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ABSTRACT 

Rate-constrained motion estimation (RCME) is considered 
to be the most time-consuming process of H.265/HEVC 
encoding. Massively parallel architectures, such as graphics 
processing units (GPUs), used in combination with a multi-
core central processing unit (CPU), provide a promising 
computing platform to achieve fast encoding. However, the 
inherent dependencies in the process for deriving motion 
vector predictors (MVPs) prevent the parallelization of 
prediction units (PUs) processing. In this paper, we present 
a framework for performing a two-stage parallel RCME, in 
which the RCME of all the PUs of a frame can be calculated 
in parallel. A novel method is introduced to overcome the 
dependencies inherent to the derivation of MVPs. Multiple 
temporal predictors (MTPs) within the two-stage parallel 
RCME framework provide fine-grained parallelism 
encoding without significant BD-Rate penalty, compared to 
serial encoding. Experimental results show that our 
proposed approach achieves a BD-Rate improvement of 
over 1% as compared to state-of-the-art parallel methods 
providing similar time reductions. 

Index Terms— HEVC, GPU, rate-constrained motion 
estimation, massively parallel architecture, motion vector 
predictor 

1. INTRODUCTION

The latest hybrid video compression standard, 
H.265/HEVC, was developed by the Joint Collaborative
Team on Video Coding (JCT-VC) established by ISO/IEC
MPEG and ITU-T VCEG [1]. Although HEVC doubles the
compression ratio of H.264/AVC at the same video quality,
its computational complexity is considerably higher [2].
Most of its coding complexity is due to rate-constrained
motion estimation (RCME) [3][4]. During the last few
years, highly parallel processing devices, such as graphics
processing units (GPUs) or many-core central processing
units (CPUs), have been developed and utilized to accelerate
such complex tasks. The number of cores has also increased
significantly. For instance, an NVIDIA K40 GPU has 2880

cores. However, to exploit the high processing capacity of 
such hardware, an algorithm must exhibit a high degree of 
parallelization. This raises the question whether HEVC 
encoding can be scaled to such a large number of cores.  
High-level parallelization tools in HEVC, such as wavefront 
parallel processing (WPP) and tiles, allow several Coding 
Tree Units (CTUs) to be coded in parallel. For example, the 
maximum number of concurrent processes is equal to the 
number of  CTU rows when WPP is used to encode one 
frame. This number increases significantly when a variant of 
WPP, called overlapped wavefront (OWF), is used to 
encode several frames simultaneously, as proposed by C. 
Chi et al. [5]. At the cost of a lower coding efficiency, the 
degree of parallelism can be increased by using tiles in 
addition to WPP/OWF [6]. Hence, the parallel encoding of 
CTUs is usually sufficient to maintain a multi-core CPU 
fully occupied most of the time, especially for high 
resolutions. However, this cannot provide enough 
parallelization for a many-core CPU or a heterogeneous 
architecture consisting of CPU and GPU. 

In order to increase the degree of parallelization, many 
methods process RCME in parallel on several prediction 
units (PUs). The main challenge with these methods is 
determining the best motion vector for a PU without 
knowing its MVPs. Most of them estimate these MVPs by 
using MVs from already encoded CTUs. Yu et al. [7] and 
Yan et al. [8] proposed methods estimating the MVPs from 
neighboring CTUs using spatial information. These methods 
permit the parallel processing of all the prediction units 
(PUs) within a CTU. However, to provide parallel RCME 
for all the CTUs in a frame, the spatial MVP dependency 
must be removed completely. Subsequently, Chen et al. 
proposed an algorithm to perform parallel motion estimation 
(ME) on heterogeneous architectures for a whole frame [9]. 
This algorithm calculates the motion vectors of entire frame 
blocks in parallel. However, the MVP is ignored, resulting 
in poor rate-distortion (RD) performance. An improvement 
on this idea uses a temporally predicted motion vector. 
Shahid et al. proposed a method that uses an already 
available motion vector from a previous frame [10]. Gao et 
al. proposed a similar method using the collocated motion 
vectors of the previous frame and a method derived from it 

Accepted in the 2017 IEEE International Conference on Multimedia and Expo (ICME 2017), 2017
Hong Kong, China, 10-14 July 2017 https://doi.org/10.1109/ICME.2017.8019449

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.



that extrapolates the motion vectors into the encoding frame 
[11]. Although these methods achieve fine-grained 
parallelism  suitable for a GPU, the prediction of MVPs can 
induce extra overhead for the CPU, without significantly 
improving the RD performance.  

In another type of parallel RCME implementation, 
Radicke et al. [12] and Jiang et al. [13] used the GPU as pre-
processor by calculating the sum of absolute differences 
(SADs) for the whole search region, and then transferred the 
results back to the CPU. Compared to [9], their method 
achieves better RD performance because it preserves MVP 
dependencies. However, due to the high bandwidth usage 
when transferring an excessive amount of data, the time 
reduction is smaller than with other methods. 

Considering the above-mentioned methods, it can be 
observed that, on the one hand, transferring the distortion 
values (SADs) for the whole search region back to the CPU 
requires very high bandwidth, leading to a reduced speedup. 
On the other hand, methods that attempt to predict the 
MVPs sacrifice RD performance because the MVPs are 
unknown, and mispredicting them can significantly reduce 
the RD performance.  

In this paper, we propose a novel RCME method using 
multiple predictors. The method, targeted at GPU/CPU 
heterogeneous architectures, performs RCME in two stages, 
and uses multiple temporal motion vector predictors. It 
provides a high degree of parallelization, which is well-
suited for massively parallel architectures, while the RD 
performance is significantly improved, as compared to 
previous state-of-the-art methods, and with similar time 
reduction. Moreover, our approach can be combined with 
high-level parallel tools such as WPP, tiles and slices to 
reach a higher degree of parallelization and speed. 

The paper is organized as follows. Section 2 presents 
the RCME process in HEVC and its dependencies. The 
parallel encoding framework for the GPU/CPU 
heterogeneous architecture under consideration is presented 
in section 3. Section 4 provides the experimental results. 
Finally, Section 5 concludes this paper. 

2. RATE-CONSTRAINED MOTION ESTIMATION IN
HEVC 

HEVC uses a quadtree structure called CTU to partition 
each frame. This structure consists of blocks and units 
having a maximum size of 64×64 pixels. A block includes a 
rectangular area of picture samples with related syntax 
information. A CTU can be recursively divided into units 
called Coding Units (CUs). The information associated with 
the prediction process of a CU is stored in the PUs. 
Depending on encoding configuration and encoder decision, 
each PU mode is selected from a set of modes. Partitioning 
and selection of best modes are done using the rate 
distortion optimization (RDO) process. 

RCME is a process which consists in estimating the 
best temporal prediction parameters based jointly on the rate 

and distortion for each PU. The SAD is used as a distortion 
measure (D) for integer precision motion vectors, while the 
sum of absolute transformed differences (SATD) is used for 
fractional motion vectors. Moreover, the rate cost is a 
function of the motion vector difference with the MVP. The 
prediction parameters that result in the minimum cost are 
obtained as follows:  

	P�� 	= (��∗,���∗) 
	= arg	min�����

∀��∈��������,

���∈{����,����}

{D(��) + λ · R(��� −��)} (1)

where the two derived motion vector predictor candidates 
are denoted by ����	and ���� . These predictors are 
selected from neighboring PUs using the MVP derivation 
process determined by the HEVC standard. The constant λ 
is a Lagrange multiplier. �������� is the search region 
composed of the set of integer motion vector coordinates 
over which the cost minimization process is performed. For 
the full-search algorithm, �������� covers a square area 
determined by a search range (SR) variable as: 

�������� = {(�, �)},			|�| ≤ ��	, |�| ≤ �� (2) 

Because of the interpolation required by fractional pel 
motion estimation, performing it for the whole search range 
would impose a huge amount of calculations. Therefore, to 
overcome this problem, first, RCME is performed for the 
integer motion vector, and then the fractional motion vector 
is determined around the best integer motion vector. 
Consequently, Equation 1 can be calculated by integer 
motion estimation, followed by fractional motion 
estimation, using the following equations: 

P��� = (���∗,���∗) 
= arg	min�����

���∈��������,

���∈{����,����}

{SAD(���) + λ · R(��� − ���)} (3) 

P��� = ���∗ 
= arg	min�����

∀���∈{(�����,�����)}	,

�,�	∈�0,±
1
4,±

1
2,±

3
4�

{SATD(���) + λ · R(���∗ − ���)}(4)

where ���∗ is the optimal integer motion vector, ���∗ is 
the optimal motion vector predictor, and ���∗ is the 
optimal fractional motion vector. Note that in many HEVC 
implementations, this step is performed by successively 
considering half-pel, and then quarter-pel precision, and not 
all fractional positions are tested. From Equation 4, it can be 
observed that to calculate the RCME of PUs in parallel, the 
only unknown parameter is ��� because it is derived from 
neighbors. As a result, the MVP is the main dependency in a 
framework for a parallel RCME process. In this paper, we 
assume  a video encoder that processes one frame at a time. 



However, the proposed method can easily be extended to a 
case such as OWF, where several frames are processed in 
parallel by only processing CTUs once their search region 
refers to an already processed reference region (from a 
reference frame). 
 

3. PROPOSED MULTI-PREDICTOR RCME 
METHOD 

 
In this section, we propose an efficient parallel framework 
for HEVC consisting of a novel multi-predictor RCME 
(MP-RCME) using multiple temporal predictors (MTPs). 
The method permits a very high degree of parallelism in 
GPU/CPU heterogeneous architectures.  
 
3.1. Multi-predictor rate-constrained motion estimation  
 
 As can be seen in Section 2, the derivation of the MVP 
from neighboring PUs prevents a high degree of parallelism. 
On the other hand, using an improper MVP in the RCME 
process will produce an incorrect rate cost that will in turn 
lead to incorrect optimal motion vector (MV) selection. To 
achieve a high degree of parallelism while preserving a high 
coding efficiency, we propose a method that evaluates the 
RCME of Equation 1 on a list of probable MVPs composed 
of MTPs. Compared to a spatial predictor, the MTPs 
eliminate dependencies between all the CTUs composing 
the current frame. Hence, all PUs of this frame can be 
processed in parallel. Moreover, the RD performance loss is 
limited by using an appropriate list of MVPs, instead of a 
single predictor. This proposed method is called multi-

predictor RCME (MP-RCME), and is depicted in Figure 1. 
Using this approach allows us to develop a highly parallel 
RCME framework. We divide the RDO mode decision 
procedure into two stages: 1) GPU-RCME, and 2) CPU-
RDO. In the first stage, we propose to perform the RCME 
using multiple predictors (MPs) to remove the dependencies 
associated with this operation. This permits the parallel 
RCME processing of all PUs/CUs/CTUs of a frame. The 
results of this stage will be used in the second stage 
performed by the CPU. In the second stage, the actual MVP 
is available, and, using the prior GPU calculated results, the 
best decision is made.  

 Furthermore, the frame encoding is executed by two 
parallel threads on the CPU, one for the RDO stage 
processing, and the other for offloading the workload to the 
GPU. Using two separate threads provides asynchronous 
CPU and GPU execution without stalls. We perform an MP-
RCME for all PUs in the GPU, and the CPU performs the 
RDO process. Furthermore, we use a First In, First Out 
(FIFO) queue implemented as a circular array of buffers to 
communicate with the GPU in order to eliminate any 
possible processing time variations occurring in the GPU. 

 In the first step of offloading, reference images, 
original image  and MTP list are prepared and transferred to 
the GPU for RCME. The final corresponding results of each 
PU are the optimal MV and corresponding distortion (SAD), 
for each considered MVP in the list. To avoid dependencies, 
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Fig. 1. Multi-predictor RCME architecture 
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Fig. 2. Offloading thread flowchart 

 



the MVP list contains MTPs obtained from past frames, as 
presented in Section 3.2. The execution flow of RCME 
offloading to GPU is depicted in Figure 2. 

 Next, in the proposed MP-RCME method, Equation 1 
is modified as follows: 

 
��� = arg	min

��∈��������	

{D(��) + λ · R(���� − ��)} 

P��(����) = (D(���),���) 

  

 
 

(5) 

where ����  is the ���	candidate from the MVP candidate 
list: 
 

���� ∈ {����, … ,����} 

 
(6) 

where N is the number of probable candidates.  
The resulting parameters from Equation 5 are the best 

rate-constrained motion vector and the corresponding 
distortion when RCME is performed for ���� . 

In our proposed framework, we perform integer ME for 
the candidate list in order to reduce the complexity. The 
fractional pel refinement will be performed in the CPU, 
when the actual MVP is available. The best pair in terms of 
RD is determined in the CPU by the following formula: 

(��∗,���∗) = 
arg	min

���,	����	�∈�…�,
���∈{����,����}	

{D(���) + λ · R(��� −���)} 

 

 
 

(7) 

Equation 7 shows that after the actual MVP is 
determined, the best-assumed candidate, and consequently 
the best integer motion vector, are determined with 
significantly fewer computations. Furthermore, the 
fractional refinement is performed only for the best integer 
motion vector, and compared to conventional ME, would 
not increase the complexity. The RCME process in the CPU 
is depicted in Algorithm 1. 

 Moreover, the full-search RCME will be executed 
efficiently on the GPU because of its simple data structures 

and equal execution paths. The motion estimation is 
performed by distortion calculation (SAD) of 4x4 blocks. 
Similarly to [9], the SAD of bigger blocks is generated by 
the summation of smaller SAD blocks. For each PU and 
each motion vector predictor, the best motion vector and 
SAD will be determined according to Equation 5. 
 
 3.2. Multiple temporal predictors  
 
In HEVC, the MVPs are derived from neighboring and 
collocated blocks. As a result, using a function of the MVs 
in the previous frames as the MVP for the current frame can 
improve the RD performance to some extent [10][11]. 
However, in some cases, it can reduce quality. For instance, 
predicting the MVP using the average of MVs can result in 
a zero MV, while the derivation of the actual MVP using the 
HEVC standard is more likely to be one of the motion 
vectors, but not the zero MV. The same analogy is applied 
in H.264, showing that using an actual motion vector 
(median motion vector predictor), will result in might be 
more efficient [14]. Consequently, using the most probable 
MVs as predicted MVPs will result in less misprediction. 

The proposed MP-RCME allows the use of multiple 
predictors, and we propose using multiple temporal 
predictors to achieve better RD performance. The MTP list 
consists of the set of MVs that are the exact MVs of the 
collocated CTU in the past frame, defined as: 
 

���� = ���� 
��� = {����, … ,����}, � = 16 

 
(8) 

 
where	����  is a candidate MVP for the current block, and is 
equal to the ith motion vector in the collocated CTU in the 
previous frame. 

 In HEVC, regardless of the CTU structure, the encoder 
must maintain a temporal MV field of the frame. To reduce 
the amount of memory required, MVs are stored in a grid 
with each cell covering a region of 16x16 pixels [3]. For a 
CTU of size 64x64, there are 16 temporal MVs, which we 
use as MTPs. Using the proposed MTP method, there is no 
overhead for the derivation process since the MVs of the 
previous frame are already stored. In addition, all of the 
possible predictors are taken into account, and therefore, any 
RD performance loss is reduced. 

 
4. PERFORMANCE EVALUATION 

 
To validate the proposed method, we implemented our 

method in the HEVC Test Model (HM 15.0) [15] by 
replacing the RCME module with our own implementation, 
leaving all the rest of the encoder intact. Furthermore, Open 
Computing Language (OpenCL) [16] was used as the 
parallel programing framework in order to implement GPU 
MP-RCME parallelization, and thereby take advantage of its 
compatibility with different hardware. 

 
Algorithm 1. PU motion information selection in RDO thread 
1:  for each PU 
2:     BestCost = infinity 
3:     for each ��� = {����,����} 
4:         for 1 ≤ i ≤ N do 
5:            Cost=D[mv[i]]+	λ*	R(��� −��[�]) 
6:            if (Cost < BestCost) then 
7:  BestCost = Cost 
8:  BestIndex = i          
9:  BestMvp=mvp 
10:            end if 
11:         end for 
12:     end for 
13:    BestIntegerMV=mv[BestIndex] 
14:    fmv=FractionalRefinement(BestIntegerMV, BestMvp) 
15:    RCME_prediction(PU)= [fmv, BestMvp] 
16: end for 
  



In addition, the results were obtained by encoding 
standard video sequences from the common HM test 
conditions [17]. As well, we used quantization parameters 
(QPs) of 22, 27, 32, and 37. To measure RD performance, 
the Bjøntegaard delta rate (BD-Rate) [18] was used. This 
metric is an extensively used RD performance measure of 
the encoder with respect to an anchor (the HM), considering 
both rate and distortion. Positive BD-Rate values imply a 
decrease in compression performance with respect to the 
anchor (the HM), and as a result, a decrease in the BD-Rate 
shows an improvement in the RD performance of the 
algorithm. 

The execution speed was measured using the time 
reduction (TR) metric. TR represents the average encoding 
time savings provided by an algorithm as compared to the 
HM reference encoder, and is calculated as follows: 

 

�� =
��� − ���������

���
× 100 (9) 

 
We compared our results with two highly parallel state-

of-the-art methods have the same degree of parallelization 
as our method. The first method was one using a fixed MVP 
with a value of (0,0) [19][9]. We re-implemented their 
method to ensure that the differences between the 
configuration and the hardware would not affect our 
comparisons. 

 The second method is involved an MVP derivation by 
averaging four collocated MVs [20]. However, their method 
used a maximum CTU size of 32x32. For a fair comparison, 
we implemented their method, but using a maximum CTU 
size of 64x64, which resulted in a better RD performance 
compared to using a 32x32 size. All the methods used the 
“Low-delay P” configuration, with the same encoding 
parameters. The hardware used consisted of an Intel(R) 

Xeon(R) CPU E5-2670 running at 2.60GHz, and fitted with 
an NVIDIA Tesla K20 GPU. 

 In Table 1, the performances of these methods are 
compared. It shows that our algorithm achieves a 1.5% and 
1% lower BD-Rate as compared to zero MVP and average 
collocated methods, respectively. In addition, the time 
reduction is very similar among all the methods. In Figure 3, 
we present the results as a function of video resolution. The 
resolution of the encoded video has no impact on the 
performance of our method, and for all the video classes, 
our algorithm provides significant BD-Rate improvements.  
Compared to [12], which transfers SAD values back to the 
CPU, our method reduces the BD-Rate by 0.8% and reduces 
the TR by 20%. 
  

 
  

 Table 1. Rate distortion and time reduction comparison between proposed method and prior art methods  

 Video 
Zero [19][9] Average Collocated [20] Proposed  

BD-Rate (%) TR (%) BD-Rate (%) TR (%) BD-Rate (%) TR (%)  

 
BQSquare (416×240) 1.54 70.3 1.23 71.4 0.298 69.6  

 
BasketballPass (416×240) 1.77 70.7 1.23 72.1 0.362 70.4  

 
BlowingBubbles (416×240) 1.61 73.8 1.35 68.7 0.386 66.5  

 
RaceHorses (416×240) 2.37 70.2 1.81 68.2 0.745 68.6  

 
BQMall (832×480) 1.74 72 1.49 72.1 0.189 70.2  

 
BasketballDrill (832×480) 1.92 72.1 1.53 71.2 0.504 70.4  

 
RaceHorses (832×480) 2.72 71.3 1.99 71.4 1.13 69.7  

 
FourPeople (1280×720) 1.91 72.7 1.41 73.2 0.529 71.3  

 
Johnny (1280×720) 1.59 72.7 1.38 72.2 0.196 71.5  

 
Cactus (1920×1080) 2.36 72.9 1.71 72.8 0.542 70.9  

 
Kimono (1920×1080) 1.99 72.1 1.54 72.1 0.425 70.8  

 
ParkScene (1920×1080) 2.38 73.1 1.7 73 0.489 71  

 
Peopleonstreet (2560×1600) 2.68 73.8 2.23 74.4 0.641 72.4  

 
Average 2.04 72.13 1.58 71.75 0.49 70.25  

 
 
 

       

 
Figure 3: BD-Rate Comparison for different video classes 

 
 



5. CONCLUSION 
 
In this paper, we presented a multi-predictor RCME 
framework based on temporal motion vectors. The method 
provides the high degree of parallelization needed to 
efficiently exploit massively parallel architectures. It 
achieves a 70% time reduction with respect to HM, with 
negligible RD performance reduction. It offers improved 
RD performance as compared to previous highly parallel 
methods estimating the motion vector predictor in RCME. 
Lastly, it can be combined with high-level parallel tools 
such as WPP and tiles to further increase the speedup. 
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