
RF-LNA Circuit Synthesis by Genetic Algorithm-
Specified Artificial Neural Network

Etienne Dumesnil
Dept. of Computer Science

University of Quebec at Montreal
Montreal, Canada

dumesnil.etienne@courrier.uqam.ca

Frederic Nabki
Dept. of Computer Science

University of Quebec at Montreal
Montreal, Canada

nabki.frederic@uqam.ca

Mounir Boukadoum
Dept. of Computer Science

University of Quebec at Montreal
Montreal, Canada

boukadoum.mounir@uqam.ca

Abstract—A genetic algorithm (GA) was used to determine the
optimal architecture and input parameters of a feed-forward
artificial neural network (ANN), the purpose of which was to
synthesize a radio-frequency, low noise amplifier (RF-LNA)
circuit. The parameters (chromosomes) processed by the GA
included: i) the LNA performance specifications and design
constraints; ii) the type of ANN to use –multi-layer perceptron
(MLP) or radial-basis function (RBF) network –; iii) the ANN
parameters to set. For two different sets of design parameters,
the input/output matching network components and transistor
geometries, the GA found ANN solutions capable of predicting
their values with success rates above 99 %.

Keywords—Synthesis, genetic algorithm, artificial neural
network, multilayer perceptron, radial basis function,
radiofrequency low Noise Amplifier.

I. INTRODUCTION

Contrarily to circuit analysis where finding circuit
performance given a set of components, their interconnections
and their values is generally a perfectly determined problem,
circuit synthesis, which solves the inverse problem, is usually
open-ended. At first, it may appear that any solution that yields
the desired performance is acceptable, but this reasoning
ignores implementation and design time constraints. In real-
life, they are important factors in the overall design process,
and they may force iteration of the design cycle to obtain
satisfactory results. For instance, the current design of
radiofrequency, low-noise amplifiers (RF-LNA) routinely
requires hours, if not days of fine-tuning by an expert. One way
to address the design faster and with fewer resources is to
exploit the generalization capability of an ANN to solve new
design problems, once they have been trained with older
designs that have been optimized [1]. However, if the problem
is underdetermined, there is the risk that the ANN provides
solutions which, although acceptable formally, are not
compatible with the desired target design. One way to prevent
this is to constrain the ANN synthesis by adding design
parameters as inputs, along with the required performance data.
However, simply increasing the number of inputs in this
manner may create redundant information, with a possible
detrimental effect on ANN performance. Typically, principal
component analysis (PCA) has been used to address this issue
by building orthogonal inputs [4]. Unfortunately, the meanings
of the components obtained through PCA are often ambiguous
and thus provide little insight regarding the variables at play.

In the literature, very few reports exist of ANNs capable of
circuit synthesis, and none use design constraints [e.g. 2, 3].
Moreover, they address a very small set of design parameters,
with a maximum of three component values reported so far [2].

In this work, we propose to use a GA to select which inputs
– performance criteria and design constraints – should be fed to
the ANN. GAs are known to be good at dealing with nonlinear
problems, particularly in the context of optimization [5].
Moreover, they offer the advantage over PCA of preserving the
meaning of the dimensions they select. We also use the GA to
select between a MLP and a RBF neural architecture and
determine its parameters for the problem at hand. We will
show that this combined GA-ANN approach can efficiently
solve the RF-LNA synthesis problem that we considered.

In summary, this work describes a methodology to generate
an ANN capable of RF-LNA circuit synthesis in an optimal or
close to optimal way (in terms of speed and accuracy of
design). More precisely, the ANN must find the correct
component values to meet set performance specifications and
design constraints. In what follows, the RF-LNA circuit that
we used as example is portrayed first. Next, the ANN types to
be parameterized by the GA are described. Then, the genetic
algorithm to select the fittest ANN with its parameters is
explained. Finally, the experimental validation results are
presented, along with concluding remarks.

II. METHODOLOGY

A. Radiofrequency Low Noise Amplifier

The circuit topology realizing the RF-LNA is the same as
in [1] and is presented in Fig. 1. It consists of a cascode
common-source stage with degeneration and inductive load.
The cascode configuration was selected for its design
simplicity (easier matching, stability, etc.) and widespread use.
All of its inductances, including those in the matching
networks, were assumed to be non-ideal with Q-factors of 10,
which is consistent with current CMOS fabrication processes.
To simplify the design effort further and reduce the number of
parameters, only the L-shaped matching network shown in Fig.
1b is considered for 50 Ω source and load impedance
matching. Its component values are output by the ANN.

Table I lists the design (D) and performance (P) variables
that we used in this work, along with their ranges of values that
were randomly generated during the validation experiments.
Notice that the drain inductance (LD in Fig. 1) is not
mentioned, as it was fixed at 0.578 nH for all designs.

978-1-4799-4242-8/14/$31.00 c©2014 IEEE 758

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)
DOI: 10.1109/ICECS.2014.7050096

Table I. Performance and design variables considered.

Variable

Type

(P/D)
Description Min Max

1 P Bandwidth (MHz) 387.0 882.3
2 P 1-dB compression Point (dB) -21.04 -13.03
3 P Center Frequency (GHz) 2.07 4.76
4 P IIP3 (dB) -11.58 2.64
5 P Noise Figure (dB) 1.386 3.33
6 P S21 (dB) 9.11 15.29
7 D Input capacitance (fF) 238.2 1528.2
8 D Input Inductance (nH) 1.811 10.610
9 D Output capacitance (fF) 260.0 2902.6
10 D Output Inductance (nH) 4.913 14.123
11 D Transistor 1 length – Q1 (nm) 160 510
12 D Transistor 1 width – Q1 (µm) 60 560
13 D Transistor 2 length – Q2 (nm) 200 610
14 D Transistor 2 width – Q2 (µm) 90 500
15 D Source Inductance – LS (nH) 1.707 8.671
16 D Bias voltage - VB (mV) 300 600

a) b)
Fig 1. Used LNA topography (a) and matching network (b)

B. Neural Architecture

Two types of ANN architectures are considered, the
multilayer perceptron (MLP) [6] and the radial basis functions
(RBF) model [7]. Both consist of three layers of neurons in
sequence: an input layer, a hidden layer and an output layer.

1) MLP neural network: In the input layer, each neuron
simply holds the value it receives. In the hidden layer, the
output of the jth neuron is given by

 (1)

where M is the number of neurons in the input layer, xi is the
output of the ith input layer neuron, ωi is a weight to be set by
the learning algorithm and fθ() is an output function, often the
logistic sigmoid function or the hyperbolic

tangent sigmoid function 1 . Within a
single MLP, all hidden layer neurons use the same transfer
function.

In the output layer, the output of a neuron is the
summation of its inputs and is thus given by

 (2)

where N is the number of neurons in the hidden layer, zj is the
output of the jth hidden layer neuron and ωj is a weight that is
also set by the learning algorithm.

2) RBF neural network: The input layer is the same as for
the MLP. In the hidden layer, the output of the jth neuron is
given by

,			 			 1,2, … , (3)

where N is the number of neurons in the hidden, x is the vector
in M dimensional space representing the input layer and φ is a
basis function, typically a Gaussian. Thus for the jth hidden

layer neuron, we have	 , where xj and
j

2 are respectively the center vector and the width of the
corresponding Gaussian basis function, both to be determined
by a learning algorithm. In the output layer, the output of a
neuron is the same as for the MLP and is thus given by (2).

Both the MLP and the RBF can be trained to find their

weights with the error back-propagation algorithm, which tries
to minimize the mean square error between the desired and the
predicted outputs. During training, input-target pairs are given
as examples; then, a set of new input-target pairs is used to
verify if the ANN is capable of generalizing what it learned.

3) Genetic algorithm: Since the number of combinations
of ANN parameters is susceptible to combinatorail explosion,
a GA was designed to select the best ANN type (i.e. MLP or
RBF), its optimal parameters and its best predictive inputs.

The steps for creating a population of ANNs to evolve were
as follows: first, a k-bit binary chromosome structure is
defined, where each bit may indicate the presence/absence of
an input variable, the type of ANN to be used, or the value of
an ANN parameter. Then, N instances of the chromosome
structure are randomly created, forming the generation 0
population, in which a fitness function measures how well the
ANN specified by each individual can generalize what it learns
form a training set to new designs (see Validation).

Half of the population is selected for reproduction, where
the probability for an exemplar to be selected is proportional to
its fitness. The two fittest survivors then have a pair of children
together, as do the next two and so on. Each child is the result
of a crossover process between its parents’ chromosomes. Two
crossover points are randomly selected (e.g., 11th and 22nd bits).
Then, for the first child, the bits preceding the first crossover
point and following the second one come from one parent, and
the remaining bits come from the other parent. The second
child has the substitution order reversed. Finally, each child is
suscep1tible to mutation with a certain probability (0.001 in
this work), which means that each bit could be inverted. The
population of N exemplars that reached this stage is called
generation 1. Then, the selection, reproduction and mutation
cycle take place over and over again, each cycle resulting in a
new generation. The GA stops when the success rate of the
best ANN in a generation reaches a threshold (99 % here).
Success was defined as the correct prediction of the LNA
component values for new designs (i.e. correct generalization).

759

Table II. MLP chromosome.

Bit # Role in ANN Possible values in ANN

1 Type of ANN MLP (= 0)
2-13 Presence/absence of each input Table I for list of inputs

14-20 Qt. of stimuli used for training 100 to 227
21-24 Qt. of nodes in hidden layer 2 to 17

25 Output function of hidden layer logsig or tansig
26-28 Nb. of epochs used for training 25 x k, k = 1,…,8
29-31 Learning rate 10-5 to 102
32-34 Decrease in learning rate 10-8 to 10-1
35-37 Increase in learning rate 10 to 108

Table III. RBF chromosome

Bit # Role in ANN Possible values in ANN

1 Type of ANN RBF (= 1)
2-13 Presence/absence of each input Table I for list of inputs

14-20 Qt. of stimuli used for training 100 to 227
21-24 Width of Gaussian RBF (σ) 0.1 x k, k = 1,…,16
25-32 Max. qt. of hidden neurons 1 to 256
33-37 Hid. neur. added between inputs 1 to 32

III. VALIDATION

A. Experimental Set-up

 To build the training and test sets for the ANNs, two-
hundred-thirty-five valid LNA designs corresponding to Fig.
1a were randomly specified in CMOS 0.18 m technology
from TSMC and simulated with the spectreRF circuit
simulator, each design requiring several simulations and
iterations to complete. The design methodology was performed
by first selecting the values for LD to achieve a certain
frequency of operation. Then, the size and biasing for Q1 were
chosen to generate different specification designs. The size of
Q2 was also varied for each design generated in order to create
designs with information on the impact of Q2 on specifications.
In addition, LS was varied to reach different linearity
specifications. For each design, the input and output were
matched by using the network topology shown in Fig. 1b. As
mentioned previously, Table 1 summarizes the design variables
and the ranges of values that were considered for the designs.

The obtained designs were first normalized to the range
[0, 1] before use for training and testing ANNs. Then, they
were split into a training set and a testing set for each ANN
instance, with the respective sizes set by the GA. Upon GA
exit, the ANN in the chromosome having achieved the best
component value prediction performance during testing was
selected. An output value was considered to be correct when
the difference with its corresponding target value was within
0.05. All the experiments were realized with the Matlab NN
Toolbox.

Generation 0 of the GA consisted of 128 37-bit
chromosomes. Half of the population corresponded to MLPs
and the other to RBFs. The values of the remaining 36 bits
were attributed randomly; they are defined in Table II and
Table III. As mentioned before, the GA stopped when a
chromosome reached a success rate above 99 % for predicting
the LNA component values on its test set. A test set was an
input-target pair that was not seen by the ANN during training.

Initially, the ANN outputs corresponded to four design
variables: the input capacitance and input inductance of the
LNA input matching network and the output capacitance and
output inductance of its output matching network. These
correspond to variables 7 to 10 in Table I. The inputs of the
ANNs were selected by the GA. Twelve bits were dedicated to
this characterization: six bits to establish which of the
performance variables (# 1 to 6 in Table I) should be included
and six more bits to decide which design constraints (# 11 to
16 in Table I) were to be added. Even though the problem at
hand is one of synthesis, the design constraints were presented
to the GA as possible inputs because of the underdetrmination
of the synthesis problem as explained previously. Without
them, it is possible that an ANN will produce an output that
does not correspond to the tested targets while still representing
an adequate solution. Giving the GA the opportunity to
consider the remaining six design variables should help in
constraining the problem and thus reduce the level of under
determination.

We tested the methodology’s genericity by reusing it for a
different set of output variables. They became the transistor
geometries: transistor 1 length, transistor 1 width, transistor 2
length and transistor 2 width (variables 11 to 14 in Table I),

and the values of the input and output matching networks
inductances and capacitances (variables 7 to 11 in Table I)
became constraining inputs.
B. Results

For experiment one, Table IV describes the first
chromosome to reach a success rate above 99 % for its test set.
It corresponds to a RBF and the GA took four generations to
converge to it. To verify the stability of generalization
capability of this RBF further, we realized 100 additional
simulations where we randomly varying which data served for
training and which were used for testing. The mean accuracy of
the RBF for the test data over these simulations was 99.22 %,
with 100 % for the best simulation and 95 % for the worst.

The time needed by the GA to complete a cycle was
approximately 11 minutes, for a total convergence time of 44
minutes. Then, the one hundred simulations applied to the
winning RBF took a total of approximately 3 minutes to run.
Thus, the ANN specification took less than one hour to
complete. Then, using it for any new input vector within the
ranges of those presented in Table I required 62 ms to yield the
desired outputs. The previous time values were obtained on a
computer with Windows 7, an Intel Core i7 2.66 GHz
processor and 4 GB of RAM.

For the second experiment, the first chromosome to reach a
success rate above 99 % for the test set corresponded to a
MLP. Eight generations were necessary to obtain the
chromosome, which is described in Table V. Again, we
verified the ANN generalization stability over 100 additional
simulations, obtaining a mean accuracy on the test data of
95.23 %, with 100 % on the best simulation and 88.46 % on
the worst. This time, the GA took 88 minutes to converge. The
one hundred validation simulations took a total of 10 minutes
and applying the MLP to one new input vector required 62 ms
to yield the output.

The results for the matching networks as outputs and the
transistors geometries as outputs are summarized in Table VI.

760

Table IV. Description of the best chromosome with matching networks
components values as outputs (after four generations).

Bit # Role in ANN Actual value in ANN

1 Type of ANN RBF
2-13 Inputs present (see Table 3) 2, 3, 5, 11, 14, 15, 16
14-20 Qt. of stimuli used for training 224
21-24 Width of Gaussian RBF (σ) 0.3
25-32 Max. qt. of hidden neurons 111
33-37 Hid. neur. added between inputs 21

Table V. Description of the best chromosome for transistors geometries
values as outputs (after eight generations).

Bit # Role in ANN Actual value in ANN

1 Type of ANN MLP
2-13 Inputs present (see Table 3) 3, 4, 5, 7, 8, 15, 16

14-20 Qt. of stimuli used for training 222
21-24 Qt. of nodes in hidden layer 8

25 Output function of hidden layer tansig
26-28 Nb. of epochs used for training 150
29-31 Learning rate 10-2

32-34 Decrease in learning rate 10-3

35-37 Increase in learning rate 102

Table VI. Testing (generalization) performance of the best chromosome found during the GA and in the following 100 ANN simulations.

Outputs

(see Table I)

Inputs

(see Table I)

During GA 100 simulations

Nb. of generations for
success rate > 99 %

Best
success rate

Mean
success rate

Maximum
success rate

Minimum
success rate

Matching networks
(7 to 10)

GA among 1 to 6 and 11 to 16 4 100.00 % 99.22 % 100.00 % 95.00 %
GA among 1 to 6 6 100.00 % 88.67 % 100.00 % 75.00 %

1 to 6 and 11 to 16 imposed 14 100.00 % 98.50 % 100.00 % 91.67 %

Transistors geometries
(11 to 14)

GA among 1 to 10 and 15 to 16 8 100.00 % 95.23 % 100.00 % 88.46 %
GA among 1 to 6 11 100.00 % 86.23 % 100.00 % 71.76 %

1 to 10 and 15 to 16 imposed 16 100.00 % 92.47 % 100.00 % 80.19 %

IV. DISCUSSION AND CONCLUSION

The work used a GA to set the parameters of an ANN for
successfully predicting the component values for a RF-LNA
given certain performance criteria and design constraints. The
obtained validation results have shown that, for two different
sets of target variables, impedance matching networks and
transistor geometries, the GA was successful at determining the
required ANN architecture.

Since the ultimate objective of the approach is to speed up
the LNA design cycle, the time required for running the GA
and validating the stability of the winner ANN’s generalization
capability is important. Our results show that the time required
for getting and validating an appropriate ANN using a GA
represents an improvement over current methods. Moreover,
using this ANN for subsequent applications is extremely time
efficient (approximately 60 ms response time).

We investigated the model further by comparing the
performance of the best chromosome obtained to that of the
chromosome produced by a GA that would only consider
performance data as input. We suggested previously that the
possible underdetermined character of the design problem may
lead to solutions inconsistent with the input-target test pairs fed
to the ANN. The results, presented in Table VI, show that
ignoring design constraints reduces the chromosome
performance stability, both when the outputs are the matching
networks and when they consisted in the transistors geometries.

We also compared the performance of the best
chromosome obtained to that of the chromosome produced by
a GA that uses all possible inputs (i.e. all performance criteria
and all design constraints in Table I). The results in Table VI
show that forcing all inputs on the ANN also reduces the
stability of the chromosome’s performances, but in a less
important manner than ignoring the design constraints.

Only two ANN architectures were considered in this work.
Among other kinds of ANNs, one has recently shown
encouraging signs for circuit synthesis applications: the
bidirectional associative memories (BAM) [8]. When set up for
heteroassociative operation, it appears to have the potential to
reconstruct the exemplar that led to a category label [9]. This
process is similar to finding a circuit component values given a
set of performance specifications. Thus, applying a GA to this
type of ANN may be a promising avenue in circuit synthesis
(work planned). Work is also needed to automatically set the
design constraints instead of specifying them manually. This
could be done by auxiliary ANNs that supply the needed
information based on the training data (work in progress).

ACKNOWLEDGMENT
This work was possible thanks to financial support from
NSERC and ReSMiQ.

REFERENCES
[1] M. Boukadoum, F. Nabki and W. Ajib, “Towards the neural network-

based design of nadiofrequency now-noise amplifiers", proc. ISCAS
2012, Seoul (S. Korea), pp. 2741-2744, May 2012.

[2] M. Rahnama, Y. M. Gilmanek and A. M. Kordalivand, "Ultra wide-
band LNA using RFCMOS technology and tunability band with neural
network", Control and System Graduate Research Colloquium
(ICSGRC), pp.75-79, June 2010.

[3] C. Pandit, A. Patnaik and S. N. Sinha "Neural network based CAD
models for analysis and design of fin-lines for mm-wave applications",
Applied Electromagnetics Conference, pp.1-4, December 2007.

[4] J. Mohamad-Saleh and B. S. Hoyle, "Improved neural network
performance using principal component analysis on matlab",
International Journal of The Computer, the Internet and Management,
vol. 16, no. 2, pp. 1-8, May-August, 2008.

[5] K. Gallagher and M. Sambridge, "Genetic algorithms: a powerful tool
for large-scale nonliner optimization problems", Computers &
Geosciences, vol. 20, no. 7/8, pp. 1229-1236, 1994.

[6] S. Haykin, Neural Networks: a Comprehensive Foundation (2nd
edition). Upper Saddle River, NJ: Prentice Hall, 1999.

[7] M. D. Buhman, Radial Basis Functions: Theory and Implementations.
Cambridge University, 2003.

[8] B. Kosko, “Bidirectional associative memories", IEEE Transactions on
Systems, Man and Cybernetics , vol. 18, pp. 49-60, 1988.

[9] S. Chartier and M. Boukadoum, “A bidirectional heteroassociative
memory for binary and grey-levelpatterns", IEEE Transactions on
Neural Networks, vol. 17, no. 2, pp. 385-396, 2006.

761

