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Abstract. The development of new melting processes for mold steels demands a great attention from 
steel manufacturers to improve the machinability of such steels. One of the important parameters that 
affect machinability is the tool wear. An insightful understanding of tool wear behavior can lead to 
better process economics, increased process stability, improved tool life and reduced tooling costs. 
The present paper attempted to study the tool wear mechanisms of a PVD-TiAlN coated carbide tool 
during face milling of two hardened mold steels in dry and wet conditions. The tested steels (P20-AIR 
MELT, P20-ESR and DIN 1.2711 ESR) were obtained using Air Melt and Electro-Slag Remelting 
(ESR) processes. The results show that although the tested steels have comparable hardness, the tool 
wear behavior is different regarding the cutting mode, melting processes and chemical composition 
of the tested steels. For the tested steels and conditions, the dry machining performs better than wet 
machining. The tool life is limited by the maximum flank wear mode during dry machining. 
Nevertheless, when wet milling is performed, the catastrophic tool wear is the failure mode that 
dominates which results in noticeable decrease of the tool life compared to dry milling. 

Introduction 

The machinability of materials is usually evaluated using indicators such as tool life, surface finish, 
cutting forces but the tool wear is the criteria the most used. Recently, Zaghbani et al. [1] 
demonstrated that the tool life is one of the most important parameters that affect the machinability 
rating of mould steels. With the development of new steels and cutting tool materials, further efforts 
should be made in order to understand the basic tool wear and tool failure mechanisms during 
machining. Cho and Komouvopolos [2] observed that the different wear mechanisms are not 
mutually exclusive; they may occur simultaneously at different locations on the same tool surface. 
The tool surface state is greatly dependent on the coatings used. Klocke et al. [3] summarized the 
fundamental research works on advanced coatings effect on contact conditions and wear mechanisms 
during the machining of different ferrous metals. The latter may be affected deeply by the use of 
metal cutting fluids. Haron et al. [4] investigated the effect of cutting fluid on the coating 
performance during turning operations. The authors [4] proved that the tool wear mechanisms can 
change from mechanical to thermal when the cutting fluids are applied.  This change is principally 
due to different tribological effects. Khrais and Lin [5] investigated the tribological influences of 
PVD-applied TiAlN coatings on the wear of cemented carbide inserts and the microstructure wear 
behaviours of the coated tools under dry and wet turning of hardened steels. The study reveals that 
when the material hardness rises above 40 HRC the material machinability decreases due to 
shortened tool life either in wet or dry conditions. Zaghbani et al. [6] showed that the cutting mode 
(dry or wet) has a significant effect on tool wear mechanisms during the machining of hardened 
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mould steel tools. Hardened steels often  contains a high amount of abrasive carbides which can leads 
to high mechanical loads and cutting temperatures and consequently the tool life can be extremely 
shortened [7].  Poulachon et al. [7] studied the effect of the microstructure of four hardened materials 
with the same hardness on the cutting tool wear. The results showed that, in spite that they have the 
same hardness, the machined materials exhibit different tool wear behaviours due to different types 
and sizes of carbides existing in each steel. Chandrasekaran and M’Saoubi [8] studied the effect of 
melting processes and alloying on the dry machinability of hardened steels. The study showed that at 
a given hardness, the materials microstructure has a strong effect on the resulting machinability 
during hard milling.  
   In the present paper a comparative study of tool wear mechanisms when machining mould steels 
manufactured using two different melting processes is investigated under dry and wet milling 
conditions. The paper starts with a brief description of the experimental protocol followed by a 
presentation of the important results on tool wear mechanisms. In the last section a summary of the 
realized work are presented.  

Experimental procedure 
Two hardened P20 (with trace elements) and DIN 1.2711 steels that are widely used in plastic 
injection moulds were used in this work. The tested materials were produced with Air melt and ESR 
melting processes. The steels tested are referenced as P20-AIR MELT, P20-ESR and DIN 1.2711 
AIR MELT and have approximately the same hardness (38-42 HRC). The typical compositions of 
these steels as provided by the supplier are listed in Table 1.   
 

          Table 1 Typical compositions (wt %) of tested steels. 

 
 

Dry and wet end milling tests were conducted on CNC machining using an automated procedure. 
An end mill with two PVD-TiAlN multilayer coated carbide inserts was used in the experiments. The 
cutting cutting speeds (Vc) was set at 100, 125, 150, 200 and 225 mm/min at a constant  feed (fz) of  
0.1016 mm/tooth with an axial depth of cut (aa) of  2.54 mm and a radial depth of cut (ar) = 12.7 mm. 
The maximum flank wear was measured using optical microscope while crater and flank wear lands 
were analyzed using scanning electron microscope (ESM). The most important findings during this 
study are presented in the following section. 

 
Results and analysis 

 
The tool wear of coated inserts was evaluated in dry and wet milling of three steels. Figure 1 shows 
the progression of the maximum flank wear as function of cutting time for the three materials tested at 
a cutting speed of 100 mm/min under dry and wet conditions. Visibly, in term of tool life, the three 
materials perform better under dry conditions than under wet conditions. The lowest wear rate is 
recorded during dry machining of the P20-AIR MELT steels at cutting speed of 100 mm/min. At the 
same conditions, the wear curves of the P20-ESR and DIN 1.2711 AIR MELT steels are nearly 
identical. Inversely, at wet conditions, the P20-ESR steel performs better than the P20-AIR MELT 
steels and DIN 1.2711 AIR MELT shows intermediate wear behaviour.  

 
 
 

Element C Mn Si Ni Cr Mo Al S P 

P20  0.36 1.00 0.40 0.5 1.85 0.53 0.023 0.005 0.012 

DIN 1.2711   0.55 0.80 0.26 1.70 1.10 0.49 0.020 0.003 0.012 
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The TiAlN coating of the inserts experiences a pronounced resistance to flank wear when dry 
machining the P20-AIR MELT steel at a cutting speed of 100 m/min. In these conditions, the tool 
wear progresses through three stages as follow:  

• The wear of the cutting tool started by a localized plastic deformation of the tool edge 
(Figure 2.a). The plastic deformation of the edge is characterized by a slight change of the 
edge radius without any significant edge chipping.   The occurring of plastic deformation 
may be caused by the high level of stresses induced by the combination of high mechanical 
load and small contact surface. 

•  The second stage is characterized by the formation of a uniform microchipping along the 
tool edge (Figure 2.b and 2.e). The microchipping grow progressively and slowly to reach 
the value of 0.15 mm after about 270 min (Figure 1-Dry machining). This behavior may be 
attributed to the improved abrasive wear resistance  that characterize the PVD-TiAlN 
coating of the cutting tool used in the experiments [9] [10]. It can be noted that the coating 
burns out at the flank and rake faces as shown in figure 2.a and 2.e. The final color of the 
coating is a good indicator of the reached temperature level. The darker is the coating 
color, the higher is the temperature.  

• Finally, when the flank wear reaches a given level (about 0.15-0.2 mm), the cutting 
temperature and stresses rise dramatically which accelerate the delamination of the coating 
before the failure of the cutting tool. In fact, the edge micro-chipping breaks the heat 
barrier that was created by the coating, leading to a "voided-heat-barrier". When the 
created voids in the heat barrier reach a critical dimension, the heat transfer from the chip 
to the insert become significant and can increase the adhesive wear. This heat transfer 
affects the properties of the existing bonds between the carbides causing their failure. This 
phenomenon becomes more important as the coating goes away and makes the exposed 
uncoated area becomes larger. 
 

 
 
 
 
 

     P20-AIR MELT                          P20-ESR                          DIN 1.2711-AIR MELT 

Fig. 1 Maximum flank wear (mean from 2 inserts) as function of cutting time; Vc= 100 
m/min; fz = 0.1016 mm/tooth; axial depth = 2.54 mm and radial depth = 12.7 mm. 
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The previous tests were repeated for other cutting speeds (up to 225 m/min) under both dry and 
wet conditions. The obtained results are summarized using the Taylor's law for tool life. Figure 9 
illustrates the behavior of the materials under wet and dry conditions for wide band of cutting speeds. 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
Figure 9 shows that although the three steels have the same hardness they exhibit different tool life 

for each cutting modes. The melting process leads to different microstructures, sizes and distribution 

D 
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Fig. 7 Maximum flank wear progressions (mean from 2 inserts); Vc = 225 m/min; fz = 
0.1016 mm/tooth; aa = 2.54 mm and ar = 12.7 mm. 

Fig. 8 SEM micrographs of tool wear (insert 1) after dry machining of 
a) P20-AIR MELT, b) P20-ESR and c) DIN 1.2711 AIR MELT at 
cutting speed of 225 mm/min. 

Fig. 9 Taylor models of tool life for dry machining and wet machining. 
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of inclusions and carbides which affects differently the wear of the cutting tool [7] [8]. In fact, the 
melting process has a significant effect on the P20 steels. Particularly, when dry milling at lower 
speed (100 m/min) the AIR MELT grade performs better than the ESR one and the inverse is true in 
wet conditions (Figure 9). Although the DIN 1.2711 and the P20 were obtained with the same melting 
process (AIR MELT), they exhibit different wear behavior regarding the cutting modes at lower 
speeds. The difference in tool life could be explained by the higher amount of carbon and nickel 
elements of the DIN 1.2711 AIR MELT steel compared to P20-AIR MELT steel. While the high 
speed milling the three materials exhibit some differences in tool life but without being as significant 
as that. The flaking of the inserts during wet milling was the main cause of shortened tool life, in both 
ranges low and high cutting speeds.  

Conclusion  
The melting process has a significant influence of the tool life in milling process. The latter is 
characterized by an intermittent cut that causes different wear mechanisms. These mechanisms were 
investigated and analyzed during dry and wet milling. The observed mechanisms are different 
between the two milling modes, while the dry milling exhibits a progressive wear, the wet milling 
shows a sudden tool failure. The obtained results proved that it is possible to obtain a higher tool life 
when machining mould steels under dry conditions, if the right cutting speeds are selected. 
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