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Abstract—In this paper, we deal with the problem of maximum
likelihood (ML) estimation of the signal-to-noise ratio (SNR)
parameter for frequency modulated differential chaos shift key
(FM-DCSK) system over multipath Rayleigh fading channels.
The ML estimators are derived for various scenarios including
data-aided (DA), non-data aided (NDA) and joint DA-NDA esti-
mation by using both the data and pilot symbols. For comparison
purposes, the Cramér-Rao lower bounds (CRLBs) for the SNR
estimators are derived. The performance of the estimators is
evaluated by simulations and comparing with CRLBs in terms
of the mean-square-error. Simulated results show that for a large
spreading factor the proposed scheme performs well over a wide
SNR range in comparisons with CRLBs.

Index Terms—FM-DCSK; SNR estimation; Cramér-Rao lower
bound (CRLB); multipath Rayleigh fading channels.

I. INTRODUCTION

FREQUENCY modulated differential chaos shift key (FM-
DCSK) system offers excellent performance under multi-

path fading or time-varying channels without requiring channel
estimation [1-2], which has been used in ultra-wideband
(UWB) systems for short-distance communications [3-4]. So
far, many researchers have studied the performance of the
combination of advanced technology, e.g. cooperative commu-
nications [5-6], channel coding [7-8], and multi-input multi-
output (MIMO)[9-10], etc., with FM-DCSK modulation. To
optimize these schemes, the receiver needs to rely on the
estimates of signal-to-noise ratio (SNR). For instance, in a
coded FM-DCSK system, the SNR estimation is used to make
soft-decision decoding and adjust adaptive strategies; in a
DCSK cooperative system, the selection of relay nodes and
adopting amplify and-forward (AF) or decode-and-forward
(DF) mechanisms are based on the estimates of SNR; in a
MIMO-DCSK system, the power control algorithms are also
dependent on the estimates of SNR.

For traditional modulations, including phase shift keying
(PSK)[11], quadrature amplitude modulation (QAM)[12-13],
and frequency shift keying (FSK)[14-15], much work has been
done to show the SNR estimation. The maximum likelihood
(ML) based estimator, which has asymptotic properties of be-
ing unbiased, achieving to Cramér-Rao lower bound (CRLB),
is overwhelmingly the most popular approach to obtaining
practical estimators (see Chapter 7 of [16]). The CRLB (see
Chapter 3 of [16]) gives the minimum variance of unbiased
estimators, which is a very useful tool for evaluating the
performance of an estimator.

In this work, we derive ML SNR estimators, which include
data-aided (DA), non-data aided (NDA) and joint DA-NDA
estimators, for FM-DCSK system in multipath Rayleigh fading
channels. The CRLBs for ML SNR estimators are derived
as a fundamental benchmark that reflects the best achievable
performance.

II. SYSTEM MODEL
Consider a FM-DCSK communication system, shown in

Fig.1. In the FM-DCSK modulator, every bit to be transmitted
is represented by two sample functions. For bit “1”, the same
FM chaotic signal is transmitted twice in succession while
bit “0” is sent by transmitting the reference chaotic signal
followed by an inverted copy of the same signal.

The logistic map is employed as chaotic generator: xk+1 =
1 − 2x2

k. The chaotic signal is modulated by using FM
modulator to generate FM chaotic signal. The FM chaotic
signal z, after sampling, obtains 2β discrete points, where 2β
is defined as a spreading factor. The k-th transmitted signal is
represented by a sequence of samples of the chaotic signal, in
which the j-th sample is given by

sj,k =

{
zj , j = 2(k − 1)β + 1, . . . , 2(k − 1)β + β
cmkzj−β , j = (2k − 1)β + 1, . . . , 2kβ

, (1)

where cmk ∈ {−1,+1}.
The general channel model of spread spectrum wireless

communication systems [2][17-19] is used. The discrete time
impulse response of the channel is given by

h(n) =
L∑

l=1

αlδ(n− τl), (2)

where L is the number of paths, αl and τl are the channel
coefficient and the delay of the l-th path respectively. Here,
we assume that αl are the circularly symmetric complex
independent random variables with a Rayleigh distribution.

In most applications [2][17][18], the large spreading factors
are generally chosen, thus, the largest multipath time delay is
shorter than the bit duration, i.e. 0 < τlmax ≪ 2β. In this
case, the inter-symbol interference (ISI) is negligible. Hence,
similarly to [2][17][18], at the receiver, the decision variable
is approximated by

rk ≈
β∑

j=1

(
L∑

l=1

αlzj−τl + nj

)
·

(
cmk

L∑
l=1

αlzj−τl + nj+β

)∗

,

(3)

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted in  IEEE 83rd Vehicular Technology Conference (VTC), 2016



2

Delay

β

,k jy
, , ,

1

a k k j k j

j

r y y
β

β+
=

=∑

Correlator

Delay
β

jz

mk jc z β−

,k js
Channel

1 2
[ , ,..., ]m m m mKc c c=c

Chaotic 

Generator

Fig. 1. System model of the FM-DCSK communication system.

where n is a wideband AWGN, characterized by a circu-
larly symmetric complex Gaussian density with zero mean
and variance N0 (variance N0/2 in the real and imaginary
components), and ∗ denotes conjugation operator. In free ISI
case, the accurate distribution of Eq. (3) can be calculated by
using the method of [20], but the computational complexity is
very high owing to using the residue calculus. In [2][5-6][9-
10][17-18][20], it was shown that for large spreading factors,
Eq. (3) could be considered as the Gaussian distribution. For a
large spreading factor, the following approximated expression
is used [2][17-18]:∑β

j=1
zj−τlzj−τi ≈ 0, l ̸= i. (4)

Hence, Eq. (3) is further approximated by

rk ≈
∑β

j=1

(
cmk

L∑
l=1

|αl|2|zj−τl |2 +
∑L

l=1
αlzj−τln

∗
j+β

+cmk

∑L

l=1
α∗
l z

∗
j−τl

nj + njn
∗
j+β

)
. (5)

Actually, the effect of multipath fading leads to the loss of
partial energy, however, by means of the above approximation
we may consider as collecting all the energy. Hence, it is not
difficult to derive the mean and variance of the real part rak,
respectively, which are given by

E [rak] = cmk

L∑
l=1

|αl|2
Eb

2
, (6)

V ar[rak] =
L∑

l=1

|αl|2
EbN0

2
+ β

N2
0

2
, (7)

where Eb =
∑2β

j=1 |zj |2 is energy per bit, E[.] denotes the
expectation operator and Var[.] is the variance operator. For
convenience, we define h =

∑L
l=1 |αl|2 as the power factor

and the transmitted power is supposed to be normalized to one,
i.e. Eb = 1. Using the multiple observations {rak}k=1,...,K ,
the true SNR, γ, that we wish to estimate, is define as
γ = h/N0. It is mathematically more convenient to use the pa-
rameter vector, θ = [h N0], and the function, g(θ) = h/N0

.

III. SNR ESTIMATION

Since the channel is slowly fading, we assume that the
channel coefficients are constant during the transmission

time of a FM-DCSK sequence length K. Consider g pilot
symbols and l data symbols, so that the total packet is
of the length K = g + l. The decision vector is defined
as ra = [ra1, ra2, . . . , rak, . . . , raK ]T , where [.]T denotes
the transpose. The information symbol vector is defined by
cm = [cm1, cm2, . . . , cmk, . . . , cmK ]T .

A. Data Aided (DA) Estimation Using Pilot Symbols

For this case, the probability density function (PDF) of rak
is written as

p(rak|cmk,θ) =
exp

[
− (rak−cmkh/2)

2

βN2
0+hN0

]
√
π(βN2

0 + hN0)
. (8)

With independent received symbols, the joint PDF of the g
received symbols is given by

p(ra|cm,θ) =
exp

[
−

∑g
k=1(rak−cmkh/2)

2

βN2
0+hN0

]
[√

π(βN2
0 + hN0)

]g . (9)

Thus, the log-likelihood function (LLF) for the g received
symbols is given as,

Λ(ra;θ) = −g

2
lnπ − g

2
ln(βN2

0 + hN0)−

g∑
k=1

(rak − cmkh
2 )2

βN2
0 + hN0

.

(10)

In order to maximize (10), by taking the first-order partial
derivative of (10) with respect to h and N0, the results are
given by

∂Λ

∂h
=

− g
2N0 −

g∑
k=1

cmk(rak − cmkh
2 )

βN2
0 + hN0

+

N0

g∑
k=1

(rak − cmkh
2 )2

(βN2
0 + hN0)

2 ,

(11)

∂Λ

∂N0
= −

g
2 (2βN0 + h)

βN2
0 + hN0

+

(2βN0 + h)
g∑

k=1

(rak − cmkh
2 )2

(βN2
0 + hN0)

2 .

(12)

Setting the above equations to zero, one obtains the follow-
ing results∑g

k=1
cmk(rak − cmkh/2) = 0, (13)

g

2

(
βN2

0 + hN0

)
=
∑g

k=1
(rak − cmkh/2)

2. (14)

Using (13), the estimate of h is given as

ĥ =
2
∑g

k=1 cmkrak
g

. (15)

Using (14) and (15), the estimate of N0 is given by

N̂0 =
− ĥ

2 +

√(
ĥ
2

)2
+ 2β

g

∑g
k=1(rak − cmkĥ

2 )2

β
. (16)

Thus, using (15) and (16), the ML estimation of the SNR
is found, which is given by γ̂ = ĥ/N̂0.
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B. Non-Data Aided (NDA) Estimation Using Data Symbols

For this case, the PDF of rak is written as

p(rak|θ) =
exp

[
− (rak−h/2)2

βN2
0+hN0

]
+ exp

[
− (rak+h/2)2

βN2
0+hN0

]
2
√
π(βN2

0 + hN0)

=

exp

(
− r2ak+

h2

4

βN2
0+hN0

)
√
π(βN2

0 + hN0)
cosh

(
hrak

βN2
0 + hN0

)
, (17)

where exp(x) + exp(−x) = 2 cosh(x) is used.
With independent received symbols, the joint PDF of the l

received symbols is given by

p(ra|θ) =

l∏
k=1

exp

(
− r2ak+

h2

4

βN2
0+hN0

)
cosh

(
hrak

βN2
0+hN0

)
[√

π(βN2
0 + hN0)

]l (18)

Thus, the LLF for the l received symbols is given as,

Λ(ra;θ) = − l

2
lnπ − l

2
ln(βN2

0 + hN0)−
lh

2

4

βN2
0 + hN0

−
∑l

k=1 r
2
ak

βN2
0 + hN0

+

l∑
k=1

ln cosh

(
hrak

βN2
0 + hN0

)
. (19)

Similarly, taking the first-order partial derivative of (19)
with respect to h and N0 results in

∂Λ

∂h
= −

l
2N0

βN2
0 + hN0

−

lh
2

(
βN2

0 + hN0

)
− lh2

4 −N0

l∑
k=1

r2ak

(βN2
0 + hN0)

2

+
βN2

0

(βN2
0 + hN0)

2

l∑
k=1

rak tanh

(
hrak

βN2
0 + hN0

)
, (20)

∂Λ

∂N0
= −

l
2 (2βN0 + h)

βN2
0 + hN0

+

(2βN0 + h)( lh
2

4 +
l∑

k=1

r2ak)

(βN2
0 + hN0)

2

− 2βN0 + h

(βN2
0 + hN0)

2

l∑
k=1

rak tanh

(
hrak

βN2
0 + hN0

)
. (21)

Putting the above equations equal to zero and solving them
simultaneously gives us following results:

h2 + 2hN0 + 2βN2
0 =

4

l

∑l

k=1
r2ak, (22)

h =
2

l

∑l

k=1
rak tanh

(
hrak

βN2
0 + hN0

)
. (23)

The above nonlinear equations seem to prohibit the closed
form solutions for estimates of h and N0. Using the fact,
tanh(−x) = − tanh(x), the summation term is given by

l∑
k=1

rak tanh

(
hrak

βN2
0 + hN0

)
=

l∑
k=1

|rak| tanh
(

h|rak|
βN2

0 + hN0

)

=
l∑

k=1

|rak|
1− [exp(−|rak|/N0)]

2γ
γ+β

1 + [exp(−|rak|/N0)]
2γ

γ+β

, (24)

where exp(x)−exp(−x)
exp(x)+exp(−x) = tanh(x) is used. It is noticed that for

high SNR, where |rak| ≫ N0, the term exp(−|rak|/N0) is

approximated as zero. Thus, the summation term is approxi-
mated as∑l

k=1
rak tanh

(
hrak

βN2
0 + hN0

)
≈
∑l

k=1
|rak|. (25)

Thus, the estimate of h is given as

ĥ =
2

l

∑l

k=1
|rak|. (26)

Using (22) and (26), the estimate of N0 is given by

N̂0 =
− ĥ

2 +

√(
ĥ
2

)2
− β

2

(
ĥ2 − 4

l

∑l
k=1 r

2
ak

)
β

. (27)

C. Joint Estimation Using Pilot and Data Symbols
Assuming independent received symbols, the joint PDF is

the product of PDFs resulting from the pilot and data symbols,
thus the LLF is given as

Λ(ra;θ) = −K

2
lnπ − K

2
ln(βN2

0 + hN0)−
lh

2

4 +
K∑

k=g+1

r2ak

βN2
0 + hN0

−

g∑
k=1

(rak − cmkh
2 )2

βN2
0 + hN0

+
K∑

k=g+1

ln cosh

(
hrak

βN2
0 + hN0

)
.

(28)
Using similar approximations as the Sec. III-B and taking

the first-order partial derivative of (28) and setting them to
zero result in the estimates of h and N0 as

ĥ =
2

K

(∑g

k=1
cmkrak +

∑K

k=g+1
|rak|

)
, (29)

N̂0 =
− ĥ

2 +

√(
ĥ
2

)2
− β

2

(
ĥ2 − 4

K

∑K
k=1 r

2
ak

)
β

. (30)

IV. CRAMÉR-RAO LOWER BOUND
It is noticed that we can have different CRLBs for the

different estimators in FM-DCSK system. The completely or
fully data-aided (FDA) estimator serves as a bench mark on
the variance for all estimators, which is the same as DA but
uses all information in the entire packet as training sequence
[13][14]. Hence, we derive the CRLB for the FDA estimator.
Furthermore, the CRLB for the NDA estimator is also derived.

Since the unknown parameter is a vector, the CRLB for
SNR is given as [16]

CRLB =
∂g(θ)

∂θ
I−1(θ)

∂g(θ)T

∂θ
, (31)

where the derivative of the function, ∂g(θ)
∂θ , is given by

∂g(θ)

∂θ
=
(

1
N0

−h
N2

0

)
, (32)

and I−1(θ) is the inverse matrix of the Fisher information
matrix (FIM) I(θ), which is given by [16]

I(θ) =

−Era

[
∂2Λ(ra;θ)

∂h2

]
−Era

[
∂2Λ(ra;θ)
∂h∂N0

]
−Era

[
∂2Λ(ra;θ)
∂N0∂h

]
−Era

[
∂2Λ(ra;θ)

∂N2
0

] , (33)

where Era [f(ra)] =
∫ +∞
−∞ f(ra)p(ra|θ)dra.
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A. FDA Estimation

Using the fact (see [18], pp. 86), i.e. for a Gaussian random
variable X , X ∼ N(m,σ2), one has

E[(X −m)n] =

{
(2k)!σ2k

2kk!
n = 2k

0 n = 2k + 1,
(34)

and taking the second-order partial derivatives of (11) and (12),
where K is instead of g, with respect to h and N0, we can
obtain the elements of I(θ). Hence, the FIM of FDA estimator
is derived as

I(θ) =

 KN0(βN0+h+N0)
2(βN2

0+hN0)2
2KβN2

0+KhN0

2(βN2
0+hN0)2

2KβN2
0+KhN0

2(βN2
0+hN0)2

K(2βN0+h)2

2(βN2
0+hN0)2

 . (35)

Furthermore, using (34), (11) and (12), one has Era

[
∂Λ
∂h

]
=

Era

[
∂Λ
∂N0

]
= 0. It shows that Eq. (10) satisfies the regularity

conditions. Thus, according to the Theorem 7.1 in Chapter 7
of [16], this estimator is unbiased.

Substituting (32) and the inverse matrix of (35) into (31),
the CRLB for FDA estimator is derived as

CRLBF =
2 (γ + β)

2

K (γ + 2β)
2

(
γ2 + 4γ + 4β

)
. (36)

B. NDA Estimation

We define the following equations as:

Era

[
l∑

k=1

r2ak

]
=

l

2

(
βN2

0 + hN0 +
h2

2

)
, (37)

Era

[
l∑

k=1

rak tanh

(
hrak

βN2
0 + hN0

)]
=

lh

2
, (38)

Era

[
l∑

k=1

r2ak cosh
−2

(
hrak

βN2
0 + hN0

)]
= lN2

0 f (γ) , (39)

where f (γ) =
exp

[
− γ2

4(β+γ)

]
√

π(β+γ)

∫ +∞
−∞ t2

exp(− t2

β+γ )

cosh( tγ
β+γ )

dt.

Similarly, taking the second-order partial derivatives of (20)
and (21) with respect to h and N0, using (37), (38), and (39),
we can obtain the elements of I(θ). Hence, the FIM of NDA
estimator is derived as

I(θ) = C

(
(γ + β + 1)− 2β2f(γ)

(γ+β)2 (γ + 2β)(1 + 2βγf(γ)
(γ+β)2 )

(γ + 2β)(1 + 2βγf(γ)
(γ+β)2 ) (γ + 2β)2(1− 2γ2f(γ)

(γ+β)2 )

)
,

(40)
where C = l

2N2
0 (γ+β)2

. Similarly, using (37), (38), (39), (20)

and (21), one has Era

[
∂Λ
∂h

]
= Era

[
∂Λ
∂N0

]
= 0. Hence, the

NDA estimator is also unbiased.
Substituting (32) and the inverse matrix of (40) into (31),

the CRLB for NDA estimator is derived as

CRLBN =
2 (γ + β)

3 [
(γ + β)

(
γ2 + 4γ + 4β

)
− 2γ2f(γ)

]
l (γ + 2β)

2
[(γ + β)2 − (γ2 + γ + β)f(γ)]

.

(41)
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Fig. 2. NMSE vs. true SNR for different proposed estimators, where
spreading factor is set to 80.
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Fig. 3. NMSE vs. true SNR for different proposed estimators, where
spreading factor is set to 320.

For large SNR, f(γ) is approximated as zero. Eq. (41) is
further approximated as 2(γ+β)2

l(γ+2β)2

(
γ2 + 4γ + 4β

)
, which is

the same as Eq. (36) if l equals to K.
Note that, the proposed expressions can be applied into

DCSK systems, e.g. [5], [6], [9], [18]. At the time, because
the term βN2

0 /2 of Eq. (7) is replaced by βN2
0 /4 in DCSK

system, β/2 is instead of β for Eqs. (16), (27), (30), (36) and
(41). Hence, the estimation performance for DCSK system is
the same as that of FM-DCSK system.

V. RESULTS AND DISCUSSIONS

For multipath Rayleigh fading channels, three paths L =
3 are considered having equal average power gain, i.e.
E[|α1|2] = E[|α2|2] = E[|α3|2] = 1/3, with the time delays
τ1 = 0, τ2 = 2 and τ3 = 5, respectively. The estimators’
performance is evaluated in terms of the normalized mean
squared error (NMSE) using simulations and compared to the
normalized CRLB defined as:

NMSE(γ̂) =
E{(γ − γ̂)2}

γ2
, NCRLB(γ) =

CRLB(γ)

γ2
,
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Fig. 4. NMSE vs. true SNR for different proposed estimators without ISI,
where spreading factor is set to 80.

where γ is the true value of SNR and γ̂ is the estimated value.
In simulation, a short packet is considered, comprising 8 pilot
symbols and 28 data symbols.

The performance of the proposed estimators is evaluated.
Fig. 2 shows the NMSE vs. true SNR for different proposed es-
timators, where the spreading factor is set to 80. It is observed
that DA estimator outperforms NDA and joint cases in the
low SNR region, where it is attributed to the approximations
of the nonlinear equations in the section III-B causing the
performance loss, while NDA and joint cases outperform DA
case in the medium SNR region, because NDA and joint cases
use all data of the packet to estimate SNR but DA case only
adopts a small amount of pilot data. However, in the high
SNR region all estimators perform not well and their NMSEs
are the same, because Eq. (4) is non-zero and the system
has serious ISI for a small spreading factor, where these two
factors also cause the error of channel information estimation
resulting in error propagation in noise variance estimation.
Here, these factors are referred as to interference term. In a
word, the variance of interference term, which is larger than
the very small true noise variance at high SNR region, causes
inaccurate noise variance estimation.

In order to explain this point, we show the performance
of the proposed estimators for a large spreading factor and
under no ISI scenario. Fig. 3 plots the NMSE vs. true SNR
for different proposed estimators, where the spreading factor
is set to 320. Fig. 4 depicts the NMSE vs. true SNR for
different proposed estimators without ISI, where the spreading
factor is set to 80. It can be seen that at a large spreading
factor the proposed scheme performs well over a wide SNR
range, including high SNR region, from Fig. 3, where their
performance can achieve the level of no ISI case in Fig. 4.
Hence, for a large spreading factor, the variance of interference
term can be neglected.

VI. CONCLUSIONS

In this paper, the ML SNR estimators and CRLBs for
SNR estimators serving as a benchmark in FM-DCSK system
have been derived under multipath Rayleigh fading channels.

Simulated results show that for a large spreading factor the
proposed scheme performs well over a wide SNR range in
comparison with CRLBs. The proposed expressions are valid
for any binary differential spread spectrum (BDSS)system.
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