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Abstract—A genetic algorithm (GA) was used to determine the 
optimal architecture and input parameters of a feed-forward 
artificial neural network (ANN), the purpose of which was to 
synthesize a radio-frequency, low noise amplifier (RF-LNA) 
circuit. The parameters (chromosomes) processed by the GA 
included: i) the LNA performance specifications and design 
constraints; ii) the type of ANN to use –multi-layer perceptron 
(MLP) or radial-basis function (RBF) network –; iii) the ANN 
parameters to set. For two different sets of design parameters, 
the input/output matching network components and transistor 
geometries, the GA found ANN solutions capable of predicting 
their values with success rates above 99 %. 

Keywords—Synthesis, genetic algorithm, artificial neural 
network, multilayer perceptron, radial basis function, 
radiofrequency low Noise Amplifier. 

I. INTRODUCTION

Contrarily to circuit analysis where finding circuit 
performance given a set of components, their interconnections 
and their values is generally a perfectly determined problem, 
circuit synthesis, which solves the inverse problem, is usually 
open-ended. At first, it may appear that any solution that yields 
the desired performance is acceptable, but this reasoning 
ignores implementation and design time constraints. In real-
life, they are important factors in the overall design process, 
and they may force iteration of the design cycle to obtain 
satisfactory results. For instance, the current design of 
radiofrequency, low-noise amplifiers (RF-LNA) routinely 
requires hours, if not days of fine-tuning by an expert. One way 
to address the design faster and with fewer resources is to 
exploit the generalization capability of an ANN to solve new 
design problems, once they have been trained with older 
designs that have been optimized [1]. However, if the problem 
is underdetermined, there is the risk that the ANN provides 
solutions which, although acceptable formally, are not 
compatible with the desired target design. One way to prevent 
this is to constrain the ANN synthesis by adding design 
parameters as inputs, along with the required performance data. 
However, simply increasing the number of inputs in this 
manner may create redundant information, with a possible 
detrimental effect on ANN performance. Typically, principal 
component analysis (PCA) has been used to address this issue 
by building orthogonal inputs [4]. Unfortunately, the meanings 
of the components obtained through PCA are often ambiguous 
and thus provide little insight regarding the variables at play.  

In the literature, very few reports exist of ANNs capable of 
circuit synthesis, and none use design constraints [e.g. 2, 3]. 
Moreover, they address a very small set of design parameters, 
with a maximum of three component values reported so far [2].   

In this work, we propose to use a GA to select which inputs 
– performance criteria and design constraints – should be fed to
the ANN. GAs are known to be good at dealing with nonlinear
problems, particularly in the context of optimization [5].
Moreover, they offer the advantage over PCA of preserving the
meaning of the dimensions they select. We also use the GA to
select between a MLP and a RBF neural architecture and
determine its parameters for the problem at hand. We will
show that this combined GA-ANN approach can efficiently
solve the RF-LNA synthesis problem that we considered.

In summary, this work describes a methodology to generate 
an ANN capable of RF-LNA circuit synthesis in an optimal or 
close to optimal way (in terms of speed and accuracy of 
design). More precisely, the ANN must find the correct 
component values to meet set performance specifications and 
design constraints. In what follows, the RF-LNA circuit that 
we used as example is portrayed first. Next, the ANN types to 
be parameterized by the GA are described. Then, the genetic 
algorithm to select the fittest ANN with its parameters is 
explained. Finally, the experimental validation results are 
presented, along with concluding remarks. 

II. METHODOLOGY

A. Radiofrequency Low Noise Amplifier

The circuit topology realizing the RF-LNA is the same as
in [1] and is presented in Fig. 1. It consists of a cascode 
common-source stage with degeneration and inductive load. 
The cascode configuration was selected for its design 
simplicity (easier matching, stability, etc.) and widespread use. 
All of its inductances, including those in the matching 
networks, were assumed to be non-ideal with Q-factors of 10, 
which is consistent with current CMOS fabrication processes. 
To simplify the design effort further and reduce the number of 
parameters, only the L-shaped matching network shown in Fig. 
1b is considered for 50 Ω source and load impedance 
matching. Its component values are output by the ANN. 

Table I lists the design (D) and performance (P) variables 
that we used in this work, along with their ranges of values that 
were randomly generated during the validation   experiments. 
Notice that the drain inductance (LD in Fig. 1) is not 
mentioned, as it was fixed at 0.578 nH for all designs. 
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Table I. Performance and design variables considered. 

Variable 

# 

Type 

(P/D) 
Description Min Max

1 P Bandwidth (MHz) 387.0 882.3
2 P 1-dB compression Point (dB) -21.04 -13.03
3 P Center Frequency (GHz) 2.07 4.76
4 P IIP3 (dB) -11.58 2.64
5 P Noise Figure (dB) 1.386 3.33 
6 P S21 (dB) 9.11 15.29
7 D Input capacitance (fF) 238.2 1528.2
8 D Input Inductance (nH) 1.811 10.610
9 D Output capacitance (fF) 260.0 2902.6
10 D Output Inductance (nH) 4.913 14.123
11 D Transistor 1 length – Q1 (nm) 160 510 
12 D Transistor 1 width – Q1 (µm) 60 560 
13 D Transistor 2 length – Q2 (nm) 200 610 
14 D Transistor 2 width – Q2 (µm) 90 500 
15 D Source Inductance – LS (nH) 1.707 8.671 
16 D Bias voltage - VB (mV) 300 600 

a)       b)
Fig 1. Used LNA topography (a) and matching network (b)

B. Neural Architecture

Two types of ANN architectures are considered, the
multilayer perceptron (MLP) [6] and the radial basis functions 
(RBF) model [7]. Both consist of three layers of neurons in 
sequence: an input layer, a hidden layer and an output layer. 

1) MLP neural network: In the input layer, each neuron
simply holds the value it receives. In the hidden layer, the 
output of the jth neuron is given by 

௝ݖ ൌ ఏ݂ ൭෍߱௜ݔ௜

ெ

௜ୀଵ

൱ (1) 

where M is the number of neurons in the input layer, xi is the 
output of the ith input layer neuron, ωi is a weight to be set by 
the learning algorithm and fθ( ) is an output function, often the 
logistic sigmoid function ௟݂௢௚௦௜௚ ൌ

ଵ

ଵା௘೙
 or the hyperbolic 

tangent sigmoid function ௧݂௔௡௦௜௚ ൌ
ଶ

ଵା௘షమ೙
െ 1 . Within a 

single MLP, all hidden layer neurons use the same transfer 
function. 

In the output layer, the output of a neuron is the 
summation of its inputs and is thus given by 
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where N is the number of neurons in the hidden layer, zj is the 
output of the jth hidden layer neuron and ωj is a weight that is 
also set by the learning algorithm. 

2) RBF neural network: The input layer is the same as for
the MLP. In the hidden layer, the output of the jth neuron is 
given by 

௝ݖ ൌ ߮௝ሺ࢞ሻ ൌ ߮൫ฮ࢞ െ ௝࢞ฮ൯,			 			݆ ൌ 1,2, … , ܰ (3) 

where N is the number of neurons in the hidden, x is the vector 
in M dimensional space representing the input layer and φ is a 
basis function, typically a Gaussian.  Thus for the jth hidden 

layer neuron, we have	߮௝ሺ࢞ሻ ൌ ݁
൭ି

భ
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, where xj and 

j
2 are respectively the center vector and the width of the 

corresponding Gaussian basis function, both to be determined 
by a learning algorithm. In the output layer, the output of a 
neuron is the same as for the MLP and is thus given by (2). 

Both the MLP and the RBF can be trained to find their 

weights with the error back-propagation algorithm, which tries 
to minimize the mean square error between the desired and the 
predicted outputs. During training, input-target pairs are given 
as examples; then, a set of new input-target pairs is used to 
verify if the ANN is capable of generalizing what it learned.  

3) Genetic algorithm: Since the number of combinations
of ANN parameters is susceptible to combinatorail explosion, 
a GA was designed to select the best ANN type (i.e. MLP or 
RBF), its optimal parameters and its best predictive inputs. 

The steps for creating a population of ANNs to evolve were 
as follows: first, a k-bit binary chromosome structure is 
defined, where each bit may indicate the presence/absence of 
an input variable, the type of ANN to be used, or the value of 
an ANN parameter. Then, N instances of the chromosome 
structure are randomly created, forming the generation 0 
population, in which a fitness function measures how well the 
ANN specified by each individual can generalize what it learns 
form a training set to new designs (see Validation).  

Half of the population is selected for reproduction, where 
the probability for an exemplar to be selected is proportional to 
its fitness. The two fittest survivors then have a pair of children 
together, as do the next two and so on. Each child is the result 
of a crossover process between its parents’ chromosomes. Two 
crossover points are randomly selected (e.g., 11th and 22nd bits). 
Then, for the first child, the bits preceding the first crossover 
point and following the second one come from one parent, and 
the remaining bits come from the other parent. The second 
child has the substitution order reversed. Finally, each child is 
suscep1tible to mutation with a certain probability (0.001 in 
this work), which means that each bit could be inverted. The 
population of N exemplars that reached this stage is called 
generation 1. Then, the selection, reproduction and mutation 
cycle take place over and over again, each cycle resulting in a 
new generation. The GA stops when the success rate of the 
best ANN in a generation reaches a threshold (99 % here). 
Success was defined as the correct prediction of the LNA 
component values for new designs (i.e. correct generalization). 
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Table II. MLP chromosome. 

Bit # Role in ANN Possible values in ANN 

1 Type of ANN MLP ( = 0 ) 
2-13 Presence/absence of each input Table I for list of inputs 

14-20 Qt. of stimuli used for training 100 to 227 
21-24 Qt. of nodes in hidden layer 2 to 17 

25 Output function of hidden layer logsig or tansig 
26-28 Nb. of epochs used for training 25 x k,   k = 1,…,8  
29-31 Learning rate 10-5 to 102 
32-34 Decrease in learning rate 10-8 to 10-1 
35-37 Increase in learning rate 10 to 108 

Table III. RBF chromosome 

Bit # Role in ANN Possible values in ANN 

1 Type of ANN RBF ( = 1 ) 
2-13 Presence/absence of each input Table I for list of inputs 

14-20 Qt. of stimuli used for training 100 to 227 
21-24 Width of Gaussian RBF (σ) 0.1 x k,   k = 1,…,16 
25-32 Max. qt. of hidden neurons 1 to 256 
33-37 Hid. neur. added between inputs 1 to 32  

III. VALIDATION 

A. Experimental Set-up 

 To build the training and test sets for the ANNs, two-
hundred-thirty-five valid LNA designs corresponding to Fig. 
1a were randomly specified in CMOS 0.18 m technology 
from TSMC and simulated with the spectreRF circuit 
simulator, each design requiring several simulations and 
iterations to complete. The design methodology was performed 
by first selecting the values for LD to achieve a certain 
frequency of operation. Then, the size and biasing for Q1 were 
chosen to generate different specification designs. The size of 
Q2 was also varied for each design generated in order to create 
designs with information on the impact of Q2 on specifications. 
In addition, LS was varied to reach different linearity 
specifications. For each design, the input and output were 
matched by using the network topology shown in Fig. 1b. As 
mentioned previously, Table 1 summarizes the design variables 
and the ranges of values that were considered for the designs.  

The obtained designs were first normalized to the range    
[0, 1] before use for training and testing ANNs. Then, they 
were split into a training set and a testing set for each ANN 
instance, with the respective sizes set by the GA. Upon GA 
exit, the ANN in the chromosome having achieved the best 
component value prediction performance during testing was 
selected. An output value was considered to be correct when 
the difference with its corresponding target value was within 
0.05.  All the experiments were realized with the Matlab NN 
Toolbox. 

Generation 0 of the GA consisted of 128 37-bit 
chromosomes. Half of the population corresponded to MLPs 
and the other to RBFs. The values of the remaining 36 bits 
were attributed randomly; they are defined in Table II and 
Table III. As mentioned before, the GA stopped when a 
chromosome reached a success rate above 99 % for predicting 
the LNA component values on its test set. A test set was an 
input-target pair that was not seen by the ANN during training.  

Initially, the ANN outputs corresponded to four design 
variables: the input capacitance and input inductance of the 
LNA input matching network and the output capacitance and 
output inductance of its output matching network. These 
correspond to variables 7 to 10 in Table I. The inputs of the 
ANNs were selected by the GA. Twelve bits were dedicated to 
this characterization: six bits to establish which of the 
performance variables (# 1 to 6 in Table I) should be included 
and six more bits to decide which design constraints (# 11 to 
16 in Table I) were to be added. Even though the problem at 
hand is one of synthesis, the design constraints were presented 
to the GA as possible inputs because of the underdetrmination 
of the synthesis problem as explained previously. Without 
them, it is possible that an ANN will produce an output that 
does not correspond to the tested targets while still representing 
an adequate solution. Giving the GA the opportunity to 
consider the remaining six design variables should help in 
constraining the problem and thus reduce the level of under 
determination. 

We tested the methodology’s genericity by reusing it for a 
different set of output variables. They became the transistor 
geometries: transistor 1 length, transistor 1 width, transistor 2 
length and transistor 2 width (variables 11 to 14 in Table I), 

and the values of the input and output matching networks 
inductances and capacitances (variables 7 to 11 in Table I) 
became constraining inputs. 
B. Results 

For experiment one, Table IV describes the first 
chromosome to reach a success rate above 99 % for its test set. 
It corresponds to a RBF and the GA took four generations to 
converge to it. To verify the stability of generalization 
capability of this RBF further, we realized 100 additional 
simulations where we randomly varying which data served for 
training and which were used for testing. The mean accuracy of 
the RBF for the test data over these simulations was 99.22 %, 
with 100 % for the best simulation and 95 % for the worst.  

The time needed by the GA to complete a cycle was 
approximately 11 minutes, for a total convergence time of 44 
minutes. Then, the one hundred simulations applied to the 
winning RBF took a total of approximately 3 minutes to run. 
Thus, the ANN specification took less than one hour to 
complete. Then, using it for any new input vector within the 
ranges of those presented in Table I required 62 ms to yield the 
desired outputs. The previous time values were obtained on a 
computer with Windows 7, an Intel Core i7 2.66 GHz 
processor and 4 GB of RAM. 

For the second experiment, the first chromosome to reach a 
success rate above 99 % for the test set corresponded to a 
MLP. Eight generations were necessary to obtain the 
chromosome, which is described in Table V. Again, we 
verified the ANN generalization stability over 100 additional 
simulations, obtaining a mean accuracy on the test data of 
95.23 %, with 100 % on the best simulation and 88.46 % on 
the worst. This time, the GA took 88 minutes to converge. The 
one hundred validation simulations took a total of 10 minutes 
and applying the MLP to one new input vector required 62 ms 
to yield the output. 

The results for the matching networks as outputs and the 
transistors geometries as outputs are summarized in Table VI.  

760



Table IV. Description of the best chromosome with matching networks 
components values as outputs (after four generations). 

Bit # Role in ANN Actual value in ANN 

1 Type of ANN RBF 
2-13 Inputs present (see Table 3) 2, 3, 5, 11, 14, 15, 16 
14-20 Qt. of stimuli used for training 224 
21-24 Width of Gaussian RBF (σ) 0.3
25-32 Max. qt. of hidden neurons 111 
33-37 Hid. neur. added between inputs 21  

Table V. Description of the best chromosome for transistors geometries 
values as outputs (after eight generations). 

Bit # Role in ANN Actual value in ANN 

1 Type of ANN MLP 
2-13 Inputs present (see Table 3) 3, 4, 5, 7, 8, 15, 16 

14-20 Qt. of stimuli used for training 222 
21-24 Qt. of nodes in hidden layer 8 

25 Output function of hidden layer tansig 
26-28 Nb. of epochs used for training 150  
29-31 Learning rate 10-2

32-34 Decrease in learning rate 10-3

35-37 Increase in learning rate 102 

Table VI. Testing (generalization) performance of the best chromosome found during the GA and in the following 100 ANN simulations. 

Outputs 

(see Table I) 

Inputs  

(see Table I) 

During GA 100 simulations 

Nb. of generations for
success rate > 99 % 

Best  
success rate 

Mean  
success rate 

Maximum 
success rate 

Minimum  
success rate 

Matching networks  
(7 to 10) 

GA among 1 to 6 and 11 to 16 4 100.00 % 99.22 % 100.00 % 95.00 % 
GA among 1 to 6 6 100.00 % 88.67 % 100.00 % 75.00 % 

1 to 6 and 11 to 16 imposed 14 100.00 % 98.50 % 100.00 % 91.67 % 

Transistors geometries 
(11 to 14) 

GA among 1 to 10 and 15 to 16 8 100.00 % 95.23 % 100.00 % 88.46 % 
GA among 1 to 6 11 100.00 % 86.23 % 100.00 % 71.76 % 

1 to 10 and 15 to 16 imposed 16 100.00 % 92.47 % 100.00 % 80.19 % 

IV. DISCUSSION AND CONCLUSION

The work used a GA to set the parameters of an ANN for 
successfully predicting the component values for a RF-LNA 
given certain performance criteria and design constraints. The 
obtained validation results have shown that, for two different 
sets of target variables, impedance matching networks and 
transistor geometries, the GA was successful at determining the 
required ANN architecture. 

Since the ultimate objective of  the approach is to speed up 
the LNA design cycle, the time required for running the GA 
and validating the stability of the winner ANN’s generalization 
capability is important. Our results show that the time required 
for getting and validating an appropriate ANN using a GA 
represents an improvement over current methods. Moreover, 
using this ANN for subsequent applications is extremely time 
efficient (approximately 60 ms response time).  

We investigated the model further by comparing the 
performance of the best chromosome obtained to that of the 
chromosome produced by a GA that would only consider 
performance data as input. We suggested previously that the 
possible underdetermined character of the design problem may 
lead to solutions inconsistent with the input-target test pairs fed 
to the ANN. The results, presented in Table VI, show that 
ignoring design constraints reduces the chromosome 
performance stability, both when the outputs are the matching 
networks and when they consisted in the transistors geometries. 

We also compared the performance of the best 
chromosome obtained to that of the chromosome produced by 
a GA that uses all possible inputs (i.e. all performance criteria 
and all design constraints in Table I). The results in Table VI 
show that forcing all inputs on the ANN also reduces the 
stability of the chromosome’s performances, but in a less 
important manner than ignoring the design constraints.  

Only two ANN architectures were considered in this work. 
Among other kinds of ANNs, one has recently shown 
encouraging signs for circuit synthesis applications: the 
bidirectional associative memories (BAM) [8]. When set up for 
heteroassociative operation, it appears to have the potential to 
reconstruct the exemplar that led to a category label [9]. This 
process is similar to finding a circuit component values given a 
set of performance specifications. Thus, applying a GA to this 
type of ANN may be a promising avenue in circuit synthesis 
(work planned). Work is also needed to automatically set the 
design constraints instead of specifying them manually. This 
could be done by auxiliary ANNs that supply the needed 
information based on the training data (work in progress).  
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