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Abstract— Roughness estimation can help with improving
tactile prehension and distinguishing slippage events during
object manipulation with a robotic hand. Humans are able to
estimate roughness from a small contact area with an object,
and adapt manipulation strategies using this information [1].
In order to do the same with a robotic hand fitted with tactile
sensors, this article focuses on how to estimate roughness with
data from a tactile sensor. We propose a learning algorithm
that estimates roughness on a scale from 1 to 5, which was
inspired by human tactile capabilities. For more adapted
parameters values, this algorithm is optimized with a genetic
algorithm. To initialize the scale, we asked 30 people to classify
25 textures on a roughness scale from 1 to 5. The results
were used to feed the learning algorithm. After testing our
algorithm on those 25 textures, we conclude that even if there
are small errors on certain textures, our algorithm is able to
adapt itself to new textures and provide a roughness estimation
that approximates the human one.

Keywords- Grasping; Tactile intelligence; Tactile sensing;
texture recognition

I. INTRODUCTION

Humans’ incredible ability to interact with unstructured
environments relies greatly on their sensing capability. In-
deed, the human hand possesses an amazingly large number
of mechanoreceptors of several different types, which make
it the most sensitive part of the human body [2]. This
high concentration of sensory elements, along with their
diversity, allows humans to construct a rich representation of
the environment’s properties (e.g. contact location, texture,
object stiffness). This information can then be used to
achieve excellent performance during manipulation. In order
to approach or at least mimic this performance, robots used
in assembly tasks will have to be equipped with a tactile
sensory system that provides similar information [3].

Following this rationale, much progress has been done
recently on giving the sense of touch to robots by designing
novel tactile sensors. Most of these approaches typically
use piezoresistivity [4], or capacitance [5], [6], [7] as a
sensing principle, which provides only an image of the
applied stress. Human hands have a complex combination
of mechanoreceptors that are not only sensitive to pressure,
but also to dynamic events such as the vibration that occurs
at the fingertips when we touch, for example, a surface
texture. In order to better match the human tactile capabil-
ities, some recent studies have presented multimodal tactile

Fig. 1. Tactile sensor used for recognizing texture.

sensors that can be sensitive in both static and dynamic load
conditions [8], [9], [10].

However, simply adding tactile sensors to robot hands
alone is not sufficient to improve robots’ grasping skills [11].
In order to have a real positive impact, these tactile sensors
must be accompanied by algorithms that can translate their
complex signals into high-level information, such as the
recognition of object slippage [12], [13] or the estimation of
grasp stability [14]. Another high-level cognitive skill that
tactile sensing could provide robots with is the ability to
recognize textures. Previous work done in our laboratory,
as well as works carried out by other researchers [15], [16]
and [17], have shown that it is possible for a robot to learn
to recognizes textures by using tactile sensor data. Such a
capability could be used as an object signature that could
help the robot identify the object or estimate the object-hand
friction properties in order to better control the grasping force
without losing its grip on the object.

The objective of this work is directly linked to this goal. In
this paper we propose a novel algorithm that uses a scale of
roughness similar to the way a human being quantifies the
perceived texture of an object upon contact. We intend to
develop this scale as a way to encode these human-specific
capabilities in order to use it on robots with touch sensing.
We decided to use such an objective characterization as the
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roughness of a texture instead of a more strict technical
definition, since there is still no consensus on how we can
exactly characterize a texture [18]. Moreover, using some
of the proposed definitions of the technical properties of
a texture would have necessitated measuring the micro-
geometry of the textures (such as the depth and width
of the striations, properties that are delicate to measure
with actual tactile sensors). Human perception of textures,
although being slightly relative from one person to an other,
has been shown [19] to be a valuable and reliable source of
information to characterize texture roughness properties.

The paper first presents the experimental setup used. Sec-
tion 3 describes the experiments wherein 30 participants were
ask to classify the perceived roughness of 25 different objects
on a scale of 0 to 5. Section 4 presents the classification
algorithm used on the robots. Finally Section 5 present
the classification results that were obtained by using the
proposed algorithm on the same textures.

II. EQUIPMENT USED IN THE EXPERIMENTS

Two specific types of equipment were used for this study:
25 everyday life textures and a tactile sensor. We used
the textures to compare the machine algorithm’s output to
human roughness perception. They were chosen to be a
relatively exhaustive selection of everyday life textures, from
the softest to the roughest. The sensor was used to make the
acquisition on the textures for the learning algorithm.

A. The 25 textures

Our goal is to estimate the roughness of a texture with
a learning algorithm that is comparable to human tactile
perception. For our experiment, we used the 25 textures from
everyday life presented in Fig. 2, and described as follows:

• (a) is a composite wood similar to the one used for
tables or furniture.

• (b), (c), (d), (i), and (j) are plastics similar to the ones
used in everyday life objects for better hand prehension
(cell phones, printers, boxes...).

• (e), (f), (g) are sandpapers.
• (h) is a patterned leather used for cellphone cases.
• (k), (l), (m), (w) are standard papers.
• (n), (o), (p) are different smooth plastics.
• (q) is a metal sheet, like a brushed metal surface.
• (r) is like a mirror.
• (s) is wreath leather used for different design objects

(pencil cases, bags...).
• (t) is a used file.
• (u) is wreath fabric that looks like synthetic leather

objects.
• (v) is wreath plastic that looks like an anti-slip bathroom

carpet.
• (y) is wreath metal that is used for microphones or

loudspeakers.

All these textures will be tested by humans and the algorithm.

B. Tactile sensor

The sensor shown in Fig. 1 was used in our experiments.
This sensor is a capacitive device able to acquire two types
of data: normal stress and dynamic signals.

The first type consists of images of the normal stress
applied on the sensor with a resolution of 28 taxels per
phalange. The sampling frequency was set at about 59 Hz
[9]. This capacitive sensor used a two layer microstructured
silicone dielectric filled with nanoparticles of ferroelectric ce-
ramic. This characteristic of the sensor enables a very broad
measurement range while also making it highly sensitive to
low forces (10−4 N per taxel).

The sensor also measures the stress rate applied on the sen-
sor. Instead of differentiating the capacitance value over time,
dynamic sensing is achieved here using a transimpedance
amplifier that goes out of its equilibrium only in reaction
of variation of the sensor capacitance. This make it very
sensitive to any dynamic event, such as vibration, and allows
us to have a sampling frequency considerably higher than
for static measurements (1000 Hz vs 25 Hz). Characterizing
the sensor’s response to dynamic signals is more complex
than for static load. We used a vibrotactile transducer called
the Haptuator [20] and commercialized by Tactile Labs to
validate the sensitivity of the sensor to vibration both in term
of frequency and amplitude. During numerous tests, excep-
tional sensitivity was observed, exceeding human sensitivity
to mechanical vibratory frequency and amplitude. Humans
can distinguish frequencies in the 50-500 Hz range [21],
which is the range of acquisition of our sensor. For am-
plitude, we carried out a simple test in which the Haptuator
amplitude was set below the vibrational amplitude detectable
by humans (performed on 10 subjects) at 250 Hz. A peak of
a clear amplitude on the FFT of the sensor signal was still
clearly displayed.

III. HUMAN ROUGHNESS QUANTIFICATION

Different studies have tried to characterize roughness.
Most of them define roughness using the microscopic vari-
ations on the surface [22], [23]. This approach is currently
not possible with tactile sensor because of the sensitivity of
the sensor. It can measure very small pressure differences
on a surface but can’t measure small geometrical variations.
This is mainly due to the small geometrical scale and to
the material used on the surface that is in contact with the
objects. This is why we chose a different approach: trying
to characterize roughness the way human do.

Human roughness perception is a complicated subject.
Different human mechanoreceptors are involved in the pro-
cess (SA I, PCs) [24] and the speed and strength of the way
the finger slides on the texture influences its perception [25].
In order to obtain reliable results, we asked 30 participants
to classify 25 textures with their own roughness perception.
This section presents this experiment. In the next section,
we will describe using these results to simulate the same
experiment with a tactile sensor and a learning algorithm.



Fig. 2. Textures used for the experiments

A. Experiment protocol

The goal of this experiment is to classify 25 textures on
a scale of 1 to 5 according to their roughness intensity. 30
people participated in the test. Half were men and half were
women. 15 were 18-25 years old, 10 were 26-40 years old,
and 5 were 41 years old and older. Half of these people
were studying or working in sciences, with 7 of them in
areas related to robotic tactile sensing.

When they entered the room, they sat at a table on which
the 25 textures were placed. They each received a sheet with
an empty chart for classifying the textures. After listening to
a presentation on the different textures, they received some
instructions:

• They can touch the textures, look at them, and handle
the textures as needed.

• They should assign a roughness grade from 1 to 5 to
each texture.

• The textures need to be fairly evenly distributed across
the scale (4-6 textures per grade).

• They should be careful about noting the difference
between roughness and stickiness.

• There is no time limit. They can take all the time they
need.

B. Results

The participants need from 5 to 25 minutes to classify the
25 textures according to their roughness perception. Each
participant used a different method to achieve his goal. Some
classified the materials on 5 groups on the table, others gave

a grade after one examination per texture and did a second
checking tour. The last ones found the most and less rough
textures and then completed the middle. When we asked
people how they found the experiment, most of them were
surprised by the complexity of this classification and didn’t
think they would give exactly the same results if they did
the same experiment a second time.

The results of the experiment are shown in Fig. 3. For a
better reading of the results, we chose to remove the grades
that received less than 4 votes that have little impact. With the
results, we observe an agreement on the extreme values (1
and 5). In the middle range, the participants differ frequently
and sometimes the votes are on 3 or 4 different grades.

Fig. 4 presents another view of the results. The box
represent the average plus/minus the standard deviation. We
observe small boxes in the extremes and on some textures on
the middle. But some boxes are on two grades. A comment
given by many participants can explain that: ”Sometimes,
textures are not more or less rough, they are just different.”

C. Hypothesis for the simulation

In the next section, we present a learning algorithm that
estimates the roughness of textures using tactile sensing
data. We use this section’s results to test it. Some textures
are used to optimize the algorithm and learn the roughness
grades. The others are used to test the algorithm after the
optimization to verify the efficiency of the algorithm.

We want to have 3 textures per grade to optimize the learn-
ing algorithm. We attempt to use the ones with the smaller
standard deviation. The selected textures for optimizing and
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Fig. 3. Experiment results: number of participant votes per grade

testing the algorithm are detailed in Table I. We notice that
textures like s) and x) have quite large standard deviations,
and in these cases it likely be particularly interesting to
compare the participant’s feedback to the results of the
learning algorithm.

TABLE I
TEXTURES SELECTED TO FEED THE ALGORITHM

Roughness Selected textures Selected textures
grade for optimization for testing

1 p), q), r) k), m), n)
2 a), l), o) h), i), x)
3 c), t), w) b), d)
4 j), u), v) s)
5 e), f), g) y)

IV. ROUGHNESS QUANTIFICATION ALGORITHM

As we previously saw, the sense of touch plays a very
important role in the manipulation of objects, much more
so than vision, which allows planning of movement [26].
It is particularly interesting that the manner in which a
human seizes or catches an object depends on perception
of characteristics such as fragility [27]. Knowing how to
evaluate different characteristics of objects touched (texture,
fragility, roughness, adhesiveness, etc.) is therefore very rele-
vant to touch robotics. In this article, we focus on roughness
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Fig. 4. Statistical view of the results with standard deviation box

estimation. Our goal is to propose an algorithm that could
have a roughness estimation similar to human perception.

To create this algorithm, we were inspired by texture
recognition algorithms.

When it comes to texture recognition algorithms, many
studies have used capacitive sensors. Globally, texture dis-
crimination over 90% correct has thus been achieved [28].
Two studies in particular attracted our attention: in the first
of these, a finger-like probe containing multiple randomly
placed sensors (static and dynamic) was used. After data
pre-treatment, textures were distinguished using the main
components of the Fourier transform in a learning algorithm.
Eight textures were differentiated at three different speeds
with 90% success using a majority vote [29] [30].In the sec-
ond study, a statistical method called Bayesian inference was
used, which functions using a relatively small set of training
data. However, to confirm a texture, three movements were
required. A BioTac probe with static and dynamic sensors
(up to 2200 Hz) was used. Over 95% of the 117 textures in
the test were recognized [31] but the information acquisition
step required a relatively long time to complete.

Various sensor technologies such as MEMS [32] [33] and
opto-tactile sensors [34] have been tested in other studies.

The goal of our study is to propose an algorithm that
estimates the roughness of each texture. For this, we have
focused on three elements: i the choice of movement, ii. data
acquisition, pre-processing and extraction, and iii. learning
algorithms. To optimize this algorithm, we used a genetic
algorithm. The last part of this section details the genetic
algorithm. Fig. 5 represents the steps of the algorithm.

A. Exploratory motions

The exploratory movement has a major impact on the
quality of texture discrimination. Several studies have ex-
amined the implications of the choice of movement. Two-
dimensional linear motion has been chosen in many cases
[30] [35]. Object typing is another approach that has been
studied [36]. Finally, a thorough study of human texture
recognition movements has been published [31]. The authors
selected three movements in an attempt to discriminate
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textures using fewer learning data and very high-success-rate
data.

For the purposes of our study, we selected one exploratory
movement. Our exploratory movement is a short sliding
linear movement in a single direction. This movement can
be compared to the friction of the thumb on an object held
in the hand. It’s the movement we’ve seen the most during
during the first experiment.

Human roughness perception is a complicated phe-
nomenon. The speed and strength of the finger as it moves on
the texture has an important impact on roughness perception
[25][37]. Therefore we chose to make all our acquisitions at
the same speed and strength.

B. Features

The choice of discriminants is particularly important since
they determine the quality of roughness estimation. We
need discriminants that represent the roughness of a texture
without being specific to one texture. Before extracting
discriminators, two pre-treatments are applied. The signal is
first zero-averaged in order to obtain a Fourier transform with
no null frequency component. The fast Fourier transform
(FFT) that will extract the discriminants is then calculated in
post-processing Matlab using the function fft. The duration
of the input signal is from 500 ms. The Fourier transform is
calculated on 1024 values distributed equally between 0 Hz
and 500 Hz. Fig. 6 shows the signal and its Fourier transform.

When selecting the discriminants, most studies of capac-
itive sensors draw inspiration from sound processing using

the main components of the Fourier transform. The main
components are the maximum of Fourier Transform. A
minimal distance between two main components is required.
Several studies have also taken the speed and force applied
by the robot into account. In our case, we study the impact of
several discriminants and let the genetic algorithm determine
whether to use them or to change their parameters. We
describe the discriminants and their features below.

The main components of the Fourier transform: These
components show the predominant frequencies in the ma-
terial, which are directly related to the material surface
properties (lines, grid, etc.) and are somewhat correlated with
the speed of acquisition. Our algorithm detects the maximum
in the Fourier transform. A tolerance margin imposes a
minimal gap between the maxima. The user (or the genetic
algorithm) selects the number of detected maxima and the
code uses the frequency and amplitude of these peaks as the
discriminant of the learning algorithm.

The average speed of acquisition: An estimate of the
average speed of acquisition (scanning) is included in the
learning algorithm in order to improve the anticipation of
changes in the peak Fourier transform frequency.

The average acquisition pressure: The force applied to
the sensor influences the amplitude of the various peaks of
the Fourier transform.

The integral of the absolute value of the signal i is
calculated using equation 1:
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i =

∫ l

0

|s(t)2|dt (1)

In this formula, l is the signal length and s(t) represents
the signal values. Combining the signal values in s(t) enables
better understanding of the signal and can be brought in line
with the average force. It should allow differentiation of two
signals that vary in intensity as well as low frequencies.

Signal length l is calculated using equation 2:

l =

l∑
k=1

√
(tk+1 − tk)2 + (sk+1 − sk)2 (2)

This index also provides information on signal amplitude
and frequency.

C. Neural Network

The discriminants are then submitted to a learning al-
gorithm. The learning algorithms selected to process the
discriminants are among the most popular: artificial neural
networks (ANN) and support vector machines (SVM). The
number of inputs and the number of neurons in the hidden
layer of the ANN depend on the genetic algorithm. The
transfer function in the hidden layer is linear and the output
neuron is a linear function. We propose two different ANN
architectures: in the first one, called ANN 1, the output
provides the roughness estimation with a number from 1 to 5.
In the second (ANN 5), we use the same structure the SVM
(SVM 5). Instead of one, we train 5 ANN/SVM, each on
specialized in one roughness grade (from 1 to 5). Each output
is a boolean function. So the output of the learning algorithm
is 5 boolean value. Three different actions are possible:

• one SVM/ANN output is TRUE: the result of the
algorithm is the roughness grade related to this SVM.

• more than one SVM/ANN output is TRUE: the result
of the algorithm is the average of the roughness grades
related to those SVM/ANN.

• all the SVM/ANN output are FALSE: the result of the
algorithm is 0. It means the algorithm cannot find an
answer for this input data.

D. Optimizing with the genetic algorithm

We now turn to the question of how to optimize the
algorithm’s variables such as the ANN or SVM configura-
tion, the number of main FFT components, the choice of
discriminators, etc., in order to obtain the best result. For this
purpose, we used a standard genetic algorithm (GA) with 20
individuals and 30 generations.

To limit over-fitting, the algorithm separates the optimiza-
tion database (cf III-C) into two equal parts: a learning
portion, and a testing portion. The algorithm performs 20
different learning tasks, which are then tested against the
test part of the optimization database. The fitness function
returns the average of the results of learning and testing.
At the end, we use the test database (cf III-C) to test our
algorithm’s efficiency.

The GA determines a set of variables for improving our
learning algorithm:

1) Number of frequency peaks: The value of this vari-
able ranges from 2 to 15, and indicates the number of
relevant peaks required to define the texture.

2) Minimum frequency between each peak: This value
varies between 5 and 50 Hz. The purpose of the spread
is to filter noise produced by adjacent peaks, without
affecting the major peaks.

3) Ranking by frequency or intensity: This variable
determines whether the classification of peaks will be
by intensity or by frequency prior to entry into the
learning algorithm.

4) Signal integral: Used to determine whether or not the
signal integral should be included as an input variable
of the learning algorithm.

5) Signal length: Used to determine whether or not signal
length should be included as an input variable of the
learning algorithm.

The following three variables are with respect to the
learning algorithm itself.

1) Number of neurons in the ANN hidden layer: This
varies between 5 and 50.

2) Box constraint (SVM): This ranges from 10−2 to
10. This value limits the size of certain SVM vector
coefficients and thereby establishes different borders.

3) Kernel scale (SVM): This ranges from 10−5 to 105.
This variable changes the Kernel function scale, thus
allowing non-linear transformations to be used.

V. EXPERIMENTING THE LEARNING ALGORITHM

In this section, we describe how we tested the algorithm
presented in Section IV. We used the results of Section III
to initialize the algorithm.



A. Methodology

We tested our algorithm using the result of the experiment
from the Section III. In this context, we created a database
of tactile information using our tactile sensor. We rubbed
the sensor on each texture presented in the Section II-A.
The speed, the pressure and the direction is constant. The
average speed is 0.15 m/s and the average strength is 2.5
N. When the texture have some ridges, the chosen direction
is against the ridges. We acquired 200 samples per texture,
representing a database of 5000 samples. The duration of
each scan is 700 ms.

Our database is divided in two categories: the optimization
dataset and the test dataset. Each texture received a category
in Section III-C, following the roughness estimation experi-
ence with humans. The optimization dataset is used to feed
and test the learning algorithm during the genetic algorithm
optimization. When all optimizations are done, we use the
test dataset to test the results. This dataset samples come
from textures unused during the optimization phase.

In this experiment, we want to compare the three different
learning algorithm architecture to the roughness estimation
experiment made by humans (Section III).

B. Results

The genetic algorithm execution lasts 6 hours per ar-
chitecture. The algorithm sends back the optimized ANN
or SVM and the roughness estimation for each sample. It
means there is 5000 answers to process. For a brief but
meaningful presentation of the results, we divide them in
two parts: the results from samples used for optimization and
the ones from samples used for testing. The first main piece
of information is the average error between the the results
and the expected value. This value estimates how close the
algorithm perception is compared to the human one. The
second main piece of information is the average standard
deviation per texture. This value estimates the amplitude of
the results, i.e., how far they can be from the average. Table II
sums up the results of the experiment.

TABLE II
SUMMARY OF THE EXPERIMENT

ANN 1 ANN 5 SVM 5
Optimization Average error 0.65 0.24 0.25

set Standard deviation 0.59 0.60 0.64
Testing Average error 1.13 1.02 1.3

set Standard deviation 0.59 0.55 0.77

Globally, Table II shows that a learning with good result
is possible, but the testing average error isn’t under 1
roughness grade. Between the three architectures, the ANN 5
architecture works a little bit better than the others. Indeed,
ANN 1 architecture have some troubles with the learning
part. The average error is higher than other architectures. In
SVM 5, the problem is with the testing set. The error is
higher than others, we observe some overfitting.

Figure 7 compares the results of the simulation to the
results of the experience with human perception. In green,
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Fig. 7. Results with ANN 5 architecture compare to human perception

we observe the data from the learning dataset that match well
with the data from the human perception. Some mistakes can
be observed (like on texture a). We suppose they come from
skids during the acquisition. To exclude this problem, the
silicone surface needs to be change for a less sticky one. In
blue, the test data are mostly different from one roughness
grade compared to the human perception. Nevertheless, an
exception is present: the texture k roughness estimation from
the algorithm has an error of 3 grades compared to what the
humans perceived.

VI. CONCLUSION

This study compared human roughness perception to a
learning algorithm that was based on human roughness
perception. Our first experiment with humans reveals the
gap that can exist between different people’s perception of
roughness. In the second part of the study, we examined how
our learning algorithm, using data from a tactile sensor and



optimized by genetic algorithm, provided interesting results.
Globally, they can be compared to the results obtained
with humans. With new textures, the algorithm makes some
small mistakes but keeps the right direction. There are
two interesting innovative aspects in this study: first, it’s
one of the first studies that used humans as references to
characterize a texture property. Secondly, we used genetic
algorithm to optimize the learning algorithm properties.
Many learning algorithms are used but often the parameters
are set with default values or improve with different iterative
tests. Using a genetic algorithm is an interesting option to
optimize parameters to improve the results. Further research
should focus on experiments with more textures to create an
algorithm that is more reliable with all textures.
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