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Abstract—A multilevel boost PFC (Power Factor 

Correction) rectifier is presented in this paper controlled 

by cascaded controller and multicarrier pulse width 

modulation technique. The presented topology has less 

active semiconductor switches compared to similar ones 

reducing the number of required gate drives that would 

shrink the manufactured box significantly. A simple 

controller has been implemented on the studied converter 

to generate a constant voltage at the output while 

generating a five-level voltage waveform at the input 

without connecting the load to the neutral point of the DC 

bus capacitors. Multicarrier PWM technique has been 

used to produce switching pulses from control signal at a 

fixed switching frequency. Multi-level voltage waveform 

harmonics has been analyzed comprehensively which 

affects the harmonic contents of input current and the size 

of required filters directly. Full experimental results 

confirm the good dynamic performance of the proposed 

five-level PFC boost rectifier in delivering power from AC 

grid to the DC loads while correcting the power factor at 

the AC side as well as reducing the current harmonics 

remarkably. 

Index Terms—Multilevel Converter, Active Rectifier, 

Multicarrier PWM, Cascaded Control, Power Quality. 

I. INTRODUCTION

High power factor or PFC boost converters are one of the 

mostly used equipment in the industries. The main concerns of 

such converters are the unity power factor operation and low 

harmonic distortion of the input AC waveforms that can be 

ensured by generating a DC voltage higher than the grid peak 

voltage amplitude, which makes use of switching devices 

inevitable [1-3]. Conventional two-level rectifiers known as 

full bridge converters have been working for many decades 

satisfactorily, however they are being replaced by emerging 

multilevel converter technologies [4].  
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Multilevel converters produce more voltage levels 

decreasing the voltage and current harmonics significantly 

while operating at lower switching frequency. They are 

comprehensively investigated as DC-AC energy conversion 

mode and now they have found many applications in AC-DC 

power conversion systems called rectifier [5-10]. 

Most of the works have been performed on two-stage 

rectifiers in which the input AC voltage were rectified by a 

diode bridge and then a DC-DC chopper were used to change 

the DC voltage level at the second stage output. The main 

drawback of such system is the high switching frequency of 

active devices leads to high switching losses, audio noise and 

requiring bulky filters [11, 12]. On the other hand, active 

bridge rectifier could provide high power factor but the 

switching loss, filter size and current/voltage harmonic 

contents are still matters of concerns [13-16]. Considering 

proved advantages of multilevel converters such as low 

switching frequency, low harmonic distortion and high power 

conversion, they have been widely used in various industries 

[17-19]. Many multilevel rectifiers called bridgeless 

topologies are studied in the literature mainly including three-

level ones [20-24]. Some five-level topologies have been also 

introduced that are using hysteresis current control or another 

complicated controllers that makes switching frequency higher 

than standard levels results in higher power losses and lower 

efficiency. Moreover, for medium voltage applications, high 

switching frequency is an important limit over choosing 

proper devices [25-30]. 

In this paper, a five-level boost PFC rectifier has been 

proposed using reduced number of active switches that affects 

the size of the manufactured box significantly [31]. On the 

other hand, gaining from multilevel converter advantages 

makes the presented rectifier appealing to use in medium-

voltage high-power applications in which the switches suffer 

low voltage stresses and are operated at low switching 

frequency. Moreover, low harmonic content of the AC voltage 

and current would be a promising result of employing this 5-

level PFC rectifier. To overcome the high switching 

frequency, a 4-carrier PWM technique has been adopted to 

modulate the reference signal and send associated switching 

pulses since this technique is still the most interesting method 

in industries. It should be noted that the reference signal is 

calculated by a simple cascaded controller in which two 

voltage and current loops are designed to regulate the output 

DC voltage, to make the input voltage and current in-phase 

and to generate 5-level voltage waveform at the rectifier input. 
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It should be noted that DC capacitors middle point is not 

connected to the load which is impossible in industrial 

practical applications. Full test results including change in the 

load, AC voltage fluctuation and generating different DC 

voltage values validate effective functionality of the proposed 

5-level boost PFC rectifier, designed multicarrier PWM

technique and simple controller in producing low ripple DC

voltage at the output while drawing unity power factor and

low harmonic current from the input along with operating at

low and fixed switching frequency.

II. PROPOSED FIVE-LEVEL REDUCED-SWITCH RECTIFIER

Fig. 1 shows the proposed five-level boost PFC rectifier in 

which three active switches and six diodes have been used as a 

slight modification to a similar topology that includes four 

switches [32]. 

As is clear in Fig. 1, a bidirectional switch has been 

connected between leg b and midpoint of DC capacitors to 

provide different paths for current in order to produce five 

voltage levels at the output including ±Vdc, ±Vdc/2 and 0 

where Vdc is the output DC voltage generated by the rectifier. 

The bidirectional switch is made by four diodes and one active 

switch to replace active parts with diodes. The full switching 

states are listed in table I along with the associate generated 

voltage level. 

Noticing table I, it can be said that based on current 

direction, different voltage levels would be produced by firing 

necessary switches. If the current is positive, turning ON the 

switch S1 leads to conducting the diode D2 so +Vdc will be 

appeared at Vab and both capacitors (C1 & C2) are charged up. 

In next switching state, by firing switches S1 and S3 

simultaneously, a low impedance current path would be 

provided through C1 and bidirectional switch S3 so the upper 

capacitor would be charged and Vab will have the voltage level 

of +Vdc/2. The zero level would be generated by a short circuit 

between points a and b using switches S1 and S2. For negative 

current direction, D1 is mostly responsible to prepare required 

current path. Hence, by turning ON the S3, the current will 

pass through only the lower capacitor C2 and charges it up 

while D1 is conducting and the negative voltage level –Vdc/2 

would be generated at the rectifier input. Finally, during 

negative current direction, if switch S2 is fired, then diode D1 

conducts and Vab would be equal to –Vdc. Having no 

redundancy switching states is the most important problem of 

this topology which makes the dc capacitors voltages 

balancing very difficult. 

To prove the advantage of multilevel converters in 

generating lower harmonic components, some typical 

multilevel waveforms have been generated and analyzed by 

FFT. Fig. 2 demonstrates different waveforms with increasing 

levels and it is evident that the THD will decrease around 50% 

by adding one level due to making the waveform more similar 

to sine wave. 

In a grid-connected application, the converter voltage 

imposes its harmonics into the current waveform. Therefore, 

regarding table I, the proposed rectifier would have 5-level 

voltage waveform at the input so it will generate low 

harmonics affecting the grid current directly results in using 

smaller size filters compared to the conventional two-level or 

two-stage rectifiers. Reduced size of passive components 

results in light weight and cheaper manufacturing cost of the 

converter remarkably. 
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Fig. 1.   Proposed five-level boost PFC rectifier with reduced number of 
switches 

TABLE I 

SWITCHING STATES AND PRODUCED VOLTAGE LEVELS OF 
PROPOSED FIVE-LEVEL RECTIFIER 

Switching 

States 
is S1 S2 S3 Vab 

1 > 0 1 0 0 +Vdc 

2 > 0 1 0 1 +Vdc/2 

3 ≥ 0 & ≤ 0 1 1 0 0 

4 < 0 0 0 1 –Vdc/2 

5 < 0 0 1 0 –Vdc 

Fig. 2.   Multilevel waveforms and corresponding harmonic spectrum 

III. CONTROLLER AND MODULATION TECHNIQUE

A. Cascaded Control Design

Using hysteresis current control can help shaping the grid

current into a sine wave but imposes switching problems such 

as high and variable switching frequency which makes 
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annoying noises and increasing power losses in the hardware 

implementation [32, 33]. In order to make this rectifier 

topology appealing and useable by industries, a simple 

controller including two cascaded loops have been designed in 

which the outer loop is voltage regulator and the inner one is 

the current controller. Initially, the AC line average current is 

modeled as shown by equation (1) [29, 31, 34, 35]. 

s
s s ab

s s dc

di
L v r i V

dt

v r i V

   

   

 (1) 

Where, all variables can be seen in Fig. 1. L is the line 

inductor and r is that inductor parasitic resistance. α is the duty 

cycle of the rectifier. By assuming a constant value for grid 

voltage (vs), and averaged value of current and duty cycle, 

small signal model of Eq. (1) can be converted into Laplace 

form as: 

s s dcLsi ri V    (2) 

Since the inner loop should be at least 5 times faster than the 

outer loop, therefor the outer loop value which is the DC 

voltage could be considered constant. Using a reference value 

for DC voltage as Vdc
*
, the following transfer function is 

obtained for the grid-connected rectifier inner loop giving the 

information that the output DC voltage, inductive filter value 

and line impedance affects the system AC current. 

*

. ( ) s dc
rec in

i V
H s

Ls r


 


 (3) 

Thus, the current control can be a simple gain as a 

proportional controller. Fig. 3 shows the inner loop of the 

controller. 

is
*

–
+

is

Hc(s)
1

Ls + r
–+Vdc

*

vs

α

 

Fig. 3.   Inner loop of the designed controller 

The current controller Hc(s) can be either a simple gain as 

proportional controller or a PI controller but it should be 

mentioned that the inner loop should have faster dynamic than 

the outer loop. Therefore, in case of using a PI controller for 

sinusoidal input current signal, the integral gain (kic) of that PI 

should be small enough not affecting the speed of that inner 

loop. However, using a PI compensator on a sinusoidal signal 

causes some steady-state errors which can be observed in the 

current harmonic spectrum as a DC component however it can 

do the job eventually. One alternative for such case is a 

proportional resonant (PR) controller that has an infinite gain 

at fundamental frequency (e.g. 60Hz in this work) and shows 

zero steady-state error [36]. 

In continue, to control the output DC voltage, another loop 

should be added to the controller which was mentioned as 

outer loop earlier. To obtain the system model for outer loop, 

equations from DC side of the rectifier should be investigated. 

.

f C L

dc dc
s

L

i i i

dV V
C k i

dt R

 

  
 (4) 

k is a constant average value for duty cycle and it is close to 

1. ic is the DC capacitor current (consider one capacitor C 

equals to 2C1 connected in parallel to C1&C2). By small signal 

modelling of Eq. (4) and converting into s-plane, the following 

transfer function for the outer loop system would be achieved. 

This transfer function shows the relation between output DC 

voltage and the value of the load and DC capacitor. 

. ( )
1

dc L
rec out

Ls

V kR
H s

R Csi
 


 (5) 

Due to the relation between is and Vdc as Eq. (5), the voltage 

controller can be considered as outer loop. Such loops give the 

idea of cascaded controller in which the output of outer loop is 

an input for the inner loop. 

 Since the DC signal does not contain any frequency, a PI 

compensator with transfer function of Hv(s) is used to regulate 

the voltage at the desired level. As shown in Fig. 4, the voltage 

controller loop is in charge of regulating the output DC 

voltage at Vdc
*
 and provides the peak value of the reference 

current as an input to the inner loop. 
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Fig. 4.   Designed cascaded control block diagram applied on 5-level rectifier 

Regarding Fig. 4, more details are given to derive the whole 

system open-loop transfer function (Hop(s)). It should be 

mentioned that at first the inner loop transfer function has to 

be calculated by multiplying the plant model and the 

compensator Hc(s). PI controller has been chosen for the inner 

loop to show the detailed calculations but kic is selected small 

enough to have higher speed at inner loop in further analysis. 

( )
pc icic

c pc

k s kk
H s k

s s


    (6) 

*

.

* *
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k V s k V

Ls rs
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
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Hin.ol(s) demonstrates the open-loop transfer function of the 

inner loop controlled by the current controller of Hc(s). To 

derive the whole system model, the closed-loop transfer 

function of Hin.ol(s) should be calculated as: 

.
.

.

* *

2 * *

2

* *

( )
( )

1 ( )

( ) ( )

in ol
in cl

in ol

pc dc ic dc

pc dc ic dc

pc ic

pc ic

dc dc

H s
H s

H s

k V s k V

Ls k V s rs k V

k s k

L r
s k s k

V V







  




  

 (8) 

( )
pv iviv

v pv

k s kk
H s k

s s


    (9) 

Equation (8) gives a transfer function of the inner system 

which should be compensated by a voltage controller of Eq. 

(9) and multiplied by the outer loop model. Thus: 

. .( ) ( ) ( ) ( )op v in cl rec outH s H s H s H s    (10) 

Open-loop transfer function of the whole system with 

cascaded PI controller has been derived as Eq. (10). Using 

some specific gains results in simplifying the transfer function 

in which it can operate as a first order system with a reliable 

performance. Thus, the controller designer should consider all 

conditions and compute the gains accordingly. The controller 

shown in Fig. 4 can be implemented on real-time controllers 

due to low complexity and sufficient accuracy. 
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Fig. 5.    proposed multicarrier PWM technique for low and fixed switching frequency purposes 

-1

-0.5

0

0.5

1

 

 

U
ref

Cr
1

Cr
2

Cr
3

Cr
4

0

0.5

1

S
1
 Switching Pulses

0

0.5

1

S
2
 Switching Pulses

0

0.5

1

Time (s)

S
3
 Switching Pulses



0093-9994 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2016.2581146, IEEE
Transactions on Industry Applications

B. Multicarrier PWM Technique 

In order to have low and fixed switching frequency to be 

suitable for high power and industrial applications, the PWM 

method should be used to generate required switching pulses 

[37, 38]. It should be noted that other switching techniques 

like hysteresis has variable switching frequency which makes 

annoying audible noises. As illustrated in Fig. 5, four carriers 

(Cr1, Cr2, Cr3 and Cr4) are shifted vertically to modulate the 

calculated reference signal (Uref). Each carrier is responsible of 

producing pulses for associate voltage level and switching 

states as shown by logic blocks. Moreover, corresponding 

switching pulses for three cycles of the modulated waveform 

(Uref) have been depicted in Fig. 5 to demonstrate the fixed 

switching frequency in each cycle The proposed method 

ensures low and fixed switching frequency functionality of the 

5-level converter aims at low switching losses and high 

efficiency compared to other topologies. 

IV. EXPERIMENTAL RESULTS 

To show the good dynamic performance of the proposed 

rectifier as well as the implemented controller and modulation 

technique, it has been tested in the Lab under various 

conditions. The controller and switching technique have been 

implemented on dSpace 1103 and a sampling of 20µs has been 

achieved due to the simple controller algorithm. 

At first the steady-state operation of the rectifier with 

implemented controller and switching technique has been 

shown in Fig. 6. The rectifier is fed from a 120V RMS grid 

while is is synchronized with vs ensuring unity power factor 

mode of operation. 5-level voltage waveform at the input of 

the rectifier is illustrated in that figure containing low 

harmonic pollution which affects the grid current THD 

positively. 40Ω load is connected at the DC side and Vdc is 

fixed at 200V with acceptable voltage ripple around 6.9V. VC1 

and VC2 have been balanced identically that made a 

symmetrical 5-level voltage waveform of Vab with levels of 

0V, ±100V and ±200V. Grid side information including AC 

voltage/current waveforms, their RMS and THD% values, 

input active/reactive power and the power factor have been 

captured using AMEC power analyzer and displayed in Fig. 7. 

The AC current THD is almost 1.3% which is acceptably less 

than standard level (5%) [39]. It is also evident from Fig. 7 

that the rectifier has been tested almost at 1kW power rating 

with the unity power factor. 

In order to simulate the transient modes, different tests have 

been performed to verify the good dynamic performance of 

proposed converter with implemented controller. As shown in 

Fig. 8 a 50% change in the load has been made suddenly 

which is the most happening case in rectifier systems. 

Although is is increased due to reducing the load from 78Ω to 

38Ω, the load voltage has been stabilized quickly at 200V as 

well as the rectifier is still working in unity power factor 

mode. 

 

TABLE II 
SYSTEM PARAMETERS 

AC Grid Voltage 120 V RMS 

AC Grid Frequency 60 Hz 

Interface Inductor 2.5 mH 

DC voltages (Vdc) 200 V 

DC Capacitor (C1 & C2) 1000 uF 

DC Load (RL) 78Ω and 38Ω 

Switching Frequency 5 kHz 

 

 

Fig. 6.   Experimental results from steady-state operation of the rectifier 

 

a) 

 

b) 

Fig. 7.   a) RMS value and THD% of the grid voltage (vs) and current (is) 

            b) power measurements at the AC grid side 
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Fig. 8.   Experimental results during 50% increase in the load 

 

 

Fig. 9.   Experimental results during AC source voltage variation 

In another case, the input AC voltage has been changed as 

an unwanted problem in the utility. As illustrated in Fig. 9, the 

DC side power consumption (Vdc×iL) is not varied but vs has 

been decreased, therefore is is increased proportional to the 

power delivered to the load smoothly. DC capacitors voltages 

have not been affected during such common voltage sag in the 

grid. 

Eventually for the last test, the DC voltage reference (Vdc
*
) 

has been increased by 25% from 200V to 250V to check the 

tracking performance of the controller. Results have been 

depicted in Fig. 10 in which all values except vs have been 

increased accordingly. The controller tracked the new 

reference voltage value in less than 0.3s quickly. 

Various conditions have been applied on the running system 

to investigate the dynamic performance of the proposed 

rectifier with implemented cascaded controller and switching 

technique. Low harmonic 5-level waveform of the rectifier as 

well as fixed switching frequency as an achievement of using 

multicarrier technique make this work interesting for power 

industries. 

 

Fig. 10.   Experimental results during 25% raise in the DC voltage reference 

V. CONCLUSION 

In this paper a reduced switch count 5-level boost PFC 

rectifier has been presented. A cascaded PI controller has been 

designed to regulate the output DC voltage and to ensure the 

unity power factor mode of the input AC voltage and current. 

Moreover, low harmonic AC current waveform has been 

achieved by the implemented controller and employing a 

small inductive filter at the input line. One of the main issues 

of switching rectifiers is the high switching frequency that has 

been reduced in this work using PWM technique through 

adopting multicarrier modulation scheme. Moreover, DC 

capacitors middle point has not been connected to the load that 

had required splitting the load to provide a neutral point. 

Using a single load with no neutral point makes this topology 

practical in real applications. Comprehensive experimental 

tests including change in the load, AC voltage fluctuation and 

generating different DC voltage values have been performed 

to ensure the good dynamic performance of the rectifier, 

adopted controller and switching technique. Moreover, the low 

THD of the input current has been measured to validate the 

advantage of multilevel waveforms in reducing harmonic 

contents and consequently diminishing the size of required 

filters at the input of the converters. 
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