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Abstract

A new acceleration technology for Java embedded virtual machines is presented in this paper. Based on the
selective dynamic compilation technique, this technology addresses the J2ME/CLDC (Java 2 Micro Edition
for Connected Limited Device Configuration) platform. The primary objective of our work is to come up with
an efficient, lightweight and low-footprint accelerated embedded Java Virtual Machine. This is achieved by
the means of integrating a selective dynamic compiler that we called E-Bunny into the J2ME/CLDC virtual
machine KVM. This paper presents the motivations, the architecture, the design and the implementation is-
sues of E-Bunny and how we addressed them. Experimental results on the performance of our modified KVM
demonstrate that we accomplished a speedup of 400% with respect to the latest version of KVM. This experi-
mentation was carried on using standard J2ME benchmarks.

Keywords: Java, Virtual Machine, Acceleration, Performance, J2ME/CLDC, KVM, Selective Dynamic Com-
pilation, Embedded Systems.

1. MOTIVATIONS AND BACKGROUND

With the advent and rising popularity of wireless systems, there is a proliferation of small internet-enabled
devices (e.g. PDAs, cell phones, pagers, etc.). In this context, Java is emerging as a standard execution
environment due to its security, portability, mobility and network support features. In particular, J2ME/CLDC
(Java 2 Micro-Edition for Connected Limited Device Configuration) [Sun 2000] is now recognized as the
standard Java platform in the domain of mobile wireless devices such as pagers, handheld PDAs, TV set-top
boxes, appliances, etc. It gained big momentum and is now standardized by the Java Community Process
(JCP) and adopted by many standardization bodies such as 3GPP, MEXE and OMA. Another factor that
has amplified the wide industrial adoption of J2ME/CLDC is the broad range of Java based solutions that
are available in the market. All these factors make Java and J2ME/CLDC an ideal solution for software
development in the arena of embedded systems.

The heart of J2ME/CLDC technology is Sun’s Kilobyte Virtual Machine (KVM) [Sun 2003]. The KVM is
a Java virtual machine initially designed with the constraints of low-end mobile devices in mind. The perfor-
mance and the security of the KVM will be two key factors in the successful deployment of Java technology
in wireless and embedded systems. The primary intent of our research initiative is to dramatically improve
the performance of J2ME/CLDC virtual machines such as the KVM. Lately, a surge of interest has been
expressed in the acceleration of Java virtual machines for embedded systems. Two main approaches have been
explored: hardware and software acceleration. For hardware acceleration, a plethora of companies (Zucotto
Wireless [Comeau 2002], Nazomi [Communications 2002], etc.), had proposed Java processors that execute
in silicon Java bytecodes. Although these hardware accelerators achieve a significant speedup in terms of
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virtual machine performance, it remains that their use comes with a high price in terms of power consump-
tion. This energy issue is really damaging especially in the case of low-end mobile devices. Moreover, the
cost (royalties, licensing, etc.) of these hardware acceleration technologies is an additional obstacle to their
adoption by the industry. These drawbacks of hardware acceleration created an interesting but challenging
niche for software acceleration of embedded Java virtual machines. For software acceleration, a large spectrum
of techniques has been advanced [Alpern et al. 2000; Cramer et al. 1997; Gagnon and Hendren 2003; Hsieh
et al. 1996; Sun 1999; Radhakrishnan et al. 2001]. These techniques could be classified into 4 categories:
general optimizations, ahead-of-time optimizations, just-in-time compilation and selective dynamic compila-
tion. General optimizations consist in designing and implementing more efficient virtual machine components
(better garbage collector, fast threading system, accelerated lookups, etc.). Ahead-of-time optimizations con-
sist in using extensive static analysis (flow analysis, annotated type analysis, abstract interpretation, etc.) to
optimize programs before execution. Just-in-time (JIT) compilation consists of the dynamic compilation of
Java executables (bytecode). This dynamic compilation is achieved thanks to a compiler that is embedded
in the Java virtual machine. The compiler is in charge of translating bytecode into the native code of the
host platform on which the code is being executed. The selective dynamic compilation consists in compiling,
on the fly, into native code only a selected set of methods that are performance-critical. Experience demon-
strated that general and ahead-of-time optimizations can lead to reasonable accelerations. However, they
cannot compete with just-in-time and selective dynamic compilation in reaching big speedups (for instance
an acceleration of more than 200 %) [Sun 2004]. It is established that just-in-time compilers require a lot of
memory to store the dynamic compiler and the binary code that it generates. The compilation process also
implements sophisticated flow analysis and register allocation algorithms in order to generate optimized and
high-quality native code. JIT compilers allow to reach high speedup but the static analysis they use induces a
significant overhead in terms of memory and time. This makes JIT compilers much more appropriate for J2SE
(Java 2 Standard Edition) and J2EE (Java 2 Enterprise Edition) platforms. Selective dynamic compilation
deviates from the JIT compilation by selecting and compiling, on the fly, only those fragments of the class
files that are frequently executed. These code fragments are generally referred to as hotspots. For instance,
one can select only those methods that are frequently invoked and convert them to native code. By doing so,
significant acceleration of the virtual machine could be reached since efficient optimizations are concentrated
on performance critical fragments of the program. Another major advantage of this approach is to reduce
memory overhead because only a part of a program is converted to native code. This makes selective dynamic
compilation more adequate for embedded systems than JIT compilers.

This paper presents an extremely lightweight selective dynamic compiler for embedded Java virtual machine
called E-Bunny. It is built on top of KVM. The contributions are threefold:

—Our system is the first academic work that targets CLDC-based embedded Java virtual machines optimiza-
tion by dynamic compilation. The remaining systems are commercial products such as [Sun 2004] and
[Schmid 2002].

—Our solution, besides the compilation of all kind of bytecodes, covers the different issues of the integration
of a dynamic compiler into a virtual machine such as multi-threading support, exception handling, garbage
collection, switching mechanism between the compiler and the interpreter modes, etc.

—Our solution is efficient. It allows to accelerate the performance by a factor of 4 while the memory footprint
overhead does not exceed 138 KB.

The remainder of this paper is organized as follows. Section 2 highlights related work relevant to the dynamic
compilation in the embedded context. In section 3, we present the architecture as well as the key ideas of
our system. Design issues are detailed in section 4. Section 5 presents the results of our implementation and
finally section 6 is a conclusion.

2. RELATED WORK

Dynamic compilation became a popular approach to optimize Java performance. Almost all standard Java
virtual machines [Alpern et al. 2000; Cierniak et al. 2000; Sun 1999; Suganuma et al. 2000; Suganuma et al.
2001] are endowed with a dynamic compiler. The features of these VMs cannot be applied in an embedded
context due to lack of resources. This sets several limitations on what dynamic compilation could accomplish
in embedded systems. In the sequel, we outline these limitations.
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In the context of embedded systems, dynamic compilation should cope with two major difficulties. First, the
dynamic compiler should be maintained in memory while the application is executing. This is very challenging
because of the stringent lack of memory resources. Second, heavyweight code optimizations are not affordable
because of their overhead. However, without such optimizations, a dynamic compiler produces a code of low
quality and large quantity. This code requires additional memory to be stored. It is worth mentioning that the
produced native code could be 8 times the size of the original bytecode [Bytecodes 2003]. Hence, embedded
dynamic compilers are required to be extremely frugal with memory resources. Another consequence of the
big size of native instructions compared to bytecode is the risk of instruction cache overflow. Indeed, among
the hardware limitations of embedded systems is the reduced amount of on-chip processor instruction cache.
The amount of this resource is suitable for bytecode interpretation. However, due to its big size, the machine
code produced by the dynamic compiler can be several times larger than the size of the available instruction
cache [Bytecodes 2003]. This leads to several cache misses that decreases the program performance.

Despite these difficulties, dynamic compilation is also used in CLDC-based embedded virtual machines
[Sun 2004; Schmid 2002; Shaylor 2002]. However, except one paper about KJIT [Shaylor 2002], no detailed
information about these systems is available in the literature due to commercial reasons.

KJIT [Shaylor 2002] is a lightweight dynamic compiler that uses as its foundation the KVM. KJIT does not
use any form of profiling for the simple reason that all methods are compiled. This strategy seems to be very
heavyweight and only feasible in server or desktop systems. The key idea to make this strategy adequate for
embedded Java virtual machines is to compile only a subset of bytecodes. The remaining bytecodes continue
to be handled by the interpreter. Indeed, whenever one of the interpreted bytecodes is encountered, execution
switches back from the compiled mode to the interpreted mode. This requires an efficient handling of the
switching mechanism since this operation is highly frequent. This is achieved in KJIT by pre-processing the
bytecode before their compilation. The cost of pre-processing, however, is an additional time required for
pre-processing together with an additional space required to store the generated bytecode. The latter is 30%
larger than the original bytecode.

CLDC Hotspot VM [Sun 2004] is an embedded virtual machine introduced by Sun Microsystems. As its
name indicates, it is strongly inspired by the standard Java Hotsopt VM. All features of Java Hotspot VM that
can be adapted to resource-constrained environments are applied. Among these features, we find a selective
dynamic compiler. Performance critical methods are detected by a single statistical profiler. The compilation
is performed in one-pass. Three basic optimizations are applied: constant folding, constant propagation and
loop peeling. The memory footprint required by CLDC Hotspot (including APIs) reaches 1 megabyte which
is almost the double of the space required by KVM. No more details are provided about the CLDC Hotspot
dynamic compiler.

3. ARCHITECTURE

E-Bunny is a selective dynamic compiler for embedded Java virtual machines that uses as its foundation
the KVM. In this section, we present the key features that make E-Bunny an appropriate Java acceleration
technology for embedded systems. The major features of E-Bunny are:

—Reduced Memory Footprint: The footprint resulting from the integration of the E-Bunny dynamic
compiler does not exceed 138 KB. The key idea to reduce the code size of E-Bunny is to merge the compi-
lation processing of some bytecodes. This is possible because several bytecodes have joint processing (e.g.
invokespecial, invokevirtual). This strategy is applied mainly for some bytecodes that have fast versions
[Lindholm and Yellin 1996](e.g. getstatic, getstatic_fast, getstaticp_fast, getstatic2_fast).

—Selective Compilation: Since selective dynamic compilation is the most adequate compilation-based
acceleration technique for embedded systems, it was adopted in E-Bunny. Only a subset of methods is
compiled. The methods are selected according to their invocation frequencies. The unit of compilation is
exclusively a method.

—Efficient Stack-Based Code Generation: For the compilation strategy, a trade-off has to be made
between the compilation cost and the generated code quality. Although a register-based code is more
efficient, we do not generate such code because it requires more passes over the bytecode. In E-Bunny,
we generate a stack-based code because it requires only one-pass over the bytecode. Thus, a one-pass
code generation strategy is adopted, without using neither intermediate representations nor heavyweight
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Fig. 1. E-Bunny Architecture

optimizations. Only optimizations that might be applied in one-pass are allowed.

—Multi-threading Support: Another challenge introduced by dynamic compilation is the multi-threading
support. Conventionally, each thread has its own execution stack. Since our approach uses two kind of
stacks, each thread is assigned two stacks upon its creation: a Java stack to interpret methods and a native
stack to run compiled ones. For the Java stack, we adopt the KVM way to manage the Java stacks. KVM
allocates the Java stack from the heap and manipulates it at a software level. For the native stack, the
approach adopted is to organize the native stack as a pool of segments and allocate a segment to each
thread. Thus, the native stack will be shared by all living threads.

—LRU Algorithm for Cache Management: A limited memory space is allocated to the compiled code.
When this space is full, a cache strategy based on a Least Recently Used (LRU) algorithm [Majercik and
Littman 1998] is adopted to free the necessary space.

The E-Bunny architecture is depicted in Figure 1. It includes four major components: the execution engine,
the profiler, the one-pass compiler and the cache manager. Initially, all invoked Java methods are interpreted.
During interpretation, a counter-based profiler gathers profiling information. As the code is interpreted, the
profiler identifies hotspot methods. Once a method is recognized as hotspot, its bytecodes are translated into
native code by the compiler. The produced native code is stored in the dynamic compiler cache. On future
references to the same method, the cached compiled method is executed instead of interpreting it.

4. DESIGN

In this section we discuss the design issues of E-Bunny. First, we detail the compilation strategy. Second, we
focus on a delicate aspect of selective dynamic compilation which is the switch mechanism between interpreted
and compiled modes. Then, we illustrate how E-Bunny supports multi-threading. Finally, we describe the
interaction with the garbage collection mechanism.

4.1 Compilation Strategy

Our compilation strategy spans over a lightweight one-pass compilation technique. This strategy avoids
complex computations performed by common compilers and generates a code of reasonable quality. Indeed,
the generated code is stack-based as Java bytecode but uses many information computed at the compilation
step (field offset, constant pool entry address, etc.). These information are grafted in the generated code in
order to avoid unnecessary further re-computation.

Compiling a method goes through three steps. First, generating context saving instructions (the prologue).
Second, translating bytecodes into machine code instructions. Third, generating context restoration instruc-
tions (the epilogue). The second step, which is the core step of our compilation strategy, consists in translating
each bytecode into a sequence of native instructions. We distinguish two categories of bytecodes. The first
kind includes bytecodes that are completely translated into native instructions in a straight manner (e.g. loads
(iload, iaload, Idc), stores (astore, lastore) and stack manipulation bytecodes (pop, dup)). They are called: sim-
ple bytecodes. The second kind of bytecodes are more complex to translate and are called complex bytecodes
(e.g. field manipulation (putfield), method call (invokevirtual) and exception propagation bytecodes (athrow)).
The first version of E-Bunny targets Intel IA-32 architecture [Intel 2000]. Another version for ARM is under
development.
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4.2  Switch Mechanism

In E-Bunny, compiled methods are executed in the native stack while interpreted methods are interpreted in
the Java stack located in the heap. Hence, execution of Java programs overlaps between native stack and Java
stack. The switch between the two modes implies context transferring between the two stacks. We distinguish
two situations where the switch occurs between the two modes: interpreted to native and native to interpreted.

The interpreted to native switch occurs when interpreting an invoke bytecode and the invoked method
happens to be compiled. Coming from the interpretation mode, the called method arguments are on the top
of the Java stack. The switch to the native mode requires their transfer to the native stack.

The switch from the native mode to the interpreted mode occurs in two situations. First, when a compiled
method calls an interpreted method. Second, when a compiled method exits and returns back to its interpreted
caller method. The profiling strategy we adopt assumes that every method called by a compiled method
should be compiled. The switch is then reduced only to the second situation (return case). Handling this
switch consists in transferring the returned value, if any, from the native stack to the Java stack.

4.3 Threads Management

A Java virtual machine provides a framework to run properly different threads. Each thread has its own stack.
In the interpreted mode, these stacks are created and managed at a software level. Basically, thread stacks
are allocated in the heap. However, in E-Bunny, since two stacks are used, compiled methods have to be run
on a native stack. Consequently, threads should use the native stack.

In the current implementation, the native stack is organized as a pool of segments. A segment is assigned
to a thread when the latter is created. The segment pool management is based on a bit map. An entry of this
map is a bit indicating whether the corresponding segment is used or free. Therefore, each thread executes
its compiled methods in its own segment. A consequence of managing several threads with two stacks is
that each thread has two forms of context information. The first is relevant to Java stack (e.g. sp: stack
pointer, fp: frame pointer, Ip: locals pointer) and the second is relevant to the native stack (ESP, EBP and EIP
registers). The data structure representing the thread in the virtual machine holds information representing
both contexts (Figure 2).

Thread scheduling in the KVM is based on a round robin scheduling model. Each thread keeps control
during a time-slice. This is decremented after each bytecode that may cause a control transfer (e.g. branching
and invoke bytecodes). When the time-slice becomes zero, the virtual machine stops the current thread and
resumes the next one in the running threads queue. Method compilation requires the support of thread
scheduling. To achieve this purpose, additional code is generated for bytecodes causing transfer control. This
code, mainly, decrements the ESI register, dedicated to hold time-slice value, and triggers a thread switch
when ESI reaches the NULL value. In addition, a special care to save both contexts relevant to Java and native
stacks, is taken.
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Fig. 3. CaffeineMark Scores of KVM and E-Bunny with GCC

4.4  Garbage Collection Issues

KVM garbage collection is based on a mark-sweep with compaction algorithm. With the selective approach
of E-Bunny, compiled methods are executed on the native stack. Consequently, the native stack may contain
some object references. Since the current garbage collection algorithm scans only the heap, the native stack
will not be considered, and then, object references on it neither will be marked nor updated. Therefore, the
current garbage collection algorithm is inaccurate with a selective approach.

The garbage collection algorithm has to be extended to deal with the native stack. Precisely, translated
method frames in native stack have to be scanned in order to mark and update object references. In E-
Bunny, the garbage collection algorithm is enhanced to address this issue. Mainly, the garbage collection
functionalities are modified to take into account the object references in the native stack. Indeed, for both
marking and updating loops, we check if the frame corresponds to a compiled method or not. If the method
is compiled we consider the native stack, otherwise we consider the Java stack.

5. IMPLEMENTATION AND RESULTS

E-Bunny is implemented using the C programming language. In our experiments, we used the GNU compiler
to build the latest version of KVM (KVM 1.0.4) with E-Bunny. Table I shows the executable size of KVM
with and without E-Bunny. The first column gives the total executable footprint of KVM without E-Bunny.
The second column gives the total executable footprint of KVM equipped with E-Bunny. Finally, column 3
of the table shows that using GCC to build KVM with E-Bunny produces a footprint overhead of 64 KB. To
summarize, E-Bunny requires 64 KB for executable footprint overhead, 64 KB for storing translated methods
and 10 KB for a map between bytecodes and native instructions which is used for compiling control flow
instructions and for exception handling mechanism. Hence, the total memory resources required by the E-
Bunny dynamic compiler is 138 KB. To evaluate the performance of E-Bunny, we have run CaffeineMark
benchmark (without the float test) on the original version of KVM with and without E-Bunny.

E-Bunny produces an overall speedup of 4 over original KVM. Moreover, we built the MIDP 2.0 profile,
intended to CLDC devices, using E-Bunny and we ran successfully several midlets. Figure 3 shows a snapshot
of the MIDP emulator illustrating CaffeineMark midlet results and an histogram presenting obtained individual
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scores. The overall scores of E-Bunny and KVM show the overall speedup.

6. CONCLUSION AND FUTURE WORK

We reported, a new acceleration technology for Java embedded virtual machines that is based on selective
dynamic compilation. This technology targets the J2ME/CLDC (Java 2 Micro Edition for Connected Limited
Device Configuration) platform. We designed and implemented an efficient, lightweight and low-footprint
accelerated embedded Java Virtual Machine. This has been achieved by the means of integrating a selective
dynamic compiler, called E-Bunny, into the J2ME/CLDC virtual machine KVM. We presented the motiva-
tions, the architecture, the design as well as the technical issues of E-Bunny and how we addressed them.
Experimental results demonstrated that we accomplished a speedup of 400% with respect to the Sun’s latest
version of KVM.

Currently, many enhancements of E-Bunny are in progress. The major one concerns the bidirectional smooth
switching between the interpreted and compiled modes. In fact, the profiling strategy adopted in the current
version of E-Bunny, which consists in compiling each method called from the compiled one, is less complex
to implement. However, it presents a drawback since it leads to compile non-performance-critical methods.
On the other hand, a more efficient centralized thread scheduling is being implemented. This is expected to
reduce the generated native code size.
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