
MASSIVELY PARALLEL RATE-CONSTRAINED MOTION ESTIMATION USING MULTIPLE
TEMPORAL PREDICTORS IN HEVC

Esmaeil Hojati, Jean-François Franche, Stéphane Coulombe, Carlos Vázquez,
École de technologie supérieure, Montréal, Canada

esmaeil.hojati-najafabadi.1@ens.etsmtl.ca, jean-françois.franche.1@etsmtl.ca,
 stephane.coulombe@etsmtl.ca, carlos.vazquez@etsmtl.ca

ABSTRACT

Rate-constrained motion estimation (RCME) is considered
to be the most time-consuming process of H.265/HEVC
encoding. Massively parallel architectures, such as graphics
processing units (GPUs), used in combination with a multi-
core central processing unit (CPU), provide a promising
computing platform to achieve fast encoding. However, the
inherent dependencies in the process for deriving motion
vector predictors (MVPs) prevent the parallelization of
prediction units (PUs) processing. In this paper, we present
a framework for performing a two-stage parallel RCME, in
which the RCME of all the PUs of a frame can be calculated
in parallel. A novel method is introduced to overcome the
dependencies inherent to the derivation of MVPs. Multiple
temporal predictors (MTPs) within the two-stage parallel
RCME framework provide fine-grained parallelism
encoding without significant BD-Rate penalty, compared to
serial encoding. Experimental results show that our
proposed approach achieves a BD-Rate improvement of
over 1% as compared to state-of-the-art parallel methods
providing similar time reductions.

Index Terms— HEVC, GPU, rate-constrained motion
estimation, massively parallel architecture, motion vector
predictor

1. INTRODUCTION

The latest hybrid video compression standard,
H.265/HEVC, was developed by the Joint Collaborative
Team on Video Coding (JCT-VC) established by ISO/IEC
MPEG and ITU-T VCEG [1]. Although HEVC doubles the
compression ratio of H.264/AVC at the same video quality,
its computational complexity is considerably higher [2].
Most of its coding complexity is due to rate-constrained
motion estimation (RCME) [3][4]. During the last few
years, highly parallel processing devices, such as graphics
processing units (GPUs) or many-core central processing
units (CPUs), have been developed and utilized to accelerate
such complex tasks. The number of cores has also increased
significantly. For instance, an NVIDIA K40 GPU has 2880

cores. However, to exploit the high processing capacity of
such hardware, an algorithm must exhibit a high degree of
parallelization. This raises the question whether HEVC
encoding can be scaled to such a large number of cores.
High-level parallelization tools in HEVC, such as wavefront
parallel processing (WPP) and tiles, allow several Coding
Tree Units (CTUs) to be coded in parallel. For example, the
maximum number of concurrent processes is equal to the
number of CTU rows when WPP is used to encode one
frame. This number increases significantly when a variant of
WPP, called overlapped wavefront (OWF), is used to
encode several frames simultaneously, as proposed by C.
Chi et al. [5]. At the cost of a lower coding efficiency, the
degree of parallelism can be increased by using tiles in
addition to WPP/OWF [6]. Hence, the parallel encoding of
CTUs is usually sufficient to maintain a multi-core CPU
fully occupied most of the time, especially for high
resolutions. However, this cannot provide enough
parallelization for a many-core CPU or a heterogeneous
architecture consisting of CPU and GPU.

In order to increase the degree of parallelization, many
methods process RCME in parallel on several prediction
units (PUs). The main challenge with these methods is
determining the best motion vector for a PU without
knowing its MVPs. Most of them estimate these MVPs by
using MVs from already encoded CTUs. Yu et al. [7] and
Yan et al. [8] proposed methods estimating the MVPs from
neighboring CTUs using spatial information. These methods
permit the parallel processing of all the prediction units
(PUs) within a CTU. However, to provide parallel RCME
for all the CTUs in a frame, the spatial MVP dependency
must be removed completely. Subsequently, Chen et al.
proposed an algorithm to perform parallel motion estimation
(ME) on heterogeneous architectures for a whole frame [9].
This algorithm calculates the motion vectors of entire frame
blocks in parallel. However, the MVP is ignored, resulting
in poor rate-distortion (RD) performance. An improvement
on this idea uses a temporally predicted motion vector.
Shahid et al. proposed a method that uses an already
available motion vector from a previous frame [10]. Gao et
al. proposed a similar method using the collocated motion
vectors of the previous frame and a method derived from it

Accepted in the 2017 IEEE International Conference on Multimedia and Expo (ICME 2017), 2017
Hong Kong, China, 10-14 July 2017 https://doi.org/10.1109/ICME.2017.8019449

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

that extrapolates the motion vectors into the encoding frame
[11]. Although these methods achieve fine-grained
parallelism suitable for a GPU, the prediction of MVPs can
induce extra overhead for the CPU, without significantly
improving the RD performance.

In another type of parallel RCME implementation,
Radicke et al. [12] and Jiang et al. [13] used the GPU as pre-
processor by calculating the sum of absolute differences
(SADs) for the whole search region, and then transferred the
results back to the CPU. Compared to [9], their method
achieves better RD performance because it preserves MVP
dependencies. However, due to the high bandwidth usage
when transferring an excessive amount of data, the time
reduction is smaller than with other methods.

Considering the above-mentioned methods, it can be
observed that, on the one hand, transferring the distortion
values (SADs) for the whole search region back to the CPU
requires very high bandwidth, leading to a reduced speedup.
On the other hand, methods that attempt to predict the
MVPs sacrifice RD performance because the MVPs are
unknown, and mispredicting them can significantly reduce
the RD performance.

In this paper, we propose a novel RCME method using
multiple predictors. The method, targeted at GPU/CPU
heterogeneous architectures, performs RCME in two stages,
and uses multiple temporal motion vector predictors. It
provides a high degree of parallelization, which is well-
suited for massively parallel architectures, while the RD
performance is significantly improved, as compared to
previous state-of-the-art methods, and with similar time
reduction. Moreover, our approach can be combined with
high-level parallel tools such as WPP, tiles and slices to
reach a higher degree of parallelization and speed.

The paper is organized as follows. Section 2 presents
the RCME process in HEVC and its dependencies. The
parallel encoding framework for the GPU/CPU
heterogeneous architecture under consideration is presented
in section 3. Section 4 provides the experimental results.
Finally, Section 5 concludes this paper.

2. RATE-CONSTRAINED MOTION ESTIMATION IN
HEVC

HEVC uses a quadtree structure called CTU to partition
each frame. This structure consists of blocks and units
having a maximum size of 64×64 pixels. A block includes a
rectangular area of picture samples with related syntax
information. A CTU can be recursively divided into units
called Coding Units (CUs). The information associated with
the prediction process of a CU is stored in the PUs.
Depending on encoding configuration and encoder decision,
each PU mode is selected from a set of modes. Partitioning
and selection of best modes are done using the rate
distortion optimization (RDO) process.

RCME is a process which consists in estimating the
best temporal prediction parameters based jointly on the rate

and distortion for each PU. The SAD is used as a distortion
measure (D) for integer precision motion vectors, while the
sum of absolute transformed differences (SATD) is used for
fractional motion vectors. Moreover, the rate cost is a
function of the motion vector difference with the MVP. The
prediction parameters that result in the minimum cost are
obtained as follows:

	P�� 	= (��∗,���∗)
	= arg	min�����

∀��∈��������,

���∈{����,����}

{D(��) + λ · R(��� −��)} (1)

where the two derived motion vector predictor candidates
are denoted by ����	and ���� . These predictors are
selected from neighboring PUs using the MVP derivation
process determined by the HEVC standard. The constant λ
is a Lagrange multiplier. �������� is the search region
composed of the set of integer motion vector coordinates
over which the cost minimization process is performed. For
the full-search algorithm, �������� covers a square area
determined by a search range (SR) variable as:

�������� = {(�, �)},			|�| ≤ ��	, |�| ≤ �� (2)

Because of the interpolation required by fractional pel
motion estimation, performing it for the whole search range
would impose a huge amount of calculations. Therefore, to
overcome this problem, first, RCME is performed for the
integer motion vector, and then the fractional motion vector
is determined around the best integer motion vector.
Consequently, Equation 1 can be calculated by integer
motion estimation, followed by fractional motion
estimation, using the following equations:

P��� = (���∗,���∗)
= arg	min�����

���∈��������,

���∈{����,����}

{SAD(���) + λ · R(��� − ���)} (3)

P��� = ���∗
= arg	min�����

∀���∈{(�����,�����)}	,

�,�	∈�0,±
1
4,±

1
2,±

3
4�

{SATD(���) + λ · R(���∗ − ���)}(4)

where ���∗ is the optimal integer motion vector, ���∗ is
the optimal motion vector predictor, and ���∗ is the
optimal fractional motion vector. Note that in many HEVC
implementations, this step is performed by successively
considering half-pel, and then quarter-pel precision, and not
all fractional positions are tested. From Equation 4, it can be
observed that to calculate the RCME of PUs in parallel, the
only unknown parameter is ��� because it is derived from
neighbors. As a result, the MVP is the main dependency in a
framework for a parallel RCME process. In this paper, we
assume a video encoder that processes one frame at a time.

However, the proposed method can easily be extended to a
case such as OWF, where several frames are processed in
parallel by only processing CTUs once their search region
refers to an already processed reference region (from a
reference frame).

3. PROPOSED MULTI-PREDICTOR RCME
METHOD

In this section, we propose an efficient parallel framework
for HEVC consisting of a novel multi-predictor RCME
(MP-RCME) using multiple temporal predictors (MTPs).
The method permits a very high degree of parallelism in
GPU/CPU heterogeneous architectures.

3.1. Multi-predictor rate-constrained motion estimation

 As can be seen in Section 2, the derivation of the MVP
from neighboring PUs prevents a high degree of parallelism.
On the other hand, using an improper MVP in the RCME
process will produce an incorrect rate cost that will in turn
lead to incorrect optimal motion vector (MV) selection. To
achieve a high degree of parallelism while preserving a high
coding efficiency, we propose a method that evaluates the
RCME of Equation 1 on a list of probable MVPs composed
of MTPs. Compared to a spatial predictor, the MTPs
eliminate dependencies between all the CTUs composing
the current frame. Hence, all PUs of this frame can be
processed in parallel. Moreover, the RD performance loss is
limited by using an appropriate list of MVPs, instead of a
single predictor. This proposed method is called multi-

predictor RCME (MP-RCME), and is depicted in Figure 1.
Using this approach allows us to develop a highly parallel
RCME framework. We divide the RDO mode decision
procedure into two stages: 1) GPU-RCME, and 2) CPU-
RDO. In the first stage, we propose to perform the RCME
using multiple predictors (MPs) to remove the dependencies
associated with this operation. This permits the parallel
RCME processing of all PUs/CUs/CTUs of a frame. The
results of this stage will be used in the second stage
performed by the CPU. In the second stage, the actual MVP
is available, and, using the prior GPU calculated results, the
best decision is made.

 Furthermore, the frame encoding is executed by two
parallel threads on the CPU, one for the RDO stage
processing, and the other for offloading the workload to the
GPU. Using two separate threads provides asynchronous
CPU and GPU execution without stalls. We perform an MP-
RCME for all PUs in the GPU, and the CPU performs the
RDO process. Furthermore, we use a First In, First Out
(FIFO) queue implemented as a circular array of buffers to
communicate with the GPU in order to eliminate any
possible processing time variations occurring in the GPU.

 In the first step of offloading, reference images,
original image and MTP list are prepared and transferred to
the GPU for RCME. The final corresponding results of each
PU are the optimal MV and corresponding distortion (SAD),
for each considered MVP in the list. To avoid dependencies,

Launch
GPU
for

CTU1

Launch
GPU
for

CTU2

 CTU1
Parallel

MP-
RCME

 CTU2
Parallel

MP-
RCME

 CTU1
PUSH

to
FIFO

 CTU2
PUSH

to
FIFO

… ...
(SAD,MV)

CTU2
(SAD,MV)

CTU1
FIFO
Buffer

. . .

. . .

RDO of CTU1 RDO of CTU2 RDO of CTU3

Offloading
thread

RDO
thread

CPU

GPU

Launch
GPU
for

CTU3
. . .

. . .

Fig. 1. Multi-predictor RCME architecture

Frame Encoding
Start

Transfer Reference
Pictures to GPU

More CTUs
exist?

Wait for next
frame

FIFO buffer
has space?

Wait for CPU-RDO
to use calculated

data

Derive and Transfer
Multiple-Temporal

Predictors for CTUi and
run the GPU kernel

Store (SAD,MV)
pairs into FIFO

No

Yes

No

Yes

Fig. 2. Offloading thread flowchart

the MVP list contains MTPs obtained from past frames, as
presented in Section 3.2. The execution flow of RCME
offloading to GPU is depicted in Figure 2.

 Next, in the proposed MP-RCME method, Equation 1
is modified as follows:

��� = arg	min

��∈��������	

{D(��) + λ · R(���� − ��)}

P��(����) = (D(���),���)

(5)

where ���� is the ���	candidate from the MVP candidate
list:

���� ∈ {����, … ,����}

(6)

where N is the number of probable candidates.
The resulting parameters from Equation 5 are the best

rate-constrained motion vector and the corresponding
distortion when RCME is performed for ���� .

In our proposed framework, we perform integer ME for
the candidate list in order to reduce the complexity. The
fractional pel refinement will be performed in the CPU,
when the actual MVP is available. The best pair in terms of
RD is determined in the CPU by the following formula:

(��∗,���∗) =
arg	min

���,	����	�∈�…�,
���∈{����,����}	

{D(���) + λ · R(��� −���)}

(7)

Equation 7 shows that after the actual MVP is
determined, the best-assumed candidate, and consequently
the best integer motion vector, are determined with
significantly fewer computations. Furthermore, the
fractional refinement is performed only for the best integer
motion vector, and compared to conventional ME, would
not increase the complexity. The RCME process in the CPU
is depicted in Algorithm 1.

 Moreover, the full-search RCME will be executed
efficiently on the GPU because of its simple data structures

and equal execution paths. The motion estimation is
performed by distortion calculation (SAD) of 4x4 blocks.
Similarly to [9], the SAD of bigger blocks is generated by
the summation of smaller SAD blocks. For each PU and
each motion vector predictor, the best motion vector and
SAD will be determined according to Equation 5.

 3.2. Multiple temporal predictors

In HEVC, the MVPs are derived from neighboring and
collocated blocks. As a result, using a function of the MVs
in the previous frames as the MVP for the current frame can
improve the RD performance to some extent [10][11].
However, in some cases, it can reduce quality. For instance,
predicting the MVP using the average of MVs can result in
a zero MV, while the derivation of the actual MVP using the
HEVC standard is more likely to be one of the motion
vectors, but not the zero MV. The same analogy is applied
in H.264, showing that using an actual motion vector
(median motion vector predictor), will result in might be
more efficient [14]. Consequently, using the most probable
MVs as predicted MVPs will result in less misprediction.

The proposed MP-RCME allows the use of multiple
predictors, and we propose using multiple temporal
predictors to achieve better RD performance. The MTP list
consists of the set of MVs that are the exact MVs of the
collocated CTU in the past frame, defined as:

���� = ����
��� = {����, … ,����}, � = 16

(8)

where	���� is a candidate MVP for the current block, and is
equal to the ith motion vector in the collocated CTU in the
previous frame.

 In HEVC, regardless of the CTU structure, the encoder
must maintain a temporal MV field of the frame. To reduce
the amount of memory required, MVs are stored in a grid
with each cell covering a region of 16x16 pixels [3]. For a
CTU of size 64x64, there are 16 temporal MVs, which we
use as MTPs. Using the proposed MTP method, there is no
overhead for the derivation process since the MVs of the
previous frame are already stored. In addition, all of the
possible predictors are taken into account, and therefore, any
RD performance loss is reduced.

4. PERFORMANCE EVALUATION

To validate the proposed method, we implemented our

method in the HEVC Test Model (HM 15.0) [15] by
replacing the RCME module with our own implementation,
leaving all the rest of the encoder intact. Furthermore, Open
Computing Language (OpenCL) [16] was used as the
parallel programing framework in order to implement GPU
MP-RCME parallelization, and thereby take advantage of its
compatibility with different hardware.

Algorithm 1. PU motion information selection in RDO thread
1: for each PU
2: BestCost = infinity
3: for each ��� = {����,����}
4: for 1 ≤ i ≤ N do
5: Cost=D[mv[i]]+	λ*	R(��� −��[�])
6: if (Cost < BestCost) then
7: BestCost = Cost
8: BestIndex = i
9: BestMvp=mvp
10: end if
11: end for
12: end for
13: BestIntegerMV=mv[BestIndex]
14: fmv=FractionalRefinement(BestIntegerMV, BestMvp)
15: RCME_prediction(PU)= [fmv, BestMvp]
16: end for

In addition, the results were obtained by encoding
standard video sequences from the common HM test
conditions [17]. As well, we used quantization parameters
(QPs) of 22, 27, 32, and 37. To measure RD performance,
the Bjøntegaard delta rate (BD-Rate) [18] was used. This
metric is an extensively used RD performance measure of
the encoder with respect to an anchor (the HM), considering
both rate and distortion. Positive BD-Rate values imply a
decrease in compression performance with respect to the
anchor (the HM), and as a result, a decrease in the BD-Rate
shows an improvement in the RD performance of the
algorithm.

The execution speed was measured using the time
reduction (TR) metric. TR represents the average encoding
time savings provided by an algorithm as compared to the
HM reference encoder, and is calculated as follows:

�� =
��� − ���������

���
× 100 (9)

We compared our results with two highly parallel state-

of-the-art methods have the same degree of parallelization
as our method. The first method was one using a fixed MVP
with a value of (0,0) [19][9]. We re-implemented their
method to ensure that the differences between the
configuration and the hardware would not affect our
comparisons.

 The second method is involved an MVP derivation by
averaging four collocated MVs [20]. However, their method
used a maximum CTU size of 32x32. For a fair comparison,
we implemented their method, but using a maximum CTU
size of 64x64, which resulted in a better RD performance
compared to using a 32x32 size. All the methods used the
“Low-delay P” configuration, with the same encoding
parameters. The hardware used consisted of an Intel(R)

Xeon(R) CPU E5-2670 running at 2.60GHz, and fitted with
an NVIDIA Tesla K20 GPU.

 In Table 1, the performances of these methods are
compared. It shows that our algorithm achieves a 1.5% and
1% lower BD-Rate as compared to zero MVP and average
collocated methods, respectively. In addition, the time
reduction is very similar among all the methods. In Figure 3,
we present the results as a function of video resolution. The
resolution of the encoded video has no impact on the
performance of our method, and for all the video classes,
our algorithm provides significant BD-Rate improvements.
Compared to [12], which transfers SAD values back to the
CPU, our method reduces the BD-Rate by 0.8% and reduces
the TR by 20%.

 Table 1. Rate distortion and time reduction comparison between proposed method and prior art methods

 Video
Zero [19][9] Average Collocated [20] Proposed

BD-Rate (%) TR (%) BD-Rate (%) TR (%) BD-Rate (%) TR (%)

BQSquare (416×240) 1.54 70.3 1.23 71.4 0.298 69.6

BasketballPass (416×240) 1.77 70.7 1.23 72.1 0.362 70.4

BlowingBubbles (416×240) 1.61 73.8 1.35 68.7 0.386 66.5

RaceHorses (416×240) 2.37 70.2 1.81 68.2 0.745 68.6

BQMall (832×480) 1.74 72 1.49 72.1 0.189 70.2

BasketballDrill (832×480) 1.92 72.1 1.53 71.2 0.504 70.4

RaceHorses (832×480) 2.72 71.3 1.99 71.4 1.13 69.7

FourPeople (1280×720) 1.91 72.7 1.41 73.2 0.529 71.3

Johnny (1280×720) 1.59 72.7 1.38 72.2 0.196 71.5

Cactus (1920×1080) 2.36 72.9 1.71 72.8 0.542 70.9

Kimono (1920×1080) 1.99 72.1 1.54 72.1 0.425 70.8

ParkScene (1920×1080) 2.38 73.1 1.7 73 0.489 71

Peopleonstreet (2560×1600) 2.68 73.8 2.23 74.4 0.641 72.4

Average 2.04 72.13 1.58 71.75 0.49 70.25

Figure 3: BD-Rate Comparison for different video classes

5. CONCLUSION

In this paper, we presented a multi-predictor RCME
framework based on temporal motion vectors. The method
provides the high degree of parallelization needed to
efficiently exploit massively parallel architectures. It
achieves a 70% time reduction with respect to HM, with
negligible RD performance reduction. It offers improved
RD performance as compared to previous highly parallel
methods estimating the motion vector predictor in RCME.
Lastly, it can be combined with high-level parallel tools
such as WPP and tiles to further increase the speedup.

ACKNOWLEDGEMENT

This work was funded by Vantrix Corporation and by the
Natural Sciences and Engineering Research Council of
Canada under the Collaborative Research and Development
Program (NSERC-CRD 428942-11). Computations were
made on the “Guillimin” supercomputer at École de
technologie supérieure, which is managed by Calcul Québec
and Compute Canada. The operation of this supercomputer
is funded by the Canada Foundation for Innovation (CFI),
the ministère de l'Économie, de la science et de l'innovation
du Québec (MESI) and the Fonds de recherche du Québec-
Nature et technologies (FRQ-NT).

6. REFERENCES

[1] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, Y.
K. Wang, and T. Wiegand, “High Efficiency Video
Coding (HEVC) text specification draft 10,”
document JCTVC-L1003, ITU-T/ISO/IEC Joint
Collaborative Team on Video Coding (JCT-VC),
Jan. 2013.

[2] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O.
Hadar, “Performance comparison of H.265/MPEG-
HEVC, VP9, and H.264/MPEG-AVC encoders,”
2013 Picture Coding Symposium (PCS). IEEE, pp.
394–397, 2013.

[3] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1649–1668, 2012.

[4] F. Bossen, B. Bross, S. Karsten, and D. Flynn,
“HEVC Complexity and Implementation Analysis,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1685–1696, 2013.

[5] C. C. Chi et al., “Parallel Scalability and Efficiency
of HEVC Parallelization Approaches,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp.
1827–1838, 2012.

[6] K. Misra, A. Segall, M. Horowitz, S. Xu, A.
Fuldseth, and M. Zhou, “An Overview of Tiles in
HEVC,” IEEE J. Sel. Top. Signal Process., vol. 7,
no. 6, pp. 969–977, Dec. 2013.

[7] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP

candidate list construction for HEVC,” Vis.
Commun. Image Process., 2012.

[8] C. Yan et al., “Efficient Parallel Framework for
HEVC Motion Estimation on Many-Core
Processors,” IEEE Trans. Circuits Syst. Video
Technol., vol. 24, no. 12, pp. 2077–2089, 2014.

[9] W. Chen and H. Hang, “H.264/AVC motion
estimation implementation on compute unified
device architecture (CUDA),” IEEE Int. Conf.
Multimed. Expo, pp. 697–700, 2008.

[10] M. U. Shahid, A. Ahmed, and E. Magli, “Parallel
rate-distortion optimised fast motion estimation
algorithm for H.264/AVC using GPU,” 2013
Picture Coding Symposium (PCS). IEEE, pp. 221–
224, 2013.

[11] Y. Gao and J. Zhou, “Motion vector extrapolation
for parallel motion estimation on GPU,” Multimed.
Tools Appl., vol. 68, no. 3, pp. 701–715, Mar. 2014.

[12] S. Radicke, J. Hahn, C. Grecos, and Q. Wang, “A
highly-parallel approach on motion estimation for
high efficiency video coding (HEVC),” IEEE Int.
Conf. Consum. Electron., pp. 187–188, Jan. 2014.

[13] X. Jiang, T. Song, T. Shimamoto, and L. Wang,
“High efficiency video coding (HEVC) motion
estimation parallel algorithms on GPU,” IEEE Int.
Conf. Consum. Electron. - Taiwan, pp. 115–116,
May 2014.

[14] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast integer-
pel and fractional-pel motion estimation for H.
264/AVC,” J. Vis. Commun. Image Represent., vol.
17, no. 2, pp. 264–290, 2006.

[15] “Joint Collaborative Team on Video Coding
Reference Software, ver. HM 15.0.” [Online].
Available: http://hevc.hhi.fraunhofer.de/.

[16] “The open standard for parallel programming of
heterogeneous systems,” Khronos Group. [Online].
Available: https://www.khronos.org/opencl/.

[17] F. Bossen, “JCTVC-L1100: Common HM test
conditions and software reference configurations.
JCT-VC Document Management System (April
2013).” 2013.

[18] G. Bjøntegaard, “Improvements of the BD-PSNR
model,” ITU-T SG16/Q6 Video Coding Experts
Group (VCEG), Document VCEG-AI11, Berlin,
Germany, Jul. 2008.

[19] S. Momcilovic and L. Sousa, “Development and
evaluation of scalable video motion estimators on
GPU,” Signal Processing Systems, 2009. SiPS 2009.
IEEE Workshop on. IEEE, pp. 291–296, 2009.

[20] J. Ma, F. Luo, S. Wang, and S. Ma, “Flexible CTU-
level parallel motion estimation by CPU and GPU
pipeline for HEVC,” Visual Communications and
Image Processing Conference, 2014 IEEE. IEEE,
pp. 282–285, 2014.

