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Abstract: The aim of this paper is to improve the position accuracy of a six degree of freedom medical
robot. The improvement in accuracy is achieved without the use of any external measurement device.
Instead, this work presents a novel calibration approach based on using an embedded force-torque
sensor to identify the robot’s kinematic parameters and thereby enhance the positioning accuracy.
A simulation study demonstrated that our calibration approach is effective, whether or not any
measurement noise is present: the position error is improved, inside the robot target workspace, from
12 mm to 0.320 mm, for the maximum values, and from 9 mm to 0.2771 mm, for the mean errors.

Keywords: robot calibration; robot accuracy; observability; medical robot; robot kinematic;
robotic metrology

1. Introduction

Medical robots show a promising future in various health issues in the most recent decades. With
recent developments in sensors and control theory, medical robots provide many inspiring solutions
in the fields of: diagnosis, surgery, orthopedics, rehabilitation, prosthetics and exoskeletons, etc. [1,2].
The force-torque (wrench) sensor is an essential component of these medical robot applications.
MedRUE [3], OTELO [4] and Hippocrate [5] robot systems were developed for the ultrasound
scanning of vascular diseases. In all three robot systems, force-torque sensors are employed to maintain
proper contact with the patient’s body during the examination. The Black Falcon system, which is a
fundamental study for many other surgical robot systems, allows the surgeon to feel the interaction
with tissue and thereafter improve the surgical performance. The Da Vinci system is a popular surgery
robot widely used in hospitals [6]. The adoption of force-torque sensors in Da Vinci system has been
studied in depth [7]. The Robodoc assistant system is a medical orthopedic robot for use during total
knee replacement, and it achieves results that are comparable to technician performance [8]. The
force-torque sensors are used in Robodoc for both control and safety reasons.

Medical robots have also contributed to the field of rehabilitation. The InMotion ARM, which is
based on the MIT-Manus project, is an interactive robotic system for upper-extremity rehabilitation
therapy [9,10], and the robotic stepper is a device, developed by the National Aeronautics and Space
Administration (NASA), to help patients with lower-extremity rehabilitation [11]. Force-torque sensors
are employed in these rehabilitation robots to measure the strength and the capability of the patient.
Medical robots have also been developed as substitutes for malfunctioning parts of the human body.
The I-limb ultrasound system and the ReWalk system are exoskeleton robots for hand prosthetics and
leg prosthetics, respectively [12,13]. Force-torque sensors are used in the prosthetic and exoskeleton
robots to control the joints and to evaluate the power of the limb movements.

Medical robots often need to be accurate, not just repeatable, which means that they must be
calibrated. Most robot calibration approaches are based on minimizing the pose residual, which

Sensors 2016, 16, 798; doi:10.3390/s16060798 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 798 2 of 19

involves external measurement devices such as a coordinate measurement machine (CMM) [14,15],
laser tracker [16–18], measurement articulated arm [14], ball-bar [19,20], or a high-accuracy touch
probe [21,22]. However, these measurement devices tend to be expensive, and they are not readily
available. Furthermore, even though other studies have developed low-cost calibration methods, such
as in [19,20], they still require the use of external measurement devices.

Other robotic applications are dedicated to measuring and/or reproducing human movements,
such as [23], which presents a methodology to accurately record human finger postures during grasping.
In this work, human finger postures are measured during grasping. As with the aforementioned
works, measurements are taken with external measurement devices: an optical tracking of markers
that are attached to the skin of the hand, and tracked using stereo-cameras. The considered kinematic
parameters in this work are geometric static parameters, and parameters controlling the location of
the bones and the joint markers. These parameters are identified by using a constrained least-squares
minimization. The minimization problem is solved by employing a primal-dual interior point.
It minimizes the residuals of the coordinates of measured markers and the corresponding estimated
coordinates, which are a function of the static parameters and joint angle values.

Force-torque sensors are already used in many medical robot systems, so it makes sense to use
these sensors, rather than external coordinate measurement equipment, for calibrating the robots
(i.e., improving the robot positioning accuracy). Yet, to the best of our knowledge, no such calibration
methods have been proposed in the literature. In previous work, other measurement approaches
were used, such as Cartesian coordinates [14–18], or distance measurements [19,20]. The novelty of
our work is the use of a force-torque sensor to improve the positioning accuracy of a medical robot
(MedRUE). The robot parameters are identified by minimizing the force and torque residuals, instead
of minimizing the residuals of the end-effector position and/or orientation, as done in conventional
approaches [14–20]. The sensor we used is the embedded force-torque sensor, located between the
flange and the tool. Thus, our calibration approach can be considered as a self-calibration method.

The proposed approach could be used for any other medical or industrial robot. Industrial robots
are not always equipped with force-torque sensors. However, such sensors are readily available in the
market and can be easily installed. Indeed, industrial serial robots are increasingly using these sensors
for programming purposes: the force-torque sensors are installed in order to move manually the robot
end-effector, during the online programming (also called lead-through programming).

In the identification process proposed in this paper, the data are collected by the robot’s
force-torque sensor. The process of identifying the parameters is based on minimizing the residual of
the force and torque at the robot’s end-effector. The accurate identification of the robot’s parameters
leads to improved position accuracy. Our approach is validated through a simulation, in which the
position accuracy is evaluated before and after calibration.

This paper is organized as follows. The next section describes the force and torque forward
kinematic equations, followed by a description of the calibration approach. We then present our
simulation study, followed by a results analysis. Finally, we discuss our conclusions and suggestions
for further work in the last section of the paper.

2. Robot Description and Forward Kinematics

2.1. Robot Description and the Main Reference Frames

The MedRUE robot (Figure 1a) is a medical robot dedicated for vascular ultrasound examination.
MedRUE is a six degrees of freedom (6-DOF) hybrid serial-parallel robot. It is composed of two five-bar
mechanisms (Figure 1b), which are symmetrically assembled. These mechanisms are considered to be
perfectly parallel to each other and perpendicular to the robot base. The robot base is fixed to a linear
guide actuated through a servomotor SM1; the corresponding joint variable is denoted by q1. Five
other servomotors are also used in order to actuate the robot revolute joints: SM2 and SM3, for the left
five bar mechanism, and SM4 and SM5 for the right side (Figure 1a). The sixth servomotor—attached
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to the link having L14 as its length—is used to rotate the probe about the x axis of the last reference
frame (F6), which is defined as follows: the origin of F6 is located midway between G1 and G2; its x
axis (x6) is defined to pass through G1 and G2, and z6 is pointing toward the probe center.

Sensors 2016, 16, 798 3 of 20 

 

base. The robot base is fixed to a linear guide actuated through a servomotor SM1; the corresponding 
joint variable is denoted by q1. Five other servomotors are also used in order to actuate the robot 
revolute joints: SM2 and SM3, for the left five bar mechanism, and SM4 and SM5 for the right side 
(Figure 1a). The sixth servomotor—attached to the link having 14L  as its length—is used to rotate 
the probe about the x axis of the last reference frame (F6), which is defined as follows: the origin of F6 
is located midway between G1 and G2; its x axis (x6) is defined to pass through G1 and G2, and z6 is 
pointing toward the probe center. 

 
(a)

 
(b)

Figure 1. (a) The MedRUE robot prototype with the tool part and (b) a five-bar mechanism of the 
MedRUE where (i = 1, 2). 

Each five-bar mechanism i (i = 1, 2) has five links: the distance di between the anchor points of 
the two proximal links, and the four mobile links having Lij (j = 1, 2, 3, 4) as lengths. The five links 
connect five revolute joints (Ai, Bi, Ci, Di, Ei), among which only two (Ai and Ci) are actuated through 
servomotors SMi×2 and SMi×2+1: the corresponding two angles are denoted qi×2 and qi×2+1, respectively. 
A total of five angles of active joints are considered (q2, …, q6). 

Figure 1. (a) The MedRUE robot prototype with the tool part and (b) a five-bar mechanism of the
MedRUE where (i = 1, 2).

Each five-bar mechanism i (i = 1, 2) has five links: the distance di between the anchor points
of the two proximal links, and the four mobile links having Lij (j = 1, 2, 3, 4) as lengths. The five
links connect five revolute joints (Ai, Bi, Ci, Di, Ei), among which only two (Ai and Ci) are actuated
through servomotors SMiˆ2 and SMiˆ2+1: the corresponding two angles are denoted qiˆ2 and qiˆ2+1,
respectively. A total of five angles of active joints are considered (q2, . . . , q6).

Finally, joints E1 and E2 are linked through the probe support (Figure 1a), which has a universal
joint at each extremity Gi. The x coordinate of Gi with respect to the base frame is denoted by d4i.
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In our calibration process, nine reference frames are considered:

‚ F0: The reference frame of the robot base, located on the robot base at O0. As shown in Figure 1a,
the x axis (x0) is aligned with the axis of the linear guide, and z0 is normal to the plane defined

by the platform of the robot base. The translation Tworld
0 “

”

x0 y0 z0

ıT
and the orientation

(α0, β0, γ0), described in XYZ fixed Euler angles, of F0 with respect to Fworld, are expected to be
identified by the calibration process.

‚ Fworld: The world reference frame (Figure 1a), associated with the robot work-cell. It has
approximately the same orientation as F0.

‚ F1 to F6: The reference frames associated with the joints (F1, F2, . . . , F6). These frames are
not shown.

‚ Ftool: The tool reference frame associated with the robot probe (Figure 2). The origin of Ftool is
described to be the center of the end-effector (i.e., the probe), and its orientation is considered
to be the same as that of F6. Knowing that the end-effector orientation is not used in our

calibration process, therefore, only the translation T6
tool “

”

xt yt zt

ıT
of Ftool with respect to

F6 is considered.
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Figure 2. Tool part of MedRUE.

2.2. Position Equations

Given the vector ψ = [q1, q2, . . . , q6]T of the active joint variables, the end-effector’s pose with
respect to the world frame is represented by homogeneous matrices as follows:

Aworld
tool pψq “ Aworld

base A0
wristA

wrist
sensorA

sensor
tool (1)
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where Ab
a denotes the homogeneous matrix representing a frame a with respect to a frame b, and can

be represented in the matrix form of

«

Rb
a Tb

a
0 1

ff

.

The rotation matrix is often represented by R(α,β,γ) = Rx(γ)Ry(β)Rz(α), and the translation matrix
by T(x,y,z) = Tx(x)Ty(y)Tz(z), where Ru(φ) and Tu(d) are the rotation/translation operator along the
u axis with value φ/d. Since robot joints are only included in A0

wrist, then Aworld
base , Awrist

sensor and Asensor
tool

in Equation (1) are constant matrices, which can be defined directly by parameter sets [x0, y0, z0,
α0, β0, γ0], [xS, yS, zS, αS, βS, γS] and [xT, yT, zT, αT, βT, γT]. The following paragraphs present the
calculation of A0

wrist.
The coordinates of Bi and Di are expressed with respect to the local frame Fi on ith five-bar

mechanism as follows:

rOi Bi “ rOi Ai `

”

Li1cos pqiˆ2 ` δqiˆ2q Li1sin pqiˆ2 ` δqiˆ2q 0
ıT

(2)

rOi Di “ rOiCi `

”

Li3cos pqiˆ2`1 ` δqiˆ2`1q Li3sin pqiˆ2`1 ` δqiˆ2`1q 0
ıT

(3)

where Li1 and Li3 are the lengths of the four swinging links as shown in Figure 1, and δqi is the offset
of ith active joint. The vector rOi Ai is calculated as follows:

rOi Ai “

„

b

pCiy´Aiyq
2
`pCiz´Aizq

2

2 0 0

T
(4)

and
rOiCi “ ´rOi Ai (5)

The coordinates of Ei with respect to a frame Fi are obtained as follows:

rOiEi “ rOi Di ` rDiSi ` rSiEi (6)

where

rDiSi “
rDi Bi

2

˜

L2
i4 ´ L2

i2

||rDi Bi ||2 ` 1

¸

(7)

rSiEi “

b

L2
i4 ´ ||rDiSi ||2Rz

´π

2

¯

r̂Di Bi (8)

and r̂Di Bi is the unit vector along rDi Bi “ rOi Bi ´ rOi Di .
The coordinates of Ei w.r.t. Fbase are obtained by a transformation matrix A0

i as follows:

rO0Ei “ A0
i rOiEi (9)

where

A0
i “

»

—

—

—

–

0 0 1 q1 ` p´1qi d4i

´sin pθiq cos pθiq 0
Aiy`Ciy

2
´cos pθiq ´sin pθiq 0 Aiz`Ciz

2
0 0 0 1

fi

ffi

ffi

ffi

fl

(10)

and θi, which is the angle between rAiCi and the normal of the x0y0 plane, is calculated as follows:

θi “ atan2 pyAi ´ yCi, zCi ´ zAiq (11)

The orientation of Fwrist w.r.t. Fbase is obtained from the corresponding rotation matrix
Rbase

wrist pα,β,γq, where α, β and γ are the fixed XYZ Euler angles. The rotation angle along x0 is
directly obtained as γ “ qDE1 ` q6 ` δq6. According to the design of the tool part shown in Figure 2,
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R0
wrist pα,β,γq

»

—

–

1
0
0

fi

ffi

fl

“
rO0F2 ´ rO0F1

||rO0F2 ´ rO0F1||
“

»

—

–

ux

uy

uz

fi

ffi

fl

(12)

Then α and β are obtained as:

α “ sin´1 `uycosγ` uzsinγ
˘

(13)

β “ atan2
´

Ψ
b

pcosαq2 ´Ψ2
¯

(14)

where, Ψ “ uysinγ´ uzcosγ.
The translation of Fwrist w.r.t. Fbase is calculated as follows:

T0
wrist “ rO0F1 `R0

wrist

»

—

–

d41 ` d5

0
0

fi

ffi

fl

(15)

Finally, the pose of Fwrist w.r.t. Fbase is expressed as follows:

A0
wrist “

«

R0
wrist T0

wrist
0 1

ff

(16)

2.3. Force and Torque Equations

The gravity frame Fgravity is assigned at the tool part’s center of gravity, as shown in Figure 3.
When the robot is not in contact with its environment, the gravity force fG in frame Fgravity is the cause
of the force and torque on the force sensor. The forward kinematic solution to obtain the force and
torque in force sensors is:

Fsensor
G “ Asensor

wrist Awrist
gravityF

gravity
G (17)

where F is a 6 ˆ 1 wrench vector composed of force and torque, and A is a 6 ˆ 6 transformation matrix
between screws. The orientation of Fgravity is in alignment with Fworld, rather than fixed relative to the
tool part. The wrench of the gravity force of the tool part w.r.t. the Fgravity is

Fgravity
G “

«

fgravity
G

0

ff

(18)

where fgravity
G “

”

0 0 ´mToolg
ıT

with mTool is the mass of the tool part and g is the gravitational

constant. Since gravity is a pure force, τgravity
G “

”

0 0 0
ıT

.

The transformation matrix Awritst
gravity can be expressed as

Awritst
gravity “

«

Rwritst
gravity 0

pwritst
gravity ˆRwritst

gravity Rwritst
gravity

ff

(19)

Since Fgravity keeps the same orientation with Fworld, then Rwrist
gravity “ Rwrist

world “
`

Rworld
base Rbase

wrist
˘T

.

pwrist
gravity “

”

xG yG zG

ıT
is the translation offset of the origin of Fgravity w.r.t. Fwrist. pwrist

gravityˆ is the
vector product operation, and it is equal to
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pwrist
gravityˆ “

»

—

–

0 ´zG yG
zG 0 ´xG
´yG xG 0

fi

ffi

fl

(20)

Similar to Equation (19), Asensor
wrist is characterized by parameters describing Fsensor w.r.t. Fwrist:

Asensor
wrist “

´

Awrist
sensor

¯´1
“

«

`

Rwrist
sensor

˘T 0
´
`

Rwrist
sensor

˘T pwrist
sensorˆ

`

Rwrist
sensor

˘T

ff

(21)

The sensor reference frame Fsensor is defined in the information given by the sensor manufacturer.
During assembly, its orientation w.r.t. Fwrist is expressed by Euler-XYZ angles:

Rwrist
sensor “ Rx pγSqRy pβSqRz pαSq (22)

Similar to Equation (20), pwrist
sensorˆ is the vector product operation of pwrist

sensor “
”

xS yS zS

ıT
.
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3. Parameters Used During Calibration

In our robot calibration process, the following parameters were considered:

‚ The lengths of the ten links of the two five-bar mechanisms: L11, L12, L13, L14, L21, L22, L23 and L24.
‚ The y and z coordinates of the anchor points of the two proximal links of the five-bar mechanisms:

A1y, A1z, C1y, C1z, A2y, A2z, C2y, C2z.
‚ The offsets of the six active joints: δq1, δq2, δq3, δq4, δq5, δq6.
‚ The offset parameters for the tool part: d31, d32, d41, d42, d5.
‚ The parameters defining the base with respect to the world frame: x0, y0, z0, α0, β0, γ0.
‚ The position of the tool frame with respect to the wrist frame: xT, yT, zT, αT, βT, γT.
‚ The parameters to describe the sensor frame w.r.t. the wrist frame: xS, yS, zS, αS, βS, γS.
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‚ The parameters to describe the offset of gravity frame w.r.t. the wrist frame: xG, yG, zG.
‚ The mass of the tool part: mTool.

Of the 46 parameters that we considerd, a total of 17 parameters are non-identifiable, which means
that we need to reduce the number of identifiable parameters to 29.

4. Calibration Process

Our calibration process is explained in detail in Sections 4.1–4.3. Its main steps are presented in
what follows:

1. Develop the calibration model: the forward kinematics, presented in Section 2.2.
2. Create a pool Ω of 40,000 configurations uniformly distributed inside the whole robot workspace.

Create a set Ωt of 336 configurations uniformly distributed inside the target workspace (see
Section 4.3). We note that the configurations of the set Ωt are different from these of Ω.

3. Select 100 configurations to be used in the identification process. These configurations are chosen
through an observability analysis, as explained in Section 4.1.

4. Take the force and torque measurements, for all robot configurations (Ωt and Ω). Measurements
are done by using the robot force-torque sensor. We note that in this paper all measurements are
generated by simulation, as explained in Sections 4.3 and 5.

5. Identify the robot parameter values by using the calibration configurations selected in step 3; the
identification approach is presented in details in Section 4.2.

6. Evaluate the accuracy after calibration, as explained in Section 5.

4.1. Selection of Calibration Configurations

After creating the calibration model, and generating a pool Ω of 40,000 configurations uniformly
distributed inside the whole robot workspace, a set of 100 calibration configurations is selected
among Ω. This is done by using an approach commonly called observability analysis. This analysis is
used to obtain the optimal set of the calibration configurations, and is based on the singular value
decomposition (SVD) of the identification Jacobian matrix J. The matrix J is composed of the derivatives
of the end-effector force and torque vector (Equation (17)), with respect to all of the robot independent
parameters. The Jacobian matrix is also used in the linearization of the force and torque equations
(Equation (17)), around the calibration configurations (i.e., Taylor approximation). This linearization
allows identifying the parameter values, as explained in Section 4.2. The nominal values of the robot’s
independent parameters are represented by the vector pnom. The matrix J is calculated as follows, for
i = 1 . . . n.

J “

»

—

–

J1
...

Jn

fi

ffi

fl

(23)

where Ji is the 6 ˆ m Jacobian matrix at the ith calibration configuration, n is the number of calibration
configurations, and m is the number of considered parameters (not all of which are necessarily
identifiable). In our case, n = 100 and m = 49.

Ji is given by:

Ji “

»

—

—

—

—

—

—

—

—

—

—

—

–

BFx,i
Bpnom
BFy,i
Bpnom
BFz,i
Bpnom
BTx,i
Bpnom
BTy,i
Bpnom
BTz,i
Bpnom

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(24)
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The matrix J is also used to find the non-identifiable parameters. The rank rJ of the Jacobian J
represents the number of identifiable parameters. If rJ < m, then m ´ rJ parameters are non-identifiable;
the corresponding columns should be removed from J. This procedure is carried out using an algorithm
that is based on the approach proposed in [21]. The stop criteria is when m becomes equal to rJ. The
algorithm proceeds as follows:

1. Remove all zero columns from J. The corresponding parameters have no impact on the
calibration model.

2. Calculate the condition number, cJ, of J. The condition number is used to evaluate how good
is the matrix J for the parameter identification. With a bad condition number (high value), the
solutions are unstable with respect to small changes in measurement errors. Therefore, to have a
robust identification system, the condition number should be as small as possible.

3. Remove, one at a time, the column related to each parameter from J, and calculate both the
new rank and condition number (r˚J and c˚J ) for the new Jacobian matrix J*. The column that,
if eliminated, results in the maximum reduction of the condition number and gives the same
rank (r˚J = rJ), is definitively removed (i.e., the corresponding parameter will be not subject to the
identification process).

4. Replace J with J*, and repeat the process from step (2).

As a result, of the 49 parameters considered in our calibration model, 22 are non-identifiable and
are indicated by the symbol ‘*’ in Table 1.

The fact that some parameters are non-identifiable is mainly due to redundancy, or the fact that
they have no impact on the force and torque equations that represent the calibration model.

The parameter identification is achieved by minimizing the residual of the end-effector force and
torque, which are measured by the robot’s force sensor (Figure 3); no external measurement device
is required. Further, only the gravity effect of the end-effector is used to apply forces to the robot’s
end-effector. Therefore, to change the applied force on the end-effector, it is necessary to change
its orientation.

In our identification process, 100 calibration configurations are selected from among the
40,000 configurations. The remaining 39,900 configurations are used for validation purpose. The
40,000 configurations are uniformly distributed on three layers, within the entire robot workspace. Note
that several orientations are generated for each position. The calibration configurations are selected
using an observability analysis, which allows us to identify the most appropriate configurations and
thus identify the most effective parameters. This analysis is based on using the first observability
index, denoted by O1 and calculated by using the singular value of the Jacobian identification matrix
(i.e., the sensitivity matrix). The procedure of selecting the calibration configurations is based on the
DETMAX algorithm, which was initially proposed in [24].

According to [25,26], the index O1 seems to be the most appropriate index for the kinematic
calibration. This was also confirmed by our simulation, through a comparison of the five observability
indices that were presented in the literature and thoroughly detailed in [26]. The convergence of O1 is
represented in Figure 4, and is calculated as follows:

O1 “
pσ1σ2 . . .σmq

1
m

?
n

(25)

where n is the number of calibration configurations, σ1 . . . σm are the singular values of the Jacobian
identification matrix for the m = 29 identifiable parameters.
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Table 1. Results of the simulated parameter identification.

Param. Nom. Actual Identified, without Meas. Errors Identified, with Meas. Errors

A1y (mm) ´233.000 ´233.000 ´233.000 ´233.000
A1z (mm) 178.000 178.612 178.612 178.659
C1y (mm) ´83.000 ´84.005 ´84.005 ´84.002
C1z (mm) 438.000 438.000 438.000 438.000
A2y (mm) ´233.000 ´232.267 ´232.267 ´232.294
A2z (mm) 178.000 177.325 177.325 177.485

C2y (mm) * ´83.000 ´83.000 ´83.000 ´83.000
C2z (mm) 438.000 438.112 438.112 438.210
L11 (mm) 400.000 400.730 400.730 400.742
L12 (mm) 520.000 520.221 520.221 520.321
L13 (mm) 400.000 398.485 398.485 398.502
L14 (mm) 520.000 520.332 520.332 520.271
L21 (mm) 400.000 399.799 399.799 399.774
L22 (mm) 520.000 518.336 518.336 518.505

L23 (mm) * 400.000 400.000 400.000 400.000
L24 (mm) 520.000 520.445 520.445 520.460
d41 (mm) 41.500 41.660 41.660 41.657

d42 (mm) * 41.500 41.500 41.500 41.500
d5 (mm) * 0.000 0.000 0.000 0.000
xT (mm) * 0.000 0.000 0.000 0.000
yT (mm) * 0.000 0.000 0.000 0.000
zT (mm) * 134.600 134.600 134.600 134.600
αT (º) * 67.512 67.512 67.512 67.512
βT (º) * 0.000 0.000 0.000 0.000
γT (º) * 0.000 0.000 0.000 0.000

x0 (mm) * 109.000 109.000 109.000 109.000
y0 (mm) * 139.000 139.000 139.000 139.000
z0 (mm) * ´31.000 ´31.000 ´31.000 ´31.000
α0 (º) * 0.000 0.000 0.000 0.000
β0 (º) 0.000 0.525 0.525 0.531
γ0 (º) 0.000 ´0.134 ´0.134 ´0.176
δq2 (º) 0.000 0.313 0.313 0.342
δq3 (º) 0.000 ´0.052 ´0.052 ´0.014
δq4 (º) 0.000 0.500 0.500 0.529
δq5 (º) 0.000 0.135 0.135 0.173
δq6 (º) 0.000 0.102 0.102 0.097

xS (mm) * 41.500 41.500 41.500 41.500
yS (mm) * 0.000 0.000 0.000 0.000
zS (mm) * 41.700 41.700 41.700 41.700
αS (º) ´67.512 ´67.397 ´67.397 ´67.430
βS (º) 0.000 ´0.525 ´0.525 ´0.528
γS (º) 0.000 0.185 0.185 0.196

xG (mm) 0.000 0.576 0.576 0.571
yG (mm) 0.000 0.059 0.059 0.042
zG (mm) 152.400 153.132 153.132 153.136
mTool (g) 0.365 0.365 0.365 0.365
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Figure 4. Evolution of the observability index O1 with respect to the selection algorithm iterations.
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4.2. Parameter Identification Process

The parameter identification process is based on using the Jacobian matrix J, which relates the
force and torque errors to the 29 unknown parameter values. The matrix J is built by the linearization
of the forward kinematics model (Equation (17)) around each calibration configuration. The parameter
values are identified by means of an iterative algorithm, in which the parameters’ vector is initialized
by pnom, and is updated at each iteration (i.e., replaced by the vector pidentified of the identified values).
The matrix J is also iteratively updated, since its calculation is based on p.

The identification algorithm is presented in Figure 5 and has the following steps:

(a) Matrix J is calculated, as explained in Section 4.1. This calculation involves p and the values of
the vector ψi = [q1, q2, . . . , q6] T (i = 1, . . . , n) of active joints of the 100 calibration configurations.

(b) A system of linear equations is formed by the measured force and torque errors, the unknown
robot’s parameter errors, and the Jacobian matrix J. In order to maintain acceptable variance of
each parameter (i.e., proper convergence in the linear system), parameter scaling is implemented,
by using the column scaling approach proposed in [24]. The scaled matrix obtained is denoted by
Jscal, and it is used to identify the robot’s scaled parameter errors (∆scal), as follows:

∆scal “
´

JT
scalJscal

¯´1
JT

scal

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Fxmeas,1 ´ Fxest,1
Fymeas,1 ´ Fyest,1
Fzmeas,1 ´ Fzest,1
Txmeas,1 ´ Txest,1
Tymeas,1 ´ Tyest,1
Tzmeas,1 ´ Tzest,1

...
Fxmeas,n ´ Fxest,n

Fymeas,n ´ Fyest,n

Fzmeas,n ´ Fzest,n

Txmeas,n ´ Txest,n

Tymeas,n ´ Tyest,n

Tzmeas,n ´ Tzest,n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(26)

where, [Fxmeas,i, Fymeas,i, Fzmeas,i, Txmeas,i, Tymeas,i, Tzmeas,i]T is the vector of the measured force and
torque i, and [Fxest,i, Fyest,i, Fzest,i, Txest,i, Tyest,i, Tzest,i]T is the corresponding estimated vector. The
estimated vector is calculated by substituting in the forward kinematic equation (Equation (17)):
The vector p of the parameters’ values and the vector ψi of the active joint variables. The vector
p is initialized by its nominal values pnom, and updated after each iteration of this identification
algorithm.

(c) The parameter errors, which represent the difference between the real values and the nominal
values of the parameters, are denoted by ∆, and calculated as follows:

∆ “ diag pD1, D2, ¨ ¨ ¨ , Dmq
´1 ∆scal (27)

where Dj, (j = 1, 2, . . . , m) are the scaling coefficients, defined as follows: Dj “

d

6n
ř

i“1
J2

i,j. Also, n

is the number of calibration configurations, and Jij is the element of the Jacobian matrix located at
the ith row and the jth column.

(d) Finally, the vector of the identified parameter values is

pidenti f ied “ pnom ` ∆ (28)
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To converge towards a solution for the unknown parameter values, an iterative Newton-based
procedure was used. After pidentified has been calculated, the p vector is replaced by the last pidentified
vector obtained, and the estimation process is restarted from step (a).

Steps (a) to (d) are repeated until reaching a convergence criterion, which is the root mean square
error (RMSE) between two successive iterations. The RMSE is evaluated between the vector of the
latest identified parameters and the previous one. The convergence criterion was set to 10´16, and the
system converged towards a solution after five iterations.Sensors 2016, 16, 798 13 of 20 
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4.3. Validation after Calibration

After calibration, the accuracy is validated using 336 configurations that are uniformly distributed
inside the Cartesian target workspace. The target workspace is intended to correspond to the area
where the patient’s leg will be located (Figure 6b). Also, the accuracy after calibration is evaluated by
using the 39,900 configurations (denoted by Ωw), which are the remaining configurations among the
initial set Ω composed of 40,000 configurations (Figure 6a) uniformly distributed within the whole
robot workspace: 100 calibration configurations are selected from Ω, through the observability analysis,
to be used in the parameter identification process, and 39,900 configurations are used in the validation
after calibration.

After achieving the parameter identification process, the identified parameters are used in the
robot kinematics, instead of the nominal parameter values. The next step consists to evaluate the robot
accuracy for all validation configurations (Ωw and Ωt), by using the following algorithm:

Loop 1

For each validation set, Ωw and Ωt:

Loop 2

For each validation configuration:
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(a) Calculate the desired position, by using the identified parameter values and the active joint angles
ψ = [q1, q2, . . . , q6]T of the validation configuration. The end-effector position is the translation
vector of the homogeneous matrix presented in Equation (1).

(b) Calculate the actual position, by using the actual parameter values (generated by simulation)
and the active joint angles of the calibration validation. In case of experimental tests, the actual
position is obtained by measurement.

(c) Calculate x, y, and z position errors (Ex, Ey, and Ez), by evaluating the difference between the
desired and the actual position, obtained in steps (a) and (b), respectively.

(d) Calculate the composed error (
a

Ex2 ` Ey2 ` Ez2) by using results obtained in step (c).

End Loop 2

Calculate the mean, the maximum and the standard deviation of all composed errors obtained in
Loop 1.

End Loop 1

The force and torque validation is achieved by using the same algorithm as for position. The only
difference is using Equation (17) instead of Equation (1), in step (a).
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Figure 6. The positioning of the robot end-effector within (a) the whole robot workspace; 40,000
configurations inside the whole robot workspace; and (b) the target workspace; 336 configurations
inside the area where the patient’s leg will be located.
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5. Simulation Study

The efficiency of our calibration process is evaluated through a simulation. This process also
evaluates the sensitivity of our identification process to the measurement noise, and verifies the
effectiveness of the observability analysis for choosing the calibration configurations. Finally, the
calibration results (i.e., position accuracy) that were obtained from each of the five observability indices
are compared, and the index that gives the best accuracy is used in the actual calibration.

For simulation purposes, the actual parameters’ values are simulated by introducing
randomly-generated errors of ˘2 mm for the distances, and ˘1˝ for the angles. The differences
between the nominal and the actual parameter errors simulate the behavior of a robot with poor
accuracy. By using the calibration process, the identified parameters will be as close as possible to their
actual values, despite the presence of the measurement errors. The measurement errors that were used
in our simulation are ˘ 1 N and ˘ 0.2 N¨m, for the force and torque, respectively. These errors are
an exaggeration of the accuracy of the robot’s force-torque sensor (a Mini 40 from ATI), the details of
which are provided by its manufacturer, through a calibration certificate. From this information, force
accuracy according to x, y, and z axes was ˘ 0.25 N, ˘ 0.2 N, and ˘ 0.45 N, respectively. The torque
accuracy was ˘ 0.0125 N.m, ˘ 0.0125 N.m, and ˘ 0.02 N.m, for x, y, and z axes.

The measurement errors are generated according to a normal distribution, for each axis (i.e., errors
for Fx are generated within ˘ 1 N, and similarly for Fy and Fz). The data acquisition is simulated by
generating 100 measurements (i.e., force and torque errors) for each calibration configuration of the
robot. As it is known that the number of identifiable parameters is 29, the number of calibration
configurations that are used in the identification process is 100, in order to over-constrain the
calibration model.

The measured wrench vector (composed of force and torque) is simulated for each calibration
configuration, by substituting the corresponding active joint angles and the actual parameter values
(Table 1) in Equation (17). A vector of measurement noise is then added to the obtained wrench vector.

Once all force-torque vectors are generated, the robot parameters are identified as explained in
Section 4.2. The identified parameter values are presented in Table 1.

Once the parameters have been identified, the calibration process is validated. This validation is
carried out, as explained in Section 4.3, on two levels: the robot’s position accuracy is assessed in both
the whole robot workspace (39,900 configurations) and by using the 336 positions that are uniformly
distributed within the target workspace. The force, torque and position errors are summarized in
Table 2 and Table 3, and it shows that the position accuracy was improved from 8.9135 mm before
calibration to 286 µm, after calibration, inside the target workspace. The wrench errors (Table 4) were
highly improved (better than the position accuracy improvement) because in our identification process,
only the residuals of force and torque were minimized in the objective function Equation (26). The
distribution of the robot’s position errors (before and after calibration) is presented in Figure 7 and
Figure 8, which represent the number of occurrences (frequency) of robot xyz composed position errors
that lie within the ranges of error, presented on the horizontal axis.

A deep analysis of the position errors, for the whole workspace, shows that 0.33% of the evaluated
positions have an accuracy lower than 0.2024 mm (mean´ 2ˆ STD), 94.37% are within the range mean
˘ 2 ˆ STD, and only 5.3% of positions present the poorer accuracy, which is higher than 0.3696 (mean
+ 2 ˆ STD). The same analysis was achieved for the target workspace, and it shows that 93.0952% of
positions have an accuracy within 0.2457 mm and 0.3085 mm (mean ˘ 2 ˆ STD), and only 6.9048% of
positions have errors higher than 0.3085 mm (mean + 2 ˆ STD).

For illustrative purpose, Table 4 shows the accuracy obtained by using each observability index,
separately, in the calibration process. Results confirm that O1 is the most appropriate index for
calibrating our robot, since it gives the smallest position (and force/torque) errors, after calibration.
Moreover, deeper statistical analyses were carried out on the results obtained by the five indices.
First we verified whether the data distributions are Gaussian or not, and then used parametric or
non-parametric tests accordingly. Therefore a Kolmogorov-Smirnov test (not shown) was achieved,
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and it showed that all observability indices provide Gaussian distribution. Based on these results, we
decided to use parametric analyses (i.e., ANOVA analysis, and t-test).
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Figure 7. Position errors in the whole workspace (a) before and (b) after calibration.
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Figure 8. Position errors in the target workspace after calibration.
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Table 2. Composite force and torque errors before and after calibration.

Force (N) Torque (N.m)
Mean Mean % w.r.t. Max Max STD Mean Mean % w.r.t. Max Max STD

Whole Workspace
Before 0.0703 24.84 0.2830 0.0454 0.0100 28.33 0.0353 0.0056
After 0.0004 20.00 0.0020 0.0003 0.0000 0.00 0.0002 0.0000

Improvement % 99.43 - 99.29 99.34 100.00 - 99.43 100.00

Target Workspace
Before 0.0474 46.33 0.1023 0.0264 0.0055 60.44 0.0091 0.0018
After 0.0008 61.54 0.0013 0.0002 0.0002 66.67 0.0003 0.0000

Improvement % 98.31 - 98.73 99.24 96.36 - 96.70 100.00

Table 3. Composite position errors before and after calibration.

Mean (mm) Mean% w.r.t. Max Max (mm) STD (mm)

Whole Workspace

Before 8.9135 42.76 20.8437 2.9138
After 0.2860 60.24 0.4748 0.0418

Improvement % 96.79 - 97.72 98.57

Target Workspace

Before 9.0118 73.64 12.2382 1.6537
After 0.2771 86.43 0.3206 0.0157

Improvement % 96.93 - 97.38 99.05

Table 4. Composite force, torque and position errors after calibration using the five observability indices.

Force (N) Torque (N.m) Position (mm)

Mean Max STD Mean Max STD Mean Max STD

Whole Workspace

O1 0.0004 0.0020 0.0003 0.0000 0.0002 0.0000 0.2860 0.4748 0.0418
O2 0.0024 0.0189 0.0031 0.0003 0.0021 0.0003 0.3818 0.9391 0.1070
O3 0.0644 0.0497 0.1011 0.0114 0.0553 0.0112 8.8182 10.1284 0.4050
O4 0.0122 0.0356 0.0099 0.0013 0.0040 0.0011 4.5199 6.2311 0.3134
O5 0.0006 0.0031 0.0004 0.0001 0.0003 0.0000 0.4552 0.6767 0.0637

Target Workspace

O1 0.0005 0.0012 0.0002 0.0001 0.0001 0.0000 0.2771 0.3206 0.0157
O2 0.0008 0.0014 0.0003 0.0002 0.0003 0.0000 0.3527 0.4493 0.0231
O3 0.0387 0.0569 0.0282 0.0025 0.0043 0.0052 7.5427 10.7637 0.7089
O4 0.0124 0.0228 0.0047 0.0013 0.0025 0.0005 4.4836 5.8925 0.1638
O5 0.0003 0.0008 0.0001 0.0000 0.0001 0.0000 0.4318 0.5937 0.0320

Initially, an ANOVA analysis, with a probability threshold α = 0.05, is used to confirm the
objectivity of comparing the five indices (i.e., confirm that there is actually differences between the use
of the five indices). Results show that the F value is significantly higher than the F criteria, which leads
to reject the null hypothesis, and therefore conclude that the comparison of results (position accuracy)
obtained by using the five indices is meaningful (i.e., results are different, and some indices are better
than others).

The ANOVA does not tell where the difference between indices lies. Therefore, an additional test
is considered (t-test). The t-test is used to compare each pair of indices. However, the position errors
obtained by using O3 and O4 were clearly poorer than results obtained by the other indices (O1, O2, and
O5). Thus, only O1, O2, and O5 are considered in the t-Test. The results of this test are shown in Table 5,
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and they show that the position errors obtained by these three indices are quite different, since the t
Stat value is significantly lower than –t_Critical_two-tail, for all pairs of comparisons. Furthermore, to
take into account multiple comparison effects, a post-hoc correction is included (Bonferroni correction).
As summarized in Table 5, results show that all the t-tests were statistically significant (i.e., there are
significant differences between the performances of the observability indices).

Table 5. Results of the t-test comparing pairs of O1, O2, and O5.

t-Test

O1 vs. O2 O1 vs. O5 O2 vs. O5
t Stat ´655.874 ´304.773 421.3063

t Critical two-tail 1.960001 1.959993 1.959993

Post-hoc correction (Bonferroni correction) Target p-value = α
number of t-Test “ 0.05

3 “ 0.0167

p-value(from t-test) 0.000000 0.000000 0.000000
Test statistically

significant yes yes yes

Based on the aboves tests, we conclude that the fives observability indices allow different results,
regarding the robot accuracy after calibration. The analysis of the mean and maximum errors (Table 4)
shows that the index O1 leads to the best robot accuracy: it gives not only the smallest mean errors, but
also the smallest maximum errors. Also, O1 has a small standard deviation, which means that position
errors are closely distributed around the mean value.

We recall that in our simulation the used measurement noise was ˘1 N. This range of error is an
exaggerated error of our wrench sensor (Mini 40, from API). For illustrative propose, we achieved
other simulations by considering lower measurement noise (Table 6). Results demonstrate that the
accuracy after calibration is much better in case of low measurement errors. However, the impact of
these errors can be reduced by:

- Using continuous tracking approach: taking several measurements for each robot calibration
configuration (i.e., the same applied force), and then averaging the collected data. Most sensors,
and data collection card allow a frequency upper than 100 Hz.

- Calibrating the wrench sensor only in a limited range, in which the sensor will be actually used.
This will reduce the measurement uncertainty.

Table 6. Composite position errors after calibration, inside the target workspace, using different
measurement errors.

Err. (N) Mean Max STD

˘0.2 0.0759 0.0885 0.0039
˘0.4 0.1124 0.1992 0.0042
˘0.6 0.1874 0.2845 0.0070
˘0.8 0.2174 0.3014 0.0103
˘1 0.2771 0.3206 0.0157

6. Conclusions

We have presented a self-kinematic calibration approach using a force-torque sensor. With this
approach, the position accuracy of a 6-DOF medical robot was significantly improved. The robustness
of our calibration model, regarding measurement noise, was confirmed through a simulation study,
which also allowed us to conduct an observability analysis in order to identify the most appropriate
calibration configurations. The simulation demonstrated that the robot’s position errors were reduced
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from 12 mm to 0.320 mm for the maximum values, and from 9 mm to 0.277 mm for the mean errors.
The calibration method presented in this paper will be tested experimentally in further work.
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