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Abstract—A cognitive detect and avoid radar system based
on chaotic UWB-MIMO waveform design to enable autonomous
UAV navigation is presented. A Dirichlet-Process-Mixture-Model
(DPMM) based Bayesian clustering approach to discriminate
extended targets and a Change-Point (CP) detection algorithm
are applied for the autonomous tracking and identification of
potential collision threats. A DPMM based clustering mechanism
does not rely upon any a priori target scene assumptions and
facilitates online multivariate data clustering/classification for an
arbitrary number of targets. Furthermore, this radar system
utilizes a cognitive mechanism to select efficient ¢ haotic wave-
forms to facilitate enhanced target detection and discrimination.
We formulate the CP mechanism for the online tracking of
target trajectories which present a collision threat to the UAV
navigation and thus we supplement the conventional Kalman
filter based tracking. Simulation results demonstrate a significant
performance improvement for the DPMM-CP assisted detection
as compared with direct generalized likelihood ratio based detec-
tion. Specifically, we observe a 4 d B p erformance gain in target
detection over conventional fixed UWB w aveforms a nd superior
collision avoidance capability offered by the joint DPMM-CP
mechanism.

Index Terms—Cognitive Radar, Chaotic UWB radar wave-
form, Dirichlet-Process-Mixture-Model based discrimination,
Change-Point detection, Autonomous UAV Navigation.

I. INTRODUCTION

Unmanned Aerial Systems (UAS) have gained a tremen-
dous importance during recent years in civilian and military
applications alike. These applications typically monitor the
phenomenon of interest in real-time and relay the corre-
sponding data to a central platform to allow an effective
and timely response [1], [2]. Surveillance systems are being
used for both military and civilian operations [3]-[6] and,
therefore, it is imperative to design these systems for different
deployment scenarios and conditions. More recently in early
2015, the Federal Aviation Administration (FAA) released
its much anticipated regulations for the use of unmanned
aircraft or Unmanned Aerial Vehicle (UAV) drones for com-
mercial purposes in domestic airspace [7]. A critical design
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problem in existing UAV navigation capacity is the ability
to autonomously detect/sense and avoid collisions with other
UAV drones operating in close proximity [7]-[11]. The critical
requirements to allow an autonomous UAV navigation are
based on assurance on inter-UAV separation, long range (time
to collision > 30 sec) and short range (time to collision
< 30 sec) collision avoidance mechanisms [11].

Several collision avoidance mechanisms including Auto-
matic Dependant Surveillance Broadcast (ADS-B) and Traffic
Collision Avoidance System (TCAS) have been proposed to
report the real-time GPS location of the UAVs [12]-[14].
Since these mechanisms rely upon open and un-encrypted
transmission signals, they are invariably prone to spoofing
and other message infringement forms of attacks [15]. Other
approaches include, segregated or designated airspace for UAS
operations, traditional visual see and avoid based on optical
sensors [8]-[10], cooperative separation assurance strategy that
could be based on a communications link between multiple
UAV systems, and ground based radar surveillance [11]. All
of these approaches inhibit the ability of the UAV drone to be
fully autonomous in terms of decision making to implement
collision avoidance maneuvers.

In this work, we envision a fully autonomous UAV naviga-
tion scheme facilitated by ‘Detect and Avoid’ (DAA) on-board
radar implementation. Specifically, we utilize an Electroni-
cally Scanned Array (ESA) based Ultra-Wideband (UWB)
collocated Multiple Input Multiple Output (MIMO) radar to
implement our novel autonomous collision avoidance strategy.
This proposed strategy benefits from the key concept of radar
cognition, which imparts to the radar an ability to dynamically
adapt the UWB-MIMO radar transmission waveform to en-
hance the UAV target detection. Consequently, this cognition
facilitates better estimation of imminent collision points, in
order to assist the UAV guidance and navigation.

From an hardware design perspective, our approach uti-
lizes the cognitive monostatic UWB-MIMO radar coupled
with the usage of chaos based UWB waveforms which offer
tremendous flexibility in the design of key radar transmis-
sion parameters which include the UWB monocycle pulse-
width, Pulse Repetition Interval (PRI) and UWB monocy-
cles phase/amplitude. Specifically, the chaotic UWB-MIMO
radar design supports significantly large degrees of freedom
in choosing transmission waveform with chaotic amplitude,
phase and PRI, thus imparting higher degree of freedom within
waveform design and selection. As a result, chaotic UWB
waveforms exhibit pronounced sensitivity to scattering relative
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Fig. 1. System architecture.

to conventional radar signals, as shown in works [16]-[18].

From an algorithmic perspective, in order to discriminate
between distinct extended targets, there is a need to develop a
robust clustering algorithm that will classify and attribute the
received signal contributions to each individual target. Most
clustering or discrimination algorithms, K means clustering
[19] needs to make a priori assumptions about the number of
targets present in the environment. The number of scattering
centers and the number of corresponding extended targets
are in general unknown a priori, and are to be inferred
directly from the backscatter data. Thus, there is a need to
utilize an unsupervised mixture component analysis technique,
which can offer unbounded complexity and can be used to
effectively discriminate between extended target signatures.
One such effective mechanism is the Bayesian nonparametric
technique for discrimination. The Bayesian nonparametric
approach has been adopted in various applications, including
target tracking [20], and high dimensional data clustering [21],
[22]. Moreover, this technique has also been applied to cluster
identification in Synthetic Aperture Radar (SAR) images [23].
More recently, it was also utilized in clustering of chaotic
UWRB backscatter signals for a bistatic UWB-MIMO cognitive
radar setup [17], [24]. In this work, we utilize a robust non-
parametric Bayesian clustering based algorithm, called the
Dirichlet-Process-Mixture-Model (DPMM) as shown in works
[17], [20], [21], [25].

In addition to the DPMM based clustering mechanism we
also adopt a Change-Point (CP) detection algorithm to allow
the UAV to autonomously monitor and determine imminent
collision with other UAV targets in its proximity. Specifically
this CP algorithm is based on online Bayesian estimation of
change-points in the estimated UAV tracks corresponding to
UAV targets in the proximity. Our objective is to determine

the sudden change points within the estimated trajectories of
the surrounding UAV targets and to quickly identify the the
imminent collisions, so that the guidance and navigation unit
can make coarse correction to its own trajectory. Details on
the CP algorithm based on perfect simulation approach can be
found in works like [26]-[28].

A. Motivation for the proposed research

The proposed cognitive chaotic UWB-MIMO radar is de-
signed to impart the UAV with complete autonomy with
respect to decision making, specifically in terms of execut-
ing course-correction maneuvers in order to avoid imminent
collisions. The key motivation behind the proposed system
design is to integrate fully autonomous data driven statistical
mechanisms which can support a cognitive radar architecture,
which could enable, (i) cognitive waveform selection/design to
enhance target detection, (ii) Unsupervised mixture component
analysis capability offered by DPMM approach which is fully
raw-data driven and does not need any a priori radar scene
assumptions, and (iii) CP algorithm which enables online tra-
jectory change point estimation to facilitate collision avoidance
with respect to sudden changes over the trajectory for the
target of interest. In summary, the proposed cognitive Bayesian
DPMM-CP framework provides significant advantage over
conventional radar approaches [29]-[31] for UAVs, due to
it’s ability to address autonomous target discrimination, immi-
nent collision threat detection for executing course-correction
maneuvers and a cognitive waveform design architecture to
facilitate enhanced target detection and tracking.

B. Key Innovation and Advantages

The proposed cognitive Bayesian DPMM-CP radar frame-
work offers several advantages over existing approaches which



facilitate sense and avoid solutions. Some of the key innova-
tions and advantages of the proposed approach include

« Ability to function at all times during the day and in all
weather conditions unlike optical sensor based solutions
[8]-[10].

o Significant resilience to interception and spoofing at-
tempts in comparison to ADS-B and TCAS based so-
lutions.

o Communication based sense and avoid mechanisms like
ADS-B and TCAS have an inherent dependency on the
transponder of the target UAV. These mechanisms suffer
if the target is hostile or non-cooperative or if it is
unequipped with a transponder [31], [32]. Other issues
include response time latency which could render TCAS
based systems of little or no use [33], failure to detect
anomalous situations including altitude-reporting errors
because of intruders that are maneuvering in a manner
incompatible with the TCAS-Resolution Advisory (RA).
A detailed discussion on the shortcomings of TCAS based
systems for application to UAVs is presented in [31]—
[33]. Moreover, works like [33], propose the usage of
on-board radar based systems to alleviate these mentioned
problems associated with ADS-B and TCAS based sense
and avoid mechanisms.

o Enhanced target detection compared to fixed UWB-
MIMO conventional radar waveforms due to chaotic
variation in transmission parameters.

« DPMM based target clustering mechanism which does
not require any a priori target scene assumptions and can
operate on raw data to discriminate multiple UAV target
signatures.

e Online trajectory changes estimation facilitated by CP
algorithm to isolate and monitor the target of interest
which helps with the execution of collision avoidance
maneuvers.

Major contributions for this work can be summarized as
follows:

1) Development of a cognitive radar mechanism to enable
the adaptation of the chaotic UWB-MIMO waveform
parameters with an objective of enhancing the target of
interest signatures within the radar backscatter.

2) Development of a robust DPMM clustering framework
for extended target detection and discrimination of the
multiple UAV targets.

3) Usage of CP algorithm based on perfect simulation to
estimate the sudden variation in trajectories of the UAV
targets to avoid imminent collisions.

The rest of the paper is organized as follows: in Section
II, we provide a general overview of the proposed cognitive
system architecture. In Section III, we present the actual
DPMM clustering for the backscatter from the extended UAV
targets scenario. Section IV presents the CP algorithm based
on perfect simulation to enable the proposed autonomous DAA
strategy. Simulation results are described in detail in Section
V. Finally, in Section VI, we provide concluding remarks
and potential applications. Throughout this work, we use ()7
to denote matrix transpose. We use N (p,0) to denote the

(multivariate) Gaussian distribution with mean vector p and
covariance matrix o.

II. SYSTEM ARCHITECTURE OF THE PROPOSED
COGNITIVE RADAR DESIGN

A general system architecture for the distributed MIMO
radar system is shown in Fig. 1. The transmission waveform
orthogonality is achieved through frequency diversity for the
MIMO architecture that is shown. It is also assumed that the
receiver has full knowledge of the transmitted waveform. We
use an ensemble of chaos based UWB waveforms as shown
in [16]. The UWB waveform ensemble consists of individual
chaos based UWB waveforms in which the PRI, amplitude and
phase are dictated by uniformly distributed random variables.
Each normalized second derivative Gaussian UWB waveform
can be represented as

2
exp {—277 (t _TikT) } cos (&),

where K is the number of second derivative Gaussian mono-
cycles within the UWB waveform, T}, is the pulsewidth of the
single UWB pulse, 7, represents the normalized amplitude of
the kth monocycle, which is uniformly distributed, ;T is the
uniformly distributed random pulse repetition time between
[0,T), & represents the phase of the k" pulse. The phase
&) is chosen as 0 or 7 in accordance with a pseudo-random
binary sequence.

(D

A. Signal Model

Consider a mono-static MIMO radar system with M, and
M, antenna elements which represent the columns and rows
within the Uniform Rectangular Array (URA) respectively. As
shown in Fig. 1, we consider a monostatic radar case, hence
the same rectangular array is utilized with a transmit/receive
switch within the radar system design. Let [V, represent an
arbitrary structure receiver array that could be selected while
receiving the backscatter signal. We adopt the MIMO URA
architecture as shown in [34].

Let u(t) = [ui(t), - ,un(t)], be the N x 1 vector of
orthogonal UWB-MIMO chaotic waveforms, which satisfies
the orthogonality condition pr u(t)uf (t) = Iy, where Iy
represents the identity matrix of size N. The variable notation
N signifies the distinct MIMO channels or in other words
the distinct beams designed with the 2D planar array. In our
work, we assume that the orthogonality between N distinct
MIMO channels is assumed over the frequency domain, which
implies that each UWB signal within u(¢) has a distinct center
frequency of operation.

Assuming x number of target centers which belong to
the several range-Doppler bins and are illuminated within a
particular 2D scan of the planar array, the N, x 1 receiver
array signal vector, and can be represented as,



r(7,t) = » [Ci(0i, di,7)B(0i, d3)
=1
(WHa(0;, ) a(t)] +n(t, 7) )

where ¢ and 7 are the fast and slow time indices, respectively.
W = [wy, - ,wy] is the M. M, X N transmit beamforming
matrix, and (-)¥ represents the Hermitian transpose. 3(6;, ¢;)
represents the N, x 1 beam steering vector for the chosen
receiver array. (;(6;, ¢;, T) represents the reflection coefficient
of the target center located at {6;, ¢;} with a variance of o’?,
and 7(7, t) represents the zero mean white Gaussian noise with
variance o7. a(0, ) = vec (U © a(f, ¢)b” (0, ¢)) , where U
represents a M, x M, matrix of ones representing the presence
of the elements in {c,r} location within the 2D array. « (6, ¢)
is an M.M, x 1 beam steering vector for azimuth angle ¢
and elevation angle 6. vec(-) stands for the operator which
stacks columns of the matrix into a single column vector. ®
represents the Hadamard product. a and b are vectors of M, x
1 and M, x 1 dimensions respectively as defined in [34]. We
assume a Swerling II target model which implies that the target
reflection coefficient remains constant within the duration of
the radar pulse but varies from pulse to pulse.

The matched filtered output of the received signal r(7,t)
can be represented as [34],

sp(T) = / r(t, 7)u; (t)dt
T
= > (G0, i, ) (wf a(6i, 04))*
i=1
X B(0:, ¢i)] + mn(T) 3)
where (-)* stands for conjugation, n = 1,--- | N, and 7, =

[ m(t, T)us(t)dt is the N, x 1 noise term with covariance
0772;11 N, We utilize the 2D transmit and receive beamforming
mechanism, as shown in [34], which enables us to determine
the optimal values of the weights W for the beam steering vec-
tors, (6, ¢) and (0, ¢). Also note that the extended targets
occupying several range-Doppler bins have been modelled as
a collection of Swerling II type targets and multiple ((6;, ¢;)
target scatterer locations.

B. Proposed Cognitive Bayesian DPMM-CP mechanism

As shown in Fig. 1, the chaotic UWB-MIMO waveform
u(t) is transmitted by the 2D planar array after the com-
putation of the optimal beamforming weights W as shown
in [34]. This monostatic UWB-MIMO radar system initially
illuminates the entire elevation angular space © € [0°,180°]
and the azimuth angular space ® € [—180°,180°]. Upon
this illumination, the receiver array on the monostatic radar
is enabled and the angular space {©,®} is scanned. This
receiver array scanning is enabled by the beamsteering matrix
B(60;, ¢;) and the receiver scanning is repeated for a predeter-
mined duration to collect the target backscatter echo signals.
Subsequently, the aggregate backscatter signal is filtered by
the UWB-RF front-end to isolate the N channel MIMO

contributions over the N,. x 1 receiver array. These /N channel
contributions are recorded for future processing.

For a particular MIMO channel n, the corresponding
matched filter response s, is computed by evaluating (3).
This channel backscatter signal is then operated by the well
known 2D Multiple Signal Classification (MUSIC) Algorithm,
to evaluate the angle and azimuth vector estimates for the
backscatter signal over channel n. The matched filtering
operation also generates the range-Doppler estimates for the
received backscatter. These azimuth, elevation and range-
Doppler estimates are forwarded to the proposed DPMM
clustering engine in order to cluster the backscatter signal over
channel n.

The DPMM clustering algorithm generates the distinct clus-
ters by evaluating the underlying 3D multivariate distribution
over the received signal amplitude, azimuth and elevation
angle estimates, {I', ¢, 0} for k target centers within the radar
environment. For each discriminated cluster, a Generalized
Likelihood Ratio Test (GLRT) is adopted to detect the pres-
ence of the target in a particular range-Doppler bin. The
detected target clusters information is then passed on to the
CP algorithm for enabling the KF track of each target and
detecting the sudden change points in the trajectory of the
target. The location estimate for the target within the closest
proximity of the UAV is designated as the target of interest
and this location estimate is relayed to the UWB-MIMO
chaotic waveform design unit for determination of the optimal
T, and T, for channel n. An optimal choice of T}, and T
allows enhanced range and Doppler resolution for the rarget
of interest.

This procedure is repeated for the entire set of backscattered
signals over N MIMO beams or channels, and an optimal
MIMO waveform u(¢) is designed for transmission in the
next instant. The discriminated cluster parameters (output of
DPMM block), the detected multi-target parameters (GLRT
block output) and the farget of interest location parameters
(output of CP block), are relayed to the UAV guidance and
navigation unit to make a decision on course correction and
collision avoidance.

The red dashed boxes within Fig. 1 represent the novelty
and major contributions brought by the proposed approach
which allows the radar to autonomously detect neighbouring
UAVs through application of DPMM based target clustering
and imminent collision threats detection by CP algorithm
operating on the close proximity targets within the decision
space. The cognitive waveform design is thus facilitated by
DPMM-CP mechanism which results in an optimal selection
of T" and T), for each channel and for each instance of radar
interrogation or transmission. The motivation behind the use
of chaotic UWB-MIMO waveforms for the proposed cognitive
Bayesian DPMM-CP framework is to allow larger degrees of
freedom in the selection of T', T},, phase and amplitude over
individual radar pulses which has a significant influence over
the radar ambiguity function or, in other words, the range-
Doppler response offered by the UWB-MIMO radar.



III. DPMM CLUSTERING MECHANISM FOR MULTIPLE
UAV TARGETS

As shown in Fig. 1, the MIMO receiver unit isolates the
orthogonal channel contributions by the UWB filter bank
within the RF frontend. Subsequently, this filtered signal is
passed to the matched filter for a particular MIMO channel n
where the range-Doppler estimates are generated. The same
signal is processed to estimate the corresponding azimuth
and elevation data by utilizing the 2D MUSIC algorithm.
The aggregate mixture data represents a mixture of multi-
variate distribution classes over amplitude-azimuth-elevation,
{T", ¢,0}. The DPMM clustering mechanism is invoked at
this stage to discriminate between the underlying distributions
over distinct UAV targets from the aggregate mixture over
{T", ¢,0} for a particular channel. This step is followed by
indexing and assigning labels to clusters for channel n and the
corresponding range-Doppler estimates for each cluster along
with the discriminated clusters is forwarded to the GLRT based
detection module, subsequently followed by the CP algorithm
and cognitive waveform design.

A. DPMM Clustering Mechanism

For a particular channel data, we assume that s,, follows a
multivariate Gaussian distribution over the amplitude-azimuth-
elevation with mean vector u; and covariance matrix o;. Let
v; = {wi,o;} be the parameter of interest for data the s,,.
In order to discriminate between distinct extended targets,
our goal is to find the posterior distribution of (¢, -+ , 1)
given the data, (si,---,s,). This posterior distribution will
indicate the underlying multivariate distribution over each of
the component target contributions. We develop the DPMM
formulation as shown in [17], [25], [35], [36]. Suppose we
make a sequence of observations si,...,s,, where for each
i=1,...,K, 8~ F(- | ¢;), and ¢; € U represents a param-
eter describing the observation distribution. In the Bayesian
approach, we impose a prior distribution on (¢1,...,1.). In
the DPMM, this prior is chosen to be a stochastic process,
which leads to a model with very rich features. Specifically,
the Dirichlet Process (DP) is a distribution over the space
of all probability measures on W. A random distribution G
on VU is then drawn from this distribution, and given G, the
parameters v;, ¢ = 1,..., K, are independent and identically
distributed according to G. To define the DP, we first let G be
a probability distribution over ¥, which represents our prior
belief about a parameter, and o be a positive number that
serves as a weight between our prior belief and the information
inferred from observed data. We say that G is distributed as
a DP, denoted as G ~ DP(p, Gy), if for any finite measurable
partition x1,..., X, of ¥, we have

(G(x1), -+, G(xr)) ~ Dir(eGo(x1); -+ 0Go(xr));

where Dir(-) is the Dirichlet distribution. From this definition,
we see that the DP is a stochastic process. Thus, the DPMM

has the following representation

G ~ DP(p, Gy), 4)
v | G~ G,
Si | ¥ ~ F(-[s).
Let ¥_; = (Y1,...,%i—1,Yit1,...,¥,) be the vector of

parameters excluding ;. In the following, we assume that all
distributions have a density with respect to some dominating
o-finite measure. Moreover, we will abuse notations and use
the same symbols to denote the distribution as well as the
density. The posterior distribution of ;, conditioned on the
data s and %_; is then given by

(i | Y—iysi) o< F(si | ¥i)p(i | i), 5

since, given ¥ _;, 1; depends only on s;. From the Blackwell-
MacQueen Polya-Urn scheme [35], the conditional distribution
of ; given ¢¥_; is

p(ihv-i) = ﬁao(wi)
e Z% ¥i), (©6)

where d,, is the Dirac delta function at ¢. Thus the posterior
distribution (5) is given by

p(Wil—i,8:) = coGo(;)F(s; | i)
+6 Y F(si | )0y, (1), (7)
JFi
1/(0qo + Z#iF(si | %;)) is a normalizing

qo = /Go F(sij1)dy, 8

is the marginal density of s; at its realization. In order to
evaluate the integral (8), we choose G to be a conjugate
prior to the Gaussian distribution F'(s; | ;). In this work, the
Normal-Wishart distribution for Gy is used. A Gibbs sampler
can now be designed to obtain the posterior distribution of 1);
given all the data as shown in [25]. Let py(; | ¥—;) be the
conditional distribution of ; given all the data s. From (7),
we sample 1; according to

SF(si|vj), if ¥ =1y,

s —i) = . . 9
Pa(¥ | 9-0) { comt( [s), v vi, O
where £(¢) | s;) = Go(¥)F(si | ¥i)/qo-

We initialize the Gibbs sampler by considering each data
s; as being in its own set, with wgo) = s;. Subsequently the
Gibbs sampling for the vth step is done in the following way.

« Sample o} from p, (-t =15, g = 4TV, b =

e Y)

« Sample 3 from py(-]1py =
(1)—1))

where ¢ =
constant, and

)7¢3 = qpi(’)vil)a "'71/1,'{ =

» Sample v from py (i = i, v = 5, o ey =
(v)
wﬁ—l)
The conventional GLRT based target detection approach
determines the presence of the target in each range resolution
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cell. The proposed DPMM aided GLRT implements the GLRT
detection mechanism on the discriminated clusters only, thus
avoiding testing of GLRT test-statistic over each range and
Doppler cell by modelling an unwieldy clutter covariance
matrix. The GLRT maximizes the likelihood ratio test over
the unknown parameters of interest like, (,, and p,,, where p,,
is the Doppler shift corresponding to MIMO channel n due to
unknown velocities of the target in x, y and z directions. We
adopt the GLRT based detection as formulated in [37] over
the DPMM clusters.

IV. CHANGE POINT DETECTION BASED DAA RADAR
A. Model Representation

Our objective in this section is to detect changes in the
trajectories of the detected and discriminated UAV targets.
The proposed change-point algorithm is applied to the KF
estimates for the UAV target’s {z,y, 2,0, ¢} parameters. Let
A(i : j) (A(2), A(i + 1),--- ,A(j)) be a segment of

the estimates from transmission frames ¢ to j. Suppose that
A(1:T) can be divided into m segments, separated by the
change points dg,d1,...,0,, with o = 0 and §,, = T. For
each segment A((§; +1) : §;11), 4« = 0,...,m — 1, ie,
conditioned on the target parameter variation within a segment,
we assume a linear regression model with order [; given by

A((0;+1): 6i41) = GIC; + €((6i + 1) : 6i41),  (10)

where Ggl") is a matrix of basis vectors, C; is a vector of
parameters, and €((0; + 1) : d;41) is a vector of independent
and identically distributed random variables with mean 0
and the variance w?. Our goal is to obtain the maximum a
posteriori (MAP) estimates of the parameters m, and {d; :
i=1,...,m—1}.

B. Perfect Simulation

The model in (10) has no analytical form for the posterior
distributions of the parameters that we are interested in.



Algorithm 1 : Change Point Algorithm for UAV KEF trajectory.

Simulation

—_

Calculate Q(t) for t = 1,--- , T using (14).
Initialize 69 = 0 and count vector ¢(1:T) = (0, ...
for Iter=1,--- ,N do
1=0
while §; < T do
Simulate §;; from (15) and (16).
Increment c(d;41) by 1.
1 =14 1.
end while
: end for
122 ¢(1:T)=¢(1:T)/N.

,0).
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—
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13: Viterbi Algorithm

14: Initialize Q*(T' + 1) = 1.
15: fort =T,T—1,...,1do

1 , , ,
16: ‘ Q*(t) = — Imnax Pr(t,t 7q)Q*(t + 1))\1(t ;éT)(l _
Uit <7
1<q<l
/\)s—t

17: | Set t*(t) and ¢*(¢) to be the maximizers for Q*(t).

18: end for

19: Initialize 65 = 0 and j = 0.

20: while 67 < T do

21 | Set 6%, =t*(0F+1) and ¢}y = q* (5 +1).

2 | j=j+1.

23: end while

24: Number of change points m = j.

25: Foreach d in (&7, ...,d%,), if there are other change points
within 7" second of 4, keep only the change point with the
highest ¢(§). Update m accordingly.

We therefore use Monte Carlo methods to perform Bayesian
inference [38], [39]. The most common approach is the use
of Markov chain Monte Carlo (MCMC) techniques. However,
MCMC methods have the disadvantage of not being able to ac-
curately determine if the procedure has converged, which may
produce erroneous results [26]. In our setup, the observations
in the disjoint segments are independent of each other; there-
fore we can adopt the so called perfect simulation approach of
[26]-[28], which involves drawing independent samples from
the true posterior distribution, and hence avoiding issues of
convergence. In the following, we describe briefly the perfect
simulation algorithm, and refer the reader to [26], [28] for
details. We impose an Inverse-Gamma prior distribution IG
with shape parameter v//2 and scale parameter ¥/2 on w2, the
variance of the noise variables in (10). For the jth component
in the regression parameter vector C;, we use an independent
normal distribution A/'(0, w7e?) as the prior, where ¢; is a fixed
parameter. Furthermore, we assume that the model orders /;
are bounded by a maximum order /, and we use a uniform prior
for the model order of each segment. Since we have assumed
that the UAV target parameters within every time frame are
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Fig. 4. Gibbs Sampling output for clustering the backscatter and inference
on multivariate distributions over amplitude-elevation-azimuth for 5 targets.

independent, the prior on the change points is a geometric
distribution, with the density function given by

flm, 61, 0m_1) = A™7H1 = )™, (11)
where A is a fixed parameter. The parameters
(v, 9, (ej)fljll, A) can be chosen using a recursive procedure
described in [26].

In the following, we present the necessary formulae that
allow us to compute the posterior probability of a change point.
We refer the reader to [26], [28] for additional details and
derivations. Let Pr(¢,t,q) be the conditional probability of
the observations A (¢ : t ), given that the model order is ¢. It
can be shown that

Pr(t,t,q) = Pr(A(t: ¢ | segment order q))

'l9+tl —t+1 )
2

(
=TY2 (v +|A|lg)
]IG(’HtLHl) 2q+1

X — 2 7 el (12)
o U

where T = (GTG + D)™, Q =1- GYG”, ||A[|g =
ATQA, where D = diag{e?, -+ ,e2} is the prior variance
on the regression parameters for this segment and I be the
identity matrix with dimensions (t —t+1) x (£ —t+1). In
this work, we define G as the basis vector matrix, assuming a
piece-wise constant Auto-Regressive (AR) process. Thus, G
can be defined as

At—l At—2 At—l
ql = | A Am Aot (13)
At’—l At’—2 o At'—l

Let Q(t) be the conditional distribution of observing A(¢ :
T') given that there is a change point at ¢ — 1. This can be
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Fig. 5. Simulated UAV trajectories demonstrating the change-point based DAA mechanism, (a) UAV trajectories with imminent collision points, (b) perfect

simulation for online determination of change points in range data time series.

calculated recursively using

T—1 1 ,
Q) = % 3SRt g)Q( + DAL — A)! !

t'=t q=1

N‘H

l
Z . T,q)(1—NT"t  (14)

The conditional probablhty of the next change point, given
that the previous one occurred at ¢ — 1, is then given by

Pr(d; =t |6, 1=t—1,A(1:T))
l
%Z r(t, ¢, Q)Q(t + 1AL — N . (15)
and
Pr(éj =T ‘ (5]',1 =1— 1,A(1 : T))
l
x %ZPr(t,T, g)(1 = N1t (16)

q=1

Making use of (15) and (16), we can simulate the next change
point given the previous one until the last data point. This
constitutes one run of the simulation process. We repeat this
process several times and accumulate the count of the number
of times that a particular point is determined to be a change
point. We divide this count by the total number of runs and
to obtain the posterior probability that this point is a change
point. To find the MAP estimate of the change points, we use
a Viterbi algorithm. This procedure is formally presented in
the Algorithm 1.

V. SIMULATION RESULTS
A. Simulation parameters

In this section, we present the simulation results for the
proposed cognitive chaotic UWB-MIMO radar mechanism
to facilitate autonomous UAV DAA navigation, as shown
in Fig. 1. An extended target radar scenario comprising of
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Fig. 6. Collision detection performance for the proposed CP-KF tracking
mechanism.

Swerling II targets is simulated with a random number of
scattering centers for distinct UAV targets. The chaotic UWB-
MIMO waveform uses one or more lengthy pseudo-random
sequences to generate variation in phase, amplitude and PRI
for the individual UWB monocycles described by (1). A large
collection of such UWB waveforms represents the ensemble
of such waveforms, which is to be used for selecting the
waveform for transmission in the next instant. Such initiation
of chaos based signals is perfectly consistent with other works
on chaos based radar design [16].

Specifically in our work, we determine the values of T, T},
identified by the DPMM-CP algorithm for a specific target
of interest and then subsequently introduce chaotic variation
within the UWB monocycles, as described by (1).
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of detection for the target of interest with the cognitive strategy.

B. Chaotic UWB-MIMO radar range-Doppler and angular
resolution

As shown in Fig. 1, the UWB-MIMO 2D collects the
captured signal within the angular space {©, ®}. The match
filtering operation for a particular channel and a beam-scan
illustrated in Fig. 2(a). This plot displays the output of the
matched filter for a particular channel for 5 UAV scenarios
with extended targets. The chaotic variations in PRI, pulse
width and amplitude enhance the detection of the individual
scattering centers for each UAV target. In addition to the
matched filtering operation, the captured backscatter is also
fed to the 2D MUSIC algorithm in order to determine the
azimuth and elevation angle estimates. Fig. 2(b) represents
the angle estimation for a backscatter signal which is reflected
from 3 and 5 UAV extended targets, respectively. As seen from
this plot the individual UAV targets can be discriminated on
the basis of their corresponding azimuth and elevation angle
estimates. The DPMM assisted GLRT based detection is now
applied to the output of the matched filter and corresponding
AOA estimates, as shown in Fig. 1.

A significant advantage of the proposed chaos-based UWB-
MIMO signals is their enhanced target signature detection
capability due to the chaotic variation in their PRI, pulse width,
amplitude and phase, as described by (1). This advantage can
be seen from the Range-Doppler resolution achieved by the
matched-filter output shown in Fig. 3. Fig. 3(a) illustrates
the range-Doppler resolution achieved by conventional UWB-
MIMO waveform wherein the PRI, pulsewidth, amplitude
and phase are fixed. At the same time, Fig. 3(b) represents
the range-Doppler resolution achieved by the proposed chaos
based UWB-MIMO waveform. It can be seen from this result
that the chaos based waveform design can reveal a larger
number of target scattering centres over the 5 UAV targets
than the conventional UWB-MIMO waveform design. This
ability to reveal larger scattering centers over each extended
UAV target facilitates enhanced target detection.

C. DPMM clustering engine

Upon the matched filtering and AOA estimation of the
aggregate backscatter from the radar scene, the captured signal

for a particular orthogonal channel is passed to the DPMM
clustering, where the underlying multivariate distributions over
{T",¢,0} within the received signal are inferred. This is
achieved by the collapsed Gibbs sampling shown in Section
ITI-A. These clustering results are shown in Fig. 4. The data
points represent a mixture over amplitude-azimuth-elevation
points for each scatterer return and the ellipsoids represent
the inferred multivariate distribution over the data points.

D. CP Algorithm for DAA Mechanism

Fig. 5(a) shows the DAA mechanism for collision avoidance
based on the proposed change point algorithm. The estimated
location from the DPMM-GLRT based detection is passed to
a standard KF tracker to track the trajectory for the target of
interest. Based on the range estimates for the UAV for the
target of interest, the perfect simulation algorithm described
in Section IV-B is implemented as shown in Algorithm 1.

Fig. 5(b) represents the estimated change points derived
from the posterior distribution over the range time-series;
this is used to infer the sudden changes in the trajectory
of the UAV target. Fig. 5(a), illustrates the DAA strategy
implemented by UAV 2 based on UAV 1 estimated range
time-series data points. As seen from this figure two imminent
collision instances are averted autonomously by UAV 2 thanks
to the coarse correction enabled by the estimation on change
points shown in Fig. 5(b).

Fig. 6 represents the performance improvement within col-
lision detection presented by the CP-KF tracking mechanism.
Specifically, we simulate 100 individual trajectories for each
of the 10 UAV targets similar to the ones shown in Fig.
5(a) within a confined 3D space of 2 km x 2 km x 2 km.
The average hypersonic UAV drone velocity is assumed to be
Mach 1. Based upon this average velocity and simulated UAV
tracks we determine the total number of imminent collision
points (time to collision < 30 sec) and also determine the
successful collision detection points calculated by the CP-
KF algorithm. Subsequently, we compute the probability of
collision detection through the proposed CP-KF mechanism
and through a more conventional KF tracking scheme. As
demonstrated by the result in Fig. 6, the proposed CP-KF



mechanism outperforms the conventional KF tracker based
approach significantly in estimation of imminent collision
points. This performance improvement can be attributed to the
fact that the CP-KF algorithm refines the collision detection
estimation by computing the posterior distribution over the
trajectory change points as shown in Fig. 5(b).

E. Advantage of DPMM assisted GLRT and overall cognitive
DAA strategy

Fig. 7(a) represents the Receiver Operating Characteristic
(ROC) curves for the proposed cognitive approach over 3
distinct SCNR floors for direct GLRT based detection and the
proposed DPMM-GLRT based detection. The ROC curves are
generated by averaging over a 1000 realizations of the received
backscatter signal at a fixed SCNR values of 8 dB-10 dB. The
area under the ROC curves indicates the superior performance
of the proposed DPMM-GLRT based detection approach. Fig.
7(b) displays the variation in the probability of UAV target
detection with varying iteration count over chaotic UWB
waveform selection. In particular, for each iteration the values
of T),, T and UWB monocycle amplitudes within the chaotic
UWB-MIMO waveform have been modified for the identified
target of interest. The result in Fig. 7(b) demonstrates this
enhanced probability of target detection due to the cognitive
selection of these parameters.

VI. CONCLUSION AND FUTURE WORKS

We have demonstrated the application of UWB-MIMO
radar for DAA mechanism in order to facilitate autonomous
UAV navigation. Chaos based UWB-MIMO waveforms of-
fer superior flexibility in range-Doppler resolution for the
collection of individual scatterers within the radar scene.
The proposed DPMM-CP based algorithm not only provides
an unsupervised mixture component analysis mechanism to
discriminate distinct UAV target scatterers without making
any a priori target scene assumptions but also facilitates the
online detection of change points in the trajectory of the UAV
targets in the vicinity and thus provides vital assistance to the
guidance and navigation control of the UAV system to adapt
its course and avoid imminent collisions autonomously. The
overall chaotic UWB-MIMO radar parameters can be adapted
on the basis of current location and velocity estimates for the
target of interest, thus giving rise to the cognitive mechanism
which significantly enhances the UAV target detection proba-
bility. Future works could be focused upon the development
of passive radar architectures which exploit the signals of
opportunity such as DVB-T/ATSC, FM radio and cellular
transmissions, etc. for enabling DAA mechanisms for UAVs.
This would considerably lower the on-board transmission
power and cost requirements. Moreover, software-defined-
radio based transceivers could also be employed onboard
UAVs to facilitate cognitive waveform design and practical
realization for the proposed DAA approach.
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