object to segment. Then, the pixels of the image are partitioned into “layers” (corresponding to different scales) based on their
distance from the contour. The thickness of these layers increases with distance to the contour according to a Fibonacci sequence.
An initial segmentation result is rapidly obtained after automatically generating foreground and background labels according to
a specifically selected layer; all vertices beyond this layer are eliminated, restricting the segmentation to regions near the drawn
contour. Further foreground / background labels can then be added by the user to refine the segmentation. All iterations of the graph-
based segmentation benefit from a reduced input graph, while maintaining full resolution near the object boundary. A user study
with 16 participants was carried out for RW segmentation of a multi-modal dataset of 22 medical images, using either a standard
mouse or a stylus pen to draw the contour. Results reveal that our approach significantly reduces the overall segmentation time
compared with the status quo approach (p < 0.01). The study also shows that our approach works well with both input devices.
Compared to super-pixel graph reduction, our approach provides full resolution accuracy at similar speed on a high-resolution
benchmark image with both RW and GC segmentation methods. However, graph reduction based on super-pixels does not allow
interactive correction of clustering errors. Finally, our approach can be combined with super-pixel clustering methods for further
graph reduction, resulting in even faster segmentation.

Keywords:
Interactive segmentation, user study, graph-based segmentation, graph reduction, random walker, graph cuts

1. Introduction

Image segmentation consists of delineating specific (fore-
ground) objects from the background of a given image. This
task plays a crucial role in biomedical image analysis. Emerg-
ing applications, for example tumour measurement, 3D organ
reconstruction or cell counting, typically require a segmenta-
tion step. This task can be achieved with varying degrees of
user involvement, on a continuum from fully-manual to fully-
automated. Manual approaches are time consuming and lack
repeatability, whereas fully-automated approaches are not ap-
plicable in complex scenarios. A compromise between these
extremes is interactive segmentation, where the user supervises
and adjusts inputs in response to intermediate segmentation re-
sults. Because the user can modify inputs as long as the results
are unsatisfactory, human factors (i.e., usability) are an impor-
tant consideration.

Recently, graph-based approaches have gained popularity for
interactive segmentation [2, 11, 30, 19, 26, 23, 29]. The idea is
to represent the image as a graph, where vertices correspond
to pixel locations and edges represent pixel adjacency. Edges
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are weighted as a function of their likelihood of crossing an
object boundary. For interactive segmentation to be practical,
the computation of the edge weights and segmentation must be
fast, enabling a tight feedback loop. However, in graph-based
segmentation, computation time increases with graph size, of-
ten precluding interactive segmentation of high-resolution im-
ages. The total time to perform a segmentation also depends
on human factors, such as the input device used and the kind
of input required. These challenges are addressed in this pa-
per. We present a graph reduction approach that is guided by
a rough drawing of the object boundary provided by the user.
Our preliminary work [14] used automatically simulated input
drawings to show that this approach speeds up computations for
random walker segmentation. This paper further investigates
the approach and extends our analysis to make the following
additional contributions:

• A controlled experiment compared performance with two
input techniques and two input devices (mouse and stylus
pen).

• The graph reduction approach is extended to different in-
teractive graph-based segmentations ensuring a precise,
high-resolution segmentation.E-mail: houssem-eddine.gueziri.1@ens.etsmtl.ca (H.-E. Gueziri)
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• We evaluate our approach alongside, and in combination
with, graph reduction methods based on single and multi-
resolution super-pixels [1] to benefit from further speed-
ups.

Section 2 reviews work related to interactive graph-based
segmentation. Section 3 describes our user-guided graph reduc-
tion approach, and Section 4 discusses some of its key proper-
ties. Section 5 presents the user study, and Section 6 presents
benchmarks obtained by generalizing our approach to other
graph-based segmentation methods and exploiting super-pixel-
based reductions. Finally, Section 7 discusses the benefits and
limitations of our approach, and future directions.

2. Related work

2.1. Interactive graph-based segmentation
To preserve the intuitive character of manual segmentation,

Mortensen and Barrett [26] proposed Intelligent Scissors (IS),
which define a cost function measuring the likelihood of graph
edges crossing an object boundary. While the user draws a con-
tour near the object boundary, this contour is adjusted on the fly
using Dijkstra’s algorithm so as to follow a minimum-cost path
in the graph. Extensions of IS, including work by Mishra et al.
[24] and the Magnetic Lasso offered in Adobe’s commercial
Photoshop software, were proposed to enhance segmentation
flexibility. IS and its variants have two drawbacks: since the
minimum-cost path must be computed in real-time during user
interaction, the approach suffers from interaction feedback lags
when applied to large images. Moreover, IS requires relatively
high accuracy from the user when drawing the contour, which
makes segmentation laborious [19].

In contrast to the contour-based interaction required by IS,
region-based interaction involves drawing scribbles (labels) on
a small set of pixels, in the foreground and/or background re-
gions of the image. Boykov and Jolly [2]’s graph cut (GC)
segmentation is a popular approach where pixels (vertices) are
typically labeled in this manner. GC segmentation uses these
foreground / background labels to remove edges to maximize
flow [3], breaking the graph into two sub-graphs (foreground
and background).

Variants of GC segmentation have reduced the required user
interaction [15]. In GrabCuts [30], for example, the user first
frames the object inside a bounding box, to reduce the search
space. A Gaussian mixture model (GMM) is fitted to the
cropped image intensities and labels are automatically gener-
ated according to the modes of the GMM. An initial segmenta-
tion result is then obtained using GC. The user can then add ex-
plicit foreground and background labels to adjust the segmenta-
tion. GrabCuts fails in the presence of weak boundaries, mostly
because of the limited ability of the GMM to capture the true
object intensity distribution. Our approach is similar to Grab-
Cuts in that we exploit a user-drawn boundary to reduce the
search space. However, our approach relies solely on the graph-
based segmentation algorithm; no additional statistical model is
required. Moreover, instead of confining the search space to the
inside of a bounding box, the rough contour drawing is used to

reduce the search space to pixels near the object boundary. This
has three effects: (i) whereas the bounding box is constrained by
object shape (e.g., a large bounding box is needed to surround a
thin diagonally-oriented object), our approach is more flexible
and optimizes graph reduction for complex shaped objects, (ii)
our approach ignores pixels that are sufficiently far inside the
drawn contour, resulting in a speed-up, and (iii) our approach
allows more flexibility in the drawing, i.e., the drawn contour
may lie slightly inside and/or outside the object to segment.

In the presence of weak boundaries, GC leads to the “small
cuts” miss-segmentation problem. To address this, Grady [11]
proposed random walker (RW) segmentation, wherein unla-
beled pixels are assigned probabilities of belonging to each la-
bel category (foreground or background). Segmentation con-
sists of selecting the most probable label for each pixel. In the
absence of edges in the image, an unlabeled pixel is assigned
equal probability of belonging to equidistant labels, thereby
overcoming the small cuts problem.

Like GC, the RW method segments at interactive speeds for
reasonably sized images [19], but is not fast enough for high
resolution images. Grady and Sinop [13] proposed to pre-
compute the eigen-decomposition of the image graph’s Lapla-
cian matrix off-line to accelerate the computation of RW prob-
abilities. However, this solution is specific to RW segmenta-
tion, while our approach adapts to other graph-based segmenta-
tion methods. Moreover, the pre-computation itself is time and
memory consuming and unfeasible for live applications.

GPU parallelization has also been used to accelerate RW [12]
and GC [8], but is still constrained by hardware limitations be-
cause of the storage required for large datasets. Our approach
is compatible with existing GPU approaches and reduces the
amount of required GPU storage.

Yang et al. [34] proposed a constrained RW segmentation
framework where the user may draw foreground and back-
ground labels, as well as hard constraint labels to enforce a
particular boundary alignment, and soft constraint labels to in-
dicate a region where the boundary is expected to pass. This
combines contour-based input with the traditional region-based
input of RW segmentation. We leverage a similar combination
of user input methods, wherein the user draws a rough contour
of the object and then provides additional foreground / back-
ground labels to refine the segmentation results. Unlike our ap-
proach, Yang et al. [34]’s approach does not address the issue
of computation time. Moreover, their approach relies on addi-
tional energy functionals to force the boundary to pass through
certain labels, corrupting the probabilities computed by RW
segmentation, whereas our approach is entirely consistent with
the probabilities generated with RW. Because our approach is
solely based on user input to reduce graph size, it generalizes
easily to other segmentation approaches that rely on foreground
/ background labeling, such as GC.

2.2. Interactive segmentation evaluation

Because of human factors, it is difficult to quantitatively
assess interactive segmentation, especially when comparing
methods involving different types of input. Olabarriaga and
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Smeulders [28] enumerated three major criteria that an inter-
active segmentation should satisfy: (i) Accuracy is the degree
of similarity between the segmentation and the ground truth.
(ii) Efficiency relates to the amount of time required to perform
segmentation. (iii) Repeatability is the extent to which simi-
lar results can be obtained from multiple segmentations of the
same image. The three criteria are related. For example, given
sufficient time, the user can often refine the segmentation to
reach higher accuracy. This paper relies on these criteria to as-
sess interactive segmentation through a user study. To assess
repeatability, different users are asked to use different segmen-
tation approaches under the same conditions. Because the inter-
active segmentation process depends on the user’s assessment
of the results, the trade off between efficiency and accuracy is
left to user’s discretion.

User studies are a common way to evaluate different inter-
action techniques [21]. McGuinness and O’Connor [23] pre-
sented an experimental user study comparing four interactive
segmentation approaches according to Olabarriaga and Smeul-
ders [28]’s criteria. Results revealed better performance by
methods using foreground / background labeling. Hebbal-
aguppe et al. [16] investigated the influence of various types
of user scribbling input on GC segmentation performance. The
study considered: (i) basic foreground / background scribbling,
as originally introduced by Boykov and Jolly [2], (ii) bound-
ing box with scribbling, where the user frames the object in a
bounding box to focus segmentation, with optional foreground
and background scribbles to adjust the results, and (iii) outline
with scribbling, where the user initially draws the object bound-
ary and uses scribbling for segmentation refinement. This last
user interaction method was essentially manual segmentation.
As mentioned before, our approach requires the user to draw
a rough contour of the object boundary. However, compared
with the outline with scribbling method of Hebbalaguppe et al.
[16], ours requires far less accuracy in the drawing, making
it closer in spirit to scribbling rather than manual segmenta-
tion. In addition to time and accuracy, Hebbalaguppe et al. [16]
monitored user brain activity during segmentation with elec-
troencephalography (EEG) as a measure of user-effort. Assum-
ing that less user-effort reflects more efficient interaction, the
study highlights the benefits of using scribbles over a manual
segmentation. The study also shows a time reduction when us-
ing the bounding box with scribbling compared to outline with
scribbling and scribbling approaches. This could be because
the user is allowed to focus more exclusively on foreground ob-
ject labelling, since background labels are automatically gen-
erated outside the bounding box. A similar effect is exploited
in our approach. Once the rough contour is drawn, foreground
and background labels are automatically generated inside and
outside the object, respectively, allowing the user’s attention to
focus near the object boundary.

2.3. Graph reduction

Graph-based segmentation extends naturally to three-
dimensional images. Unfortunately, computation time in-
creases with image size, significantly impacting interaction. To

reduce segmentation time, adjacent vertices can be grouped to-
gether according to a homogeneity criterion to form a single
vertex called a super-pixel. This is typically performed before
user interaction as a pre-segmentation step. Several approaches
have been proposed to extract super-pixel structures from an
image, such as normalized cuts [25], TurboPixels [18] and sim-
ple linear iterative clustering (SLIC) [1]. For interactive graph-
based segmentation, each super-pixel forms a single vertex in
a new graph of smaller size. Super-pixels have been used with
a GPU implementation of RW segmentation [10], with water-
shed clustering and RW segmentation [7], using hierarchical
graph clustering and GC for video segmentation [9], and using
random seed generation with a lazy RW strategy [32]. How-
ever, the super-pixel extraction step affects the quality of the
segmentation results provided by the main segmentation algo-
rithm (e.g., RW or GC). If super-pixel extraction fails to detect
weak boundaries, the final segmentation inherits these errors
and, more importantly, these cannot be corrected through user
interaction. Moreover, super-pixels effectively reduce spatial
resolution over the entire image, impacting the segmentation.

Lermé et al. [17] proposed a different method to reduce graph
size for GC segmentation while preserving high resolution in
parts of the image graph where maximum flow is high. During
construction, vertices are discarded if they do not contribute
significantly to max-flow computation [3]. Unfortunately, for
highly textured images, the graph is only reduced slightly and
the time spent on graph reduction may not be compensated by
the time gained during segmentation.

To our knowledge, very little work has investigated the rel-
evance of user drawings for graph reduction. Such a drawing
hints as to where the object boundary is likely to be. Although
the bounding box method used by Hebbalaguppe et al. [16] also
leverages user input, this is basically to crop the image, and the
user still needs to scribble the foreground. GrabCut [30] also
uses a bounding box, but fails in images with low contrast due
to GMM fitting. Our approach maintains the same quality as the
primary segmentation algorithm (e.g., GC or RW) used. More-
over, bounding boxes lack flexibility for dealing with objects
whose dimensions are not aligned with the pixel grid or whose
shape is not convex.

3. Proposed graph-reduction method

Fig. 1 illustrates our approach. First, the user roughly draws
the object boundary. The object of interest is not required to
fit inside the contour, making our approach more flexible than
bounding box approaches. Starting from this user-drawn con-
tour, a distance map is computed containing the distance from
each pixel to the contour. Then, the distance map is used to
partition the pixels (vertices) into layers, whose thicknesses in-
crease according to the Fibonacci sequence (see Fig. 1.b). Fore-
ground and background labels are then automatically gener-
ated on two selected layers, called the detail significance lay-
ers (DSLs), and vertices beyond the DSL are eliminated from
the graph. Finally, a segmentation algorithm (e.g., RW or GC)
is run on the reduced graph, thereby accelerating computation.
Further benefits of our approach are: (i) it easily extends to
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(a) (b) (c)

(d) (e) (f)

Figure 1: Example of a segmentation using our graph reduction approach : (a)
Rough boundary quickly drawn by the user; (b) Layer thicknesses increasing
according to the Fibonacci sequence; (c) Seed generation in the inner (red) and
outer (green) regions, corresponding to the detail significance layers (DSLs); the
hatched region (yellow) contains ignored vertices; (d) initial RW segmentation
result; (e) refinement by the user with foreground (red) and background (green)
labels and (f) final RW segmentation result.

super-pixel representations [10, 7, 9, 32] for further graph re-
duction; (ii) it is parallelizable using a GPU implemention of
the distance transform [31], so that the entire segmentation can
be run on a GPU [12, 8]; and (iii) unlike super-pixel-based
graph reduction, our approach preserves full resolution near
the boundary and only one segmentation algorithm is required
(e.g., RW or GC), thereby preserving the performance and ho-
mogeneity of the approach.

3.1. Random walker segmentation

Our approach applies to most interactive graph-based seg-
mentation methods using foreground / background labels (e.g.,
GC [2], GrabCuts [30], and RW [11]). For concreteness, we
focus on RW, which we now review.

First, the graph G = 〈V,E〉 is built from the image, where
v ∈ V are the vertices corresponding to pixels of the image and
e ∈ E ⊆ {{u, v} : u, v ∈ V} are the edges connecting each pair
of adjacent pixels. A weight wi j is assigned to the edge ei j that
connects vertices vi and v j such that

wi j = exp(−β(gi − g j)2), ∀i, j = 1, ..,N, i , j, (1)

where gi and g j are the pixel intensities at vertices vi and v j,
respectively, N is the total number of pixels in the image, and β
is a user-supplied constant. A large β results in high sensitivity
to weak boundaries.

Assume that the user has manually labeled sets of foreground
and background pixels (seeds), partitioning the verticesV into
a set S of seeds and a set U of unlabeled vertices. For each
label category (foreground or background), and for each unla-
beled vertex vi ∈ U, the RW algorithm computes the probability
that a random walk starting at vi will reach a seed of the label
category in question before reaching a seed of the opposite cat-
egory. Let x be an N × 2 matrix such that each column contains

the probabilities of the vertices belonging to one of the two la-
bel categories. We can represent x as

x =

[
xS
xU

]
,

where xU is the |U | × 2 probability matrix of the unlabeled ver-
tices and xS is the |S | × 2 probability matrix of the seeded ver-
tices. Then, the graph’s Laplacian matrix L is given by [11]

Li j =


di if i = j
−wi j if vi and v j are adjacent
0 otherwise

, (2)

where di =
∑

j wi j is the degree of the vertex i.
L can be decomposed as

L =

[
LS B
BT LU

]
,

where the subscript S (resp. U) denotes the seeded (resp. un-
labeled) components of the Laplacian matrix L, and B is the
remainder submatrix of L. The unknown probabilities xU are
obtained by solving

LUxU = −BTxS. (3)

LU is a sparse matrix and is easily inverted. The speed of the al-
gorithm depends on how efficiently Eq. 3 is solved, i.e., O(|U |).
Generally, |S | � |U |, so the segmentation time is strongly de-
pendent on the image size N = |V|.

3.2. Interactive graph reduction
In our approach, the initial user input is a rough drawing of

the object boundary. This section shows how multi-scale layers
are built from the user’s drawing. Then, we describe how to use
the layers to automatically generate foreground and background
seeds and reduce the graph for segmentation. After the initial
segmentation results are obtained, the user can add foreground
and background labels for segmentation refinement.

3.2.1. Layer construction
Assuming a cooperative user, the true object boundary is

most likely to be near the drawn contour. To focus the search for
the boundary near the drawn contour and ignore details in dis-
tant regions, we adaptively reduce image resolution according
to the distance from the drawn contour. A Euclidean distance
map D is computed as [22], such as,

D(p) =

√∑d
i (pi − li)2, (4)

where the subscript i indicates the ith coordinate in a d dimen-
sional space, and l is the labeled pixel with the smallest Eu-
clidean distance to the unlabeled pixel p. Thus, D is the dis-
tance from each pixel to the drawn contour. Pixels are then
grouped into layers which quantify the significance, or relative
scale, of the information contained in the image, based on the
distance map. This notion of scale is naturally embedded in lay-
ers whose thicknesses increase multiplicatively with distance.
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Figure 2: Effect of thickness function on layer generation: (a) plot of number
of layers generated according to the distance from the drawn contour using
different thickness functions t(n) = kan with k = 1 and a = 2, a = 1.75, a = 1.5
and a = 1.25 and the Fibonacci function t(n) = t(n − 1) + t(n − 2), (b) results of
layer generation using a square drawing (blue).

Thus, the thickness t(n) of the nth layer is given by the expo-
nential relationship

t(n) = kan, (5)

where a > 1 is a constant representing the thickness ratio be-
tween layers n and n + 1, and k > 0 is a multiplicative constant
representing the thickness assigned to the contour drawing it-
self. For example, with a constant a = 2 each layer n is twice as
thick as the previous layer n−1. We want to find, for each pixel
p, the index (or scale) n that corresponds to the highest t(n) that
is lower than its distance D(p) to the drawn contour. Hence, we
assign a layer number, L(p), to each pixel p in the image such
that

L(p) =

⌊
log(D/k)

log(a)

⌋
. (6)

In the particular case where

t(n) '
1
√

5
φn,

where the constant φ = (1 +
√

5)/2 ' 1.618 is the golden ratio,
thickness grows according to the Fibonacci sequence:

t(n) =

{
n, n ∈ {0, 1}
t(n − 1) + t(n − 2), ∀n =≥ 2. (7)

Fig. 2 shows examples of layer maps generated using different
t(n). Experimentally, we observe that the Fibonacci sequence
provides a reasonable trade-off between the goals of maintain-
ing high resolution near the drawing and rapidly decreasing res-
olution far away from it. For the remainder of this paper, we
choose the Fibonacci sequence to build the layers. However, a
and k can be adjusted to adapt layer growth depending on the
application.

In practice, Eq. 7 is computed using Binet’s formula [33]

t(n) =
φn − (−φ)−n

√
5

. (8)

Since ∣∣∣∣∣−1
φ

∣∣∣∣∣n < 1
2
, ∀n > 1, (9)

Eq. 6 can be rewritten as

L(p) =

 log(
√

5D(p) + 1
2 )

log(φ)

 , (10)

were 1
2 is added for rounding convenience based on Eq 9.

Note that the distance map D in Eq. 10 need not be Eu-
clidean; different distance metrics may suit different applica-
tions or imaging modalities. For example, a gradient-based
geodesic distance would grow slowly in homogeneous regions,
increasing the thickness of the associated layers. On the other
hand, highly textured regions would be associated with a locally
fast increasing distance map, leading to thinner layers. There-
fore, image information can be integrated to the distance map
to facilitate layer growth according to local image characteris-
tics, e.g., with texture-based geodesic distance map [29]. For
the remainder of this paper, we consider the Euclidean distance
metric in Eq. 4.

3.2.2. Segmentation
We assume that the user roughly labeled only one object

boundary, thereby defining an inner Rin region and outer Rout

region1. Recall that the flexibility of the contour drawing
paradigm allows the true object boundary to lie on both the
inner and the outer regions, which is not the case for previ-
ously proposed user-selected bounding box [16]. Next, pixels
are assigned to their respective layers using Eq. 10 and the most
distant layer for each region is computed:

Lin = max(L(p)), ∀p ∈ Rin

and
Lout = max(L(p)), ∀p ∈ Rout.

The smaller of these two numbers determines the index of the
detail significance layers (DSLs)

DSL = min(Lin, Lout). (11)

Pixels lying on the DSLs, inside and outside the user-drawn
contour, are automatically labeled as foreground and back-
ground seeds, respectively, and all vertices beyond the DSLs
are discarded from the graph2. The runtime of RW segmenta-
tion is O(|U |). Thus reducing the the number |U | of unlabeled
vertices improves computation time.

The proposed layer formulation naturally lends itself to a
user-defined multi-resolution representation of the image. This
can be obtained using super-pixel clustering, where the size of
the super-pixels grows according to the layer where they re-
side. This highly general approach will be illustrated in Sec-
tion 6.3. For the moment, we consider the binary case where

1In a multi-label segmentation, the user must create separate objects by
roughly marking their boundaries. This is the only constraint imposed on the
user.

2We assume that no background regions (holes) are contained inside the
target object to segment. This limitation can be addressed by drawing multiple
contours inside the object to separate the background regions.
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(a)

(b)

Figure 3: Step-by-step RW segmentation example showing the geometric con-
straints of label positioning : (a) conventional RW segmentation approach; (b)
our segmentation approach. Top rows show foreground (red) and background
(green) seeding and rough contour drawing (yellow), respectively. Bottom rows
show results (blue). Label positioning constraints force the user to correct the
segmentation through multiple iterations, surrounding the object with back-
ground labels. This is explicitly expressed with the rough contour drawing
in our approach.

the image is represented using only two resolution categories:
(i) a pixel-resolution below the DSLs, and (ii) a one-region-
resolution above the DSLs. This amounts to treating pixels ly-
ing above the DSL as a single vertex in the graph, leading to
an inner vertex inside the object and an outer vertex outside the
object. This particular case, achieved by thresholding of the
distance map according to Eq. 11, allows us to validate our hy-
pothesis that pixels far from the contour drawing (i.e., above the
DSL) do not contribute to the segmentation.

The DSL can also be selected manually. This controls how
loosely the user-drawn contour can fit the true contour. Increas-
ing the DSL reduces the number of ignored vertices (the dashed
yellow area in Fig. 1.c), providing a larger unlabeled area where
the contour is sought. Decreasing the DSL leads to a smaller
graph and, therefore, to fewer computations, but may require a
more accurate drawing to achieve good results. The DSL com-
puted automatically with Eq. 11 provides a reasonable compro-
mise between these two extremes.

4. Interaction constraints and segmentation behavior

In this section, we highlight the explicit and implicit con-
straints imposed by the contour drawing paradigm compared to

standard foreground-background seeding (FBS) input. Then,
we discuss the sensitivity of our approach to inaccuracies in the
contour drawing.

4.1. User interaction constraint

Most cases require to approximately surround the object with
the contour drawing to obtain a satisfactory segmentation. In
the presence of weak boundaries, the FBS approach implicitly
embeds a similar spatial constraint on seed positioning. Fig. 3
shows an example of a RW segmentation using FBS interaction.
Due to the initial seed positions, the user is forced to correct the
segmentation with background labels through several feedback
exchanges with the segmentation algorithm. For high resolution
images, segmentation feedback can take a longer time, render-
ing this interaction tedious. It is possible to anticipate the be-
havior of FBS segmentation by labeling the potential segmen-
tation overflow areas surrounding the object. This very nearly
amounts to a rough contour drawing.

Fig. 4 shows more examples of RW segmentation using our
approach. In most cases, the contour drawing is sufficient
to correctly segment the object. For other complex scenar-
ios where the boundary is weak or missing, few additional
foreground-background labels are required (e.g., the second
row of Fig. 4).

4.2. Sensitivity of the contour drawing

To measure the sensitivity of our method to the drawing, we
systematically evaluated the quality of the segmentation as this
drawing departs from a ground truth segmentation. That is, the
drawing was iteratively shrunk inward (respectively expanded
outward) the object. At each iteration, 50 contour drawings
were generated using a random path that roughly follows the
shrunk or expanded curve [14]. Then, the segmentation result
associated to each trial is evaluated using the harmonic mean of
precision and recall (also known as the Dice index), denoted

F1-Score =
2TP

2TP + FP + FN
∈ [0, 1], (12)

where TP, FP and FN are the true positive (object surface),
false positive and false negative scores, respectively. The
F1-Score tends to 1 as the segmentation result approaches the
ground truth. Fig. 5.a shows the F1-Score as a function of a
drawing’s distance from the true boundary. The results prompt
two important observations. First, note that the curve is skewed
in the outward (negative) direction meaning that the interaction
is slightly more robust to errors when the contour is drawn out-
side the object boundary. Second, significant cyclic drops of
the F1-Score can be observed. These are related to the quanti-
zation of the layers generated using the Fibonacci sequence (see
Fig. 6). In fact, Eq. 11 selects the largest layer number. How-
ever, the layer with the largest number in the inner region can
occasionally contain too few pixels, leading to segmentation er-
rors. Examples of segmentation failure are shown in Fig. 5.b-c.
Note that the location of the F1-Score valleys are specific to the
image and the considered object. In practice, this does not af-
fect the quality of segmentations obtained interactively, as rapid
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Figure 4: Examples of segmentation using the random walker with our ap-
proach: (left) ground truth image, (middle) rough contour drawn by the user,
and (right) segmentation results. For most cases, a rough contour drawing is
sufficient to obtain a satisfactory segmentation. Note that for the complex seg-
mentation of the ultrasound image of kidney (second row), a few additional
foreground-background labels are required.

response from the segmentation algorithm allows for a quick
interactive correction with few additional labels, and all correc-
tions benefit from the initial speed-up. This is demonstrated
experimentally in Section 5.

5. User study

We conducted a controlled experiment to compare our
rough contour drawing (RCD) method against the conventional
foreground-background seeding (FBS) approach for segmenta-
tion. RCD has the advantage of reduced computation time for
each iteration of segmentation, but incurs the up-front cost of
drawing a contour, hence the need for an experimental com-
parison. The following questions are addressed: (i) Does RCD
provide satisfactory results in terms of segmentation quality?

(a) (b) (c)

Figure 5: Sensitivity of the algorithm to the accuracy of the contour drawing:
(a) plot of median value of F1-Score and range between first and third quar-
tiles, respectively Q1 and Q3 as function of drawing distance to the true object
boundary; positive (resp. negative) distance indicates an inward (resp. outward)
drawing distance. Examples of segmentation failure at distance 3 pixels (b) and
-13 pixels (c).

Figure 6: Illustration of the quantization effect of the Fibonacci sequence on
seed generation: The left image represents a distance of 31 pixels generating
a DSL = 8, the number of seeds generated is related to the size of the dashed
area. On the right image, a higher DSL = 9 is generated with a distance of 36
pixels. However, the number of generated seeds is smaller.

(ii) Does RCD’s reduced computation time help the user reduce
the overall segmentation time? (iii) Is performance affected by
the input device used? We assessed performance by measuring
the quality of the final segmentation, the overall time to com-
plete a segmentation, and the number of labels drawn by the
user.

5.1. Study design
With the FBS drawing technique, the user labels the fore-

ground object and the background as is conventionally done
[11]. With the RCD drawing technique, the user draws a rough
contour of the object to reduce the graph and later uses fore-
ground / background labeling to refine the segmentation. Two
input devices were used: a standard mouse, and a “Grip Pen” on
a Wacom Cintiq Companion Hybrid graphics tablet connected
to the desktop PC. The Wacom device allows the user to phys-
ically draw on the tablet screen using a handheld stylus pen.
There were thus two experimental factors crossed to form four
main conditions: Device (Mouse or Pen) × Drawing (FBS or
RCD) yielding the combinations M+FBS, P+FBS, M+RCD
and P+RCD . Eq. 1 with β = 300 was used in all cases, and all
processing was done on an Intel c© Core i7-2630QM 2GHz × 4
machine.

Sixteen participants (13 male, 3 female), primarily under-
graduate and graduate students with no particular expertise in
medical imaging, were recruited. Some had prior experience
with interactive segmentation using FBS with GC and/or RW.

An initial dataset of 22 images was prepared, ranging from
256 × 256 to 1348 × 1101 pixels. Images comprised com-
puted tomography (CT), magnetic resonance (MR) and X-ray

7



images from the cancer imaging archive database [5], to which
we added ultrasound (US) images acquired with an Ultrasonix
SonixTablet. Images were selected to cover a broad range of
medical applications: brain imaging (MR, CT), carotid imaging
(US), abdominal imaging, e.g., kidney, bladder, prostate (US,
MR and CT) and chest and pelvic imaging (X-ray). All images
were manually segmented to generate ground truth data. This
dataset of 22 images was then divided into two subsets, dataset
1 (DS1) and dataset 2 (DS2), of 11 images each.

Each participant completed tasks under the four main condi-
tions (M+FBS, P+FBS, M+RCD, P+RCD) whose order was
counterbalanced according to a 4 × 4 Latin square (i.e., each
quarter of the participants went through the conditions in an or-
der given by one row of the Latin square). For each participant,
two of the conditions were performed using DS1, and the other
two were performed using DS2. Further counterbalancing en-
sured that half of the participants started with DS1, the other
half started with DS2. In total, there were 16 participants × 2
Drawing conditions (FBS and RCD) × 2 Devices (Mouse and
Pen) × 1 data set (DS1 or DS2) × 11 images per data set = 704
interactive segmentation trials.

In each trial, participants were shown the ground truth seg-
mented image and were asked to reproduce a similar result. The
ground truth segmentation was provided because the purpose
of the study was to assess segmentation performance, not the
medical image interpretation skills of the participants. Partici-
pants assessed the accuracy qualitatively by visualization of the
ground truth image. No time limit was set for the segmentation
task and the accuracy was left to user satisfaction. This reflects
the trade-off between ease of use and the time required to seg-
ment the image. For each main condition (M+FBS, P+FBS,
M+RCD, or P+RCD), participants were first introduced to the
segmentation method through a training session using 13 im-
ages belonging to neither DS1 nor DS2. No data were recorded
during training. Then, during the recorded session, the partic-
ipants were asked to perform the most accurate segmentation
they could with respect to the ground truth in the shortest time
possible for each image. A trial consists of segmenting one
image. During each trial, editing (where the user positions the
labels) and processing (where the segmentation results are com-
puted) phases alternated.

With interactive segmentation, any additional user interface
features, such as ability to zoom or undo, would affect perfor-
mance, however these are not the focus of our study. We there-
fore controlled for such differences between user interfaces by
keeping the user interface as simple as possible, restricting user
actions to (i) drawing foreground, background and contour (for
RCD) labels, (ii) resizing the drawing brush, and (iii) erasing
seeds. Participants could not zoom or undo.

At the end of each trial, when a satisfactory segmentation re-
sult for the image was obtained, we recorded the time required
to perform the segmentation and the accuracy of the final result
using Eq. 12. Because user performance varies substantially
between images, the overall segmentation performance for the
whole dataset was considered, rather than for each individual
image. In other words, the time reported in our results section
is the total time required for a participant to segment all 11 im-

Criterion Results

Time
The fastest interactive segmentations are achieved
using our approach (RCD), irrespective of the de-
vice (mouse or pen) that is used.

Accuracy
Our graph reduction approach does not sacrifice ac-
curacy in any significant way, irrespective of the
device (mouse or pen) that is used.

Human effort

Overall, interactive segmentation that is initiated
using our RCD approach does not require signifi-
cantly more manual labeling than segmentation ini-
tiated with the conventional FBS approach.

Table 1: Key conclusions of the user study.
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Figure 7: (a) The mean time for each condition and (b) the F1-Score (a larger
score means better accuracy) for each condition.

ages, and the accuracy score is the average F1-Score obtained
over the 11 images.

5.2. Results

Table 1 summarizes our conclusions. The details of the anal-
ysis supporting these conclusions are provided in the next two
subsections, with important results in bold.

5.2.1. Interaction
Fig. 7 shows average time and accuracy for the main con-

ditions. A Shapiro-Wilk normality test revealed that the time
taken to perform segmentations was not normally distributed
[p < 0.01]. Therefore, a non-parametric ANOVA-type statis-
tic (ATS) test [4] was considered. Segmenting using the RCD
(meanRCD(Time) = 65.09±3.98sec) was significantly faster than
using FBS (meanFBS(Time) = 113.43 ± 6.92sec) [p < 0.01].
Qualitatively, the time reduction was more substantial for larger
images. These results support our initial hypothesis that the
time spent drawing the rough contour results in a signif-
icant gain in the overall segmentation time. Segmentation
using the pen (meanpen(Time) = 94.65 ± 6.67sec) was sig-
nificantly slower than using the mouse (meanMouse(Time) =

83.86 ± 7.42sec) [p < 0.01]. Considering the intuitiveness
of the tablet and pen for drawing, this was unexpected. This
result could be explained by the low drawing accuracy re-
quired by RW segmentation to obtain satisfactory results. The
F1-Score results show that both devices provide sufficient con-
trol to perform a good segmentation. Indeed, no significant dif-
ference was found between the four conditions regarding the
F1-Score (mean(F1-Score) = 0.919 ± 0.001) with [p = 0.70]
and [p = 0.14] for the Drawing and the Device factors, respec-
tively ; meaning that using the rough contour drawing (RCD)
method, users achieved the same segmentation accuracy in
shorter time with both devices.
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Figure 8: Box plot of (a) number of segmentation feedback exchanges and (b)
number of labeled pixels. Note that in the latter, FBS shows larger variations
than RCD.

To evaluate user effort, we analyzed the number of pixels that
were labeled by the participants and the number of segmenta-
tion feedback exchanges required to achieve the final segmenta-
tion (i.e., the number of times the user pushed the segmentation
button to view an intermediate result), shown in Fig. 8. Tukey
contrast tests [27] on the normalized number of labeled pixels
and the number of segmentation feedback exchanges reveal no
significant differences between the four conditions, suggesting
that all the approaches required similar amounts of effort,
on average.

However, a Fligner-Killeen test [6] reveals a significant in-
homogeneity of variances in the number of labeled pixels [χ2 =

21.95, df = 3, p < 0.01]. This reflects the larger inter-quartile
range displayed for the FBS approaches in Fig. 8.b. In other
words, the conventional labelling approach allows larger
variation in the drawings. This result is related to the implicit
label positioning constraints in the FBS approaches, discussed
in Section 4.1. The FBS approach gives the user more freedom
in drawing, but the positions of truly useful labels are actually
constrained by the algorithm. Therefore, the number of labeled
pixels varies significantly from one user to the next, depending
on the usefulness of their drawings. In contrast, the RCD ap-
proach is explicitly constrained, thereby facilitating the seeding
process.

5.2.2. Computation time
From the previous study, we extracted the final labels gen-

erated by the participants for each image. We also recorded
the average time required to compute the segmentation on each
image, ignoring the time required by participants for drawing.
Fig. 9.a shows that the average computation time grows lin-
early with image size. This is because the size of the linear
system of Eq. 3 is proportional to the size of the image. The
computation time trend with respect to image size is estimated
with a linear regression giving 6.203 s/Mpixel for the FBS and
1.577 s/Mpixel for the RCD. Therefore, our approach is on
average 3.93 times faster than the conventional RW segmen-
tation.

Fig. 9.b shows average overall segmentation time (including
user interaction time) as function of image size. First, we note
that the time required for the user to perform segmentation in-
creases with image size. Second, the most significant benefits
of the contour-based graph reduction approach occur for large
images. For the largest image with size 1348 × 1101, the aver-
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Figure 9: Results of the segmentation time according to the image size: (a)
Computation time excluding user interaction time, dashed lines represent the
linear regression of the data for both FBS (blue) and our approach RCD (red)
and (b) overall segmentation time including user interaction time.

age participant performed the segmentation in 35.28±8.42 s for
M+FBS, 12.96±4.56 s for M+RCD, 45.64±20.22 s for P+FBS
and 26.18±8.26 s for P+RCD. In addition to reducing segmen-
tation time, our graph reduction approach leads to the highest
repeatability between participant performances. This is due to
the explicit label positioning constraint that forces participants
to focus the drawing while using our segmentation approach.

6. Extension to other segmentation algorithms

Having demonstrated the benefits of our approach in the con-
text of RW segmentation through a user study, we now show
how these extend to other graph-based approaches and how
they compare and can be combined with super-pixel cluster-
ing for further improvements in efficiency. A benchmark seg-
mentation is experimented and three key features of our method
are highlighted: (i) the benefits of combining our approach to
super-pixel-based graph reduction, for example using simple
linear iterative clustering (SLIC) [1], are shown in Section 6.1,
(ii) the independence of our graph reduction approach with re-
spect to the choice of segmentation algorithm is shown in Sec-
tion 6.2 by extending our approach to the GC [2] and Lazy
Snapping [19] segmentation algorithms, and finally (iii) multi-
resolution graph segmentation using multiple super-pixel res-
olutions. Table 2 summarizes the segmentation time obtained
for each method. For all the experimented algorithms, using
our graph reduction, the segmentation performs faster than the
conventional super-pixel graph reduction. Furthermore, our ap-
proach achieves slightly better F1-Scores, due to the preserva-
tion of full pixel resolution around the boundary (which is not
possible with super-pixels). When combined with super-pixel
reduction, both RW and GC are accelerated. However, this is
not the case for Lazy snapping segmentation approach, due to
the on-line k-means clustering. The remainder of this section
provides further details about the experiment results.

6.1. Combination with super-pixels
Our graph reduction approach is independent of the image

graph. Therefore, super-pixel clustering approaches can be
used alongside it to further reduce the graph. To illustrate this,
we choose the simple linear iterative clustering (SLIC) super-
pixel method, which provides satisfactory results in terms of
under-segmentation error [1]. A cryosectional image of human
anatomy of size 2048×1216 [20] was used for this experiment.
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Column 1 Column 2 Column 3
Off-line Random Walker Lazy Snapping Graph Cuts

Conventional – 26.401 ± 0.364 13.235 ± 1.726 3.861 ± 0.167

(i)
- Graph building – 0.188 ± 0.006 1.880 ± 0.069 1.693 ± 0.140
- k-means – – 1.114 ± 0.033 –
- Eq. 3/max-flow – 25.813 ± 0.356 9.726 ± 1.726 1.595 ± 0.070

Conventional w/ super-pixels 39.391 1.789 ± 0.028 2.671 ± 0.091 1.068 ± 0.035

(ii)

- Super-pixels 39.391 – – –
- Graph building – 0.205 ± 0.004 0.604 ± 0.023 0.600 ± 0.020
- k-means – – 1.573 ± 0.077 –
- Eq. 3/max-flow – 1.168 ± 0.029 0.003 ± 0.002 0.00071 ± 0.0

Our approach 0.551 1.352 ± 0.023 1.541 ± 0.068 1.004 ± 0.046

(iii)

- Layers 0.551 – – –
- Graph building – 0.704 ± 0.019 0.567 ± 0.049 0.530 ± 0.030
- k-means – – 0.530 ± 0.039 –
- Eq. 3/max-flow – 0.038 ± 0.009 0.011 ± 0.0 0.024 ± 0.002

Our approach w/ super-pixels 39.942 0.822 ± 0.026 3.588 ± 0.189 0.901 ± 0.029

(iv)

- Layers 0.551 – – –
- Super-pixels 39.391 – – –
- Graph building – 0.417 ± 0.021 0.512 ± 0.020 0.514 ± 0.023
- k-means – – 2.683 ± 0.193 –
- Eq. 3/max-flow – 0.000447 ± 0.0 0.000039 ± 0.0 0.00004 ± 0.0

Table 2: Computation time comparison (mean ± one standard deviation) of the
conventional segmentation approaches to our graph reduction approach with
and without super-pixel pre-segmentation. The off-line time indicates the re-
quired pre-processing time to build the graphs (i.e., layers and/or super-pixels).
Columns represent the method used to solve the segmentation problem, i.e.,
Random Walker, Lazy Snapping and Graph cuts. Rows represent the graph
reduction approaches used during the segmentation, i.e., (i) conventional ap-
proaches as described in [11], [19] and [2] respectively, with no graph reduction
(ii) conventional approaches used with SLIC super-pixel graph reduction, (iii)
our approach as described in Section 3, and (iv) our approach combined with
SLIC super-pixel graph reduction. Shaded rows represent the total segmenta-
tion time. Best results are showed in bold characters.

The task was to segment the right hand biceps using identi-
cal input labels for RW with and without SLIC (resp. for our
approach with and without SLIC) approaches (see Fig. 10.e-
f). Table 2 (column 1) shows the computation time results of
the four segmentation approaches. The experiment was re-
peated 100 times using the same labels, to account for time
lags from external factors. The time to generate 2000 super-
pixels using SLIC was 39.391 s. Using our approach, the
time required to build the layers from the RCD was 0.551 s.
Note that the layers are computed immediately after the user
draws the contour. These two computations are only carried
out once. However, the time required for super-pixel cluster-
ing renders the segmentation inefficient for live applications.
The computational bottleneck for RW segmentation is solving
Eq. 3 (25.813 ± 0.356 s). Using our approach, this computation
is reduced to 1.352 ± 0.023 s, outperforming RW with SLIC.
Moreover, our approach can be combined with super-pixels to
further reduce the computation time to 0.822 ± 0.026 s. How-
ever, using super-pixels can lead to segmentation errors in the
case of weak boundaries, as illustrated in Fig. 10.d. Our ap-
proach, preserves high-resolution segmentation results near the
object boundary (0.968 using our reduction approach vs. 0.938
using SLIC reduction). This is important for interactive seg-
mentation, since the user cannot possibly correct segmentation
errors that originate in super-pixel creation.

6.2. Extensions to graph cut and lazy snapping segmentation
algorithms

To show the generalizability of our approach, we applied our
graph reduction approach to lazy snapping segmentation [19]
(see Fig. 11). Lazy snapping segmentation is based on interac-
tive GC [2]. Briefly, the GC approach is based on the minimiza-

a

Conventional image

b

Super-pixels

c
Ground truth

d
Zoom on

super-pixels

e
FBS

f
RCD

g
Conventional

h
Our approach

i
Conventional

w/ SLIC

j
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Figure 10: Random walker segmentation of the right biceps of a high-resolution
cryosectional image: (a) Conventional image, the white rectangle is the region
represented in figures (c-j), (b) super-pixel clustering using SLIC, (c) ground
truth segmentation, (d) zoom on the super-pixel clustering, the red arrows in-
dicates segmentation errors, (e) foreground and background drawings for RW
approaches with and without SLIC super-pixels, (f) rough contour drawings ap-
proaches with and without SLIC super-pixels, (g-j) random walker segmenta-
tion results using conventional approach, our approach, conventional approach
with super-pixels, and our approach with super-pixels, respectively. When us-
ing super-pixels, the final segmentation inherits the SLIC segmentation errors.

tion of a Gibbs energy function

E =
∑
viv j

Ebinary(vi, v j) + λ
∑

vi

Eunary(vi), (13)

where in the case of the lazy snapping segmentation, Ebinary rep-
resents similarity between pairs of adjacent vertices and Eunary

represents similarity to the labeled vertices. The same energy
functions as proposed in the original algorithm [19] were used.
Hence, Eunary is calculated using the minimum distance be-
tween an unlabeled vertex and the k clusters of the k-means
algorithm applied to the labeled vertices. The parameter λ bal-
ances the two energy terms. A large λ enables treating non
contiguous regions as belonging to the same object. We empir-
ically set λ = 0.01 for our experiment. Similarly to Section 6.1,
we experimented four algorithms based on the lazy snapping
segmentation: (i) and (ii) using FBS respectively without and
with SLIC super-pixel pre-segmentation, and (iii) and (iv) us-
ing our graph reduction respectively without and with SLIC
super-pixels. Table 2 (column 2) shows the computation time
results of the four approaches averaged over 100 repetitions us-
ing the same labels. Using our graph reduction approach we
achieve a faster segmentation with a better F1-Score (0.976
using our approach without SLIC) than the approaches using
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Figure 11: Graph cuts and Lazy snapping segmentation of the right biceps of
a high-resolution cryosectional image (zoomed): (a) Ground truth image, (b)
SLIC super-pixels, (c) Foreground and background drawings for conventional
approaches with and without super-pixels, (d) Contour drawings and labels for
our segmentation approach with and without super-pixels, (e-h) segmentation
results for lazy snapping, (i-l) segmentation results for graph cut (GC). Note
that using super-pixels the final segmentation inherits the SLIC segmentation
errors.

super-pixels (0.939 using the conventional approach with SLIC
and 0.939 using our approach with SLIC). Although the seg-
mentation performance depends on the labels that are used, we
can observe in Fig. 11.g-h that the segmentation errors orig-
inate from super-pixel clustering. Therefore, they cannot be
corrected through user input. When combined to super-pixels,
our approach achieved the fastest max-flow computation (row
iv-column 2 in Table 2). However, the total segmentation time
is slower than the conventional approach with SLIC (row ii-
column 2 in Table 2). This is due to the Eunary computation
using the k-means clustering. Indeed, the more vertices are la-
beled, the more vertices are involved in the k-means cluster-
ing, and the longer k-means takes to converge. Because our ap-
proach labels the super-pixels all around the object, more pixels
are labeled than using a simple FBS rendering our approach less
efficient when combined to super-pixels in this context.

To compare standard GC (without k-means) [2] performance
between the four approaches, we ignore the unary energy term
of the lazy snapping approach; i.e., we set λ = 0 in Eq. 13.
Table 2 (column 3) shows the computation time results of the
four approaches averaged over 100 repetitions using the same
labels. A slightly better computation time is achieved using our
approach at both the super-pixel (0.901± 0.029 s) and the pixel
resolutions (1.004 ± 0.046 s) than the conventional segmenta-

(a) (b) (c)

(d) (e) (f)

Figure 12: Multi-scale graph generation example using super-pixel images: (a-
c) super-pixels generated using SLIC with 100, 1000 and 3000 blocks, respec-
tively, (d) multi-scale graph image generated from the contour drawing (yellow)
using combination of super-pixel images a-c, (e-f) examples of segmentation
using the multi-scale graph.

tion using only super-pixels (1.068 ± 0.035 s). However, using
pixel resolution achieves a better F1-Score with both the con-
ventional GC (0.968) and our graph reduction approach (0.970).

6.3. Adaptive multi-scale super-pixels
Rather than simply choosing a DSL, the layers described in

Section 3.2.1 can be used to combine super-pixel image decom-
positions at multiple resolutions to build an adaptive multi-scale
graph. Fig. 12 shows an example of a multi-scale graph built
from three SLIC super-pixel decompositions, R1, R2 and R3
(containing 100, 1000 and 3000 blocks, respectively), and a full
resolution image R4, using the pseudo-code from Appendix B.
This requires pre-computing each super-pixel image decompo-
sition offline. For the image of size 1024 × 608 pixels shown
in the example, 1.58s, 7.15s and 20.45s were required to com-
pute R1, R2 and R3, respectively. The multi-scale graph was
constructed in 0.773s.

This representation provides: (i) a straightforward reduc-
tion in graph size, and (ii) an image resolution that gracefully
adapts with distance from the boundary. Indeed, compared
with conventional super-pixel clustering, the multi-scale graph
prevents resolution loss near the object boundary, e.g., errors
due to super-pixel segmentation discussed in Section 6.1, since
the user can interactively adjust the segmentation with a pixel-
resolution accuracy. Compared to our initial approach, where
pixels beyond the DSL are completely ignored, the segmenta-
tion is slower, i.e., 0.88s using the multi-scale graph vs. 0.41s
using our initial approach. However, because the information
far from the drawings is not completely discarded (it is still
available at a coarse resolution), the segmentation is less sen-
sitive to contour drawing positioning (see Fig.12.f).

7. Conclusion

In this paper, we proposed a novel graph reduction method
based on user drawings for high-resolution interactive image
segmentation. In this approach, the user draws a rough con-
tour of the object. Based on a distance map with respect to the
drawn contour, image layers are computed such that a pixel far
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from the contour is assigned to a thicker layer than a pixel near
the contour. Then, foreground and background labels are auto-
matically generated, ignoring pixels on the farthest layers. Our
approach is based on a hybrid interaction approach combin-
ing rough contour drawing and foreground-background seed-
ing, benefiting from fast computation and intuitive labeling.
Finally, a graph-based segmentation method such as random
walker segmentation, is applied on the reduced graph, thereby
improving the computation time while preserving full resolu-
tion near the object boundary.

The user study reported in this paper showed that the amount
of time the user spends to draw a rough contour leads to a sig-
nificant gain in overall segmentation time. This is due to the fact
that after the initial segmentation, the user focuses his/her effort
on small adjustments, i.e., only few foreground-background la-
bels are required to obtain a satisfactory segmentation. More-
over, the segmentation was experimented with two different de-
vices: a mouse and a tablet with a stylus pen. Surprisingly,
although drawing labels using a stylus pen should be more in-
tuitive, segmentation using the mouse is faster. This is probably
because labeling-based interactivity for graph-based segmenta-
tion requires little drawing accuracy, which is easily reached
with the familiar mouse.

Further experiments showed the benefits of our approach
both over and combined with graph reduction based on super-
pixels and demonstrated its generalization to a variety of graph-
based segmentation approaches. Using our graph reduction ap-
proach, segmentation is achieved in a time comparable to that
achieved with super-pixel graph reduction. However, because
our approaches preserves full pixel resolution, the user can in-
teractively correct segmentation errors that cannot be corrected
using a super-pixel resolution. Moreover, our approach can
be combined to super-pixels and achieve even faster segmen-
tation. This is useful for applications where time is more criti-
cal than accuracy. Finally, using our approach with super-pixel
decompositions at multiple resolutions, we proposed a multi-
scale graph construction that adapts to the user drawings. The
multi-scale graph segmentation ensures a more flexible user in-
teraction at the expense of slightly more computation time.

Future work will investigate two main aspects of our ap-
proach. First, the distance map used to generate layers does
not consider image intensities. Using a gradient-based geodesic
distance may provide better information about how to cluster
pixels using the layers. Second, it is important to consider the
effect of advanced editing and visualization methods on interac-
tive segmentation, especially for 3D segmentation where draw-
ing is not necessarily an intuitive task. Because user interaction
is a time consuming part of the interactive segmentation pro-
cess, reducing the amount of required interaction is of great
interest to improve segmentation efficiency.
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Figure A.13: Representation of the unlabeled pixels given a circle drawing with
a radius of R

Appendix A. Computational complexity

Suppose that Eq. 10 is used to generate the layers and Eq. 11
to select the DSL. We consider the segmentation of a circu-
lar object in the middle of the image, and assume that the user
draws a circle with radius R in the center of an image of size
(4R)2. This is the worst case circular contour for this image
size, as any other size would increase the number of labeled
vertices. The complexity of RW segmentation is O(|U |), and
|U |, the number of the unlabeled pixels, is given by

A(U) = 4πRr, (A.1)

where

r = t
(⌊

logφ(
√

5(R − 1) +
1
2

)
⌋)

(A.2)

is the minimum distance of the layer generated from the circular
drawing (see Fig. A.13). Using Binet’s formula,

A(U) = 4πR
φ

⌊
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Noting that (−1)−
⌊
logφ(

√
5(R−1)+ 1

2 )
⌋

= ±1,
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5(R − 1) +
√

5
2

. (A.4)

Then, under our simplifying assumptions, the complexity of our
approach is O(R2).

This result assumes that a distance R separates the drawing
from the image boundaries (see Fig. A.13). Hence, by construc-
tion, we have R = 1

4

√
N. The complexity is O(4πR2) = O(N),

with a constant factor reduction of π
4 ' 0.785. Fig. A.14 shows

N,A(U) and 4πR2 as a function of R. As R grows towards N,

r = min
(H

2
− R,

W
2
− R

)
< R.

Thus, the DSL is selected based on the outer region, Rout, and
O(Rr) < O(R2). This represents the worst scenario, where the
object size nearly equals the image size. This is rare in prac-
tice. The main advantage of our approach is that it reduces the
order of complexity to the size of the area enclosed by the user
drawing R2 � N. Thus, for a fixed foreground object size and
a growing image size, the complexity is constant.
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Figure A.14: Plot of N, A(U), and 4πR2 as a function of the radius R in pixels.
Note that 4πR2 = O(A(U)).

Appendix B. Pseudo-code for multi-resolution image gen-
eration

Algorithm 1 Multi-resolution super-pixels
Input: (R1, . . . ,Ri, . . .RN ): N super-pixel images /* Ri < Ri+1 */

L: Hierarchical layer map /* see Fig. 1.b */

Output: M: Multi-resolution image
1: Initialize matrix M with -1
2: labelCount ← 0
3: level← DS L /* from Eq. 11 */

4: for i← 0 to N do
5: for each label l ∈ Ri do
6: /* all pixels beyond DS L are assigned to the lowest resolution */

7: if (∃p ∈ l/L(p) ≥ level) and (i = 0) then
8: ∀p ∈ l/M(p)← labelCount
9: end if

10: /* pixels lying on level l are assigned to the same resolution */

11: if (∃p ∈ l/L(p) = level) then
12: ∀p ∈ l/M(p)← labelCount
13: end if
14: labelCount ← labelCount + 1
15: end for
16: level← level − 1
17: end for
18: /* assign the remainder pixels to pixel-resolution */

19: for p ∈ M do
20: if M(p) = −1 then
21: M(p)← labelCount
22: labelCount ← labelCount + 1
23: end if
24: end for
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random walker image segmentation algorithm by image graph reduction
and gpu computing. In: Image Processing & Communications Challenges
6. Vol. 313 of Advances in Intelligent Systems and Computing. pp. 45–52.

[11] Grady, L., 2006. Random walks for image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 28 (11), 1768–1783.

[12] Grady, L., Schiwietz, T., Aharon, S., Westermann, R., 2005. Random
walks for interactive organ segmentation in two and three dimensions:
Implementation and validation. In: International Conference on Medical
Image Computing and Computer Assisted Intervention. pp. 773–780.

[13] Grady, L., Sinop, A., 2008. Fast approximate random walker segmenta-
tion using eigenvector precomputation. In: IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 1–8.

[14] Gueziri, H.-E., McGuffin, M., Laporte, C., 2015. User-guided graph re-
duction for fast image segmentation. In: IEEE International Conference
on Image Processing. pp. 286–290.

[15] Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A., June
2010. Geodesic star convexity for interactive image segmentation. In:
IEEE Conference on Computer Vision and Pattern Recognition. pp.
3129–3136.

[16] Hebbalaguppe, R., McGuinness, K., Kuklyte, J., Healy, G., O’Connor,
N., Smeaton, A., Jan 2013. How interaction methods affect image seg-
mentation: User experience in the task. In: 1st IEEE Workshop on User-
Centered Computer Vision. pp. 19–24.
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