

Vantrix Industrial Research Chair in Video Optimization

NSERC CRSNG

Sub-Partition Reuse For Fast Optimal Motion Estimation In HEVC Successive Elimination Algorithms

Luc Trudeau, Stéphane Coulombe, Christian Desrosiers

Department of Software and IT Engineering, École de technologie supérieure, Montréal, Canada

1. Introduction

- Motion Estimation (ME) is a crucial tool for video encoders.
- ▶ ME seeks the best candidate block (C) from a search area (S) in a previously coded frame to predict the current block (B) (see Fig. 1).
- ► For HEVC, considering every candidate is prohibitively expensive, so modern search algorithms often find sub-optimal solutions.
- ▶ We want to reduce the number of candidates without sacrificing the optimal solution.
- ▶ We propose an early termination scheme for square prediction units (PUs) based on information reuse from rectangular ones.

Figure 1: Motion estimation finds the best candidate to predict the current block.

2. Successive Elimination Algorithm

Let $s \in \{\mathbb{S}, \mathbb{V}, \mathbb{H}\}$ be the partitioning shape of a PU and p be the partition index

Figure 2: The first partition index is 0 and if a second partition exists, its index is 1.

ightharpoonup The candidate at position (x, y) is evaluated using

$$\mathsf{RCSAD}(s,p,x,y) = \sum_{m=0}^{M_s-1} \sum_{n=0}^{N_s-1} |B_{s,p}(m,n) - C_{s,p,x,y}(m,n)| + \lambda R(x,y) \; .$$

Successive elimination uses a lower bound approximation of the RCSAD

$$\operatorname{RCADS}(s,p,x,y) = \left| \sum_{m=0}^{M_s-1} \sum_{n=0}^{N_s-1} B_{s,p}(m,n) - \sum_{m=0}^{M_s-1} \sum_{n=0}^{N_s-1} C_{s,p,x,y}(m,n) \right| + \lambda R(x,y) \; .$$

Let (\hat{x}, \hat{y}) be the position of the current best candidate. By transitivity:

$$\begin{aligned} & \mathsf{RCADS}(s,p,x,y) \geqslant \mathsf{RCSAD}(s,p,\hat{x},\hat{y}) \\ \Longrightarrow & \mathsf{RCSAD}(s,p,x,y) \geqslant \mathsf{RCSAD}(s,p,\hat{x},\hat{y}) \;. \end{aligned}$$

3. Information Reuse Between PU Shapes

► Traditionally, PUs are evaluated in the order

$$\mathbb{S} \to \mathbb{V} \to \mathbb{H}$$
.

Consider the following orders

$$\mathbb{V} \to \mathbb{H} \to \mathbb{S} \text{ and } \mathbb{H} \to \mathbb{V} \to \mathbb{S}$$
,

which allow for information reuse from \mathbb{V} and/or \mathbb{H} into \mathbb{S} . Such as

$$\mathsf{SAD}^\Omega = \max \begin{pmatrix} \mathsf{minSAD}(\mathbb{V},0) \ + \mathsf{minSAD}(\mathbb{V},1), \\ \mathsf{minSAD}(\mathbb{H},0) \ + \mathsf{minSAD}(\mathbb{H},1) \end{pmatrix}.$$

▶ It follows that

$$\mathsf{SAD}^{\Omega} \leqslant \mathsf{SAD}(\mathbb{S}, 0, x, y), \ \forall (x, y) \in \mathcal{S}_{\mathbb{S}, 0}$$

► At worst, the min SAD of a partitioning is the min SAD of the block

$$\mathsf{SAD}\left(\left[\begin{array}{c} \mathsf{AD} \\ \mathsf{AD} \end{array}\right) \leqslant \mathsf{SAD}\left(\left[\begin{array}{c} \mathsf{AD} \\ \mathsf{AD} \end{array}\right]\right)$$

4. Improved Early Termination For S

- ▶ We evaluate candidates in increasing order of rate. When the rate is large the search can terminate (without evaluating the remainder of S).
- Early termination rate proposed at ICIP 2014

$$R(x,y) \geqslant \frac{\mathsf{SAD}(s,p,\hat{x},\hat{y})}{\lambda} + R(\hat{x},\hat{y}) \; .$$

► Improved early termination rate for S

$$R(x,y) \geqslant \frac{\mathsf{SAD}(\mathbb{S},0,\hat{x},\hat{y}) - \mathsf{SAD}^{\Omega}}{\lambda} + R(\hat{x},\hat{y}) = \frac{\mathsf{SAD}^{\Omega}}{\lambda} + R(\hat{x},\hat{y}) + R(\hat{x},\hat{y}) = \frac{\mathsf{SAD}^{\Omega}}{\lambda} + R($$

Figure 3: Geometric representation of the early termination thresholds.

5. Experimental Results

		Prop. vs HM			Prop. vs Previous (ICIP2014)		
Class	Sequence name	Speedup	SAD	BD-PSNR	Speedup	SAD	$\mathbb{S} SAD$
			Savings			Savings	Savings
B (1920 × 1080)	Kimono	6.30	96.7%	0.0006	1.15	14.9%	45.6%
	ParkScene	6.42	95.8%	0.0014	1.35	25.7%	79.4%
	Cactus	7.07	96.3%	0.0018	1.27	21.8%	67.9%
	BQTerrace	5.92	94.6%	-0.0020	1.36	26.3%	81.9%
	BasketballDrive	6.05	95.4%	0.0016	1.23	20.2%	64.0%
(832×480)	RaceHorses C	4.73	92.7%	0.0011	1.13	14.8%	50.2%
	BQMall	6.70	95.5%	-0.0008	1.18	16.0%	53.1%
	PartyScene	4.68	91.6%	-0.0003	1.27	19.9%	66.2%
	BasketballDrill	5.59	95.4%	-0.0026	1.24	19.3%	61.0%
D (416 × 240)	RaceHorses	4.56	93.0%	-0.0030	1.15	12.9%	43.1%
	BQSquare	8.75	96.1%	0.0032	1.34	27.6%	90.4%
	BlowingBubbles	6.78	95.2%	-0.0020	1.22	20.7%	68.1%
	BasketballPass	6.18	95.4%	-0.0011	1.20	17.8%	56.9%
	Overall	6.13	94.9%	0.0002	1.23	19.8%	63.7%

Table 1: Results for main profile with 8-bit coding and Low Delay P settings (No AMP)

Figure 4: Results for main profile with 8-bit coding and Low Delay P settings (No AMP)

6. Conclusion

- ▶ The proposed early termination scheme for square PUs, based on information reuse from rectangular PUs, results in a **6.13x** speedup and **94.9%** SAD savings when compared to HM (Full Search).
- ▶ This work considerably decreases the number of candidates imposed by the HEVC standard in order to find the optimal solution.

