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Abstract — The objective of this study is to improve the 
performance of the extremum-seeking control (۳۱܁) 
technique in terms of time and accuracy of convergence 
towards the optimum operating point of a dynamic sys-
tem subject to the effect of external disturbances. More 
precisely, the idea is to reduce the undesirable effect of 
time scale separation in ۳۱܁ on the performance of the 
closed loop system. The method consists in adaptively 
controlling the excitation signal amplitude using a neural 
network (NN) model, which gives a real-time estimate of 
the optimal operating point based on the measurement 
of the external disturbances. Stability of the proposed 
 with adaptive excitation, referred to in the following ۱܁۳
as	۳܉۱܁, is demonstrated. The superiority of ۳܉۱܁ com-
pared to ۳۱܁ in terms of accuracy and time of conver-
gence to the optimum is demonstrated both theoretically 
and experimentally, in the case of the optimization of a 
photovoltaic panel system (PV). 

Index Terms— Extremum-Seeking Control, Neural Net-
works, Optimization, Photovoltaic System. 

I. INTRODUCTION

HE increasing complexity of engineering systems has 
led to numerous optimization challenges.  Indeed, ana-
lytical solutions to nonlinear optimization problems are 

difficult or even impossible to obtain. ESC is a real-time op-
timization approach among others that addresses situations 
where the model and/or the cost function of the system to be 
optimized in its static mode are not available to the designer. 
In this case, the optimization methods are converted into a 
control problem of the estimated gradient to zero. This gra-
dient is estimated by exciting the system from its input with 
an excitation signal and correlating this entry with its effect 
on the output of the system. 
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It requires however the availability of the signals measure-
ments of the input and the output of the system to control. A 
good review of literature on the ESC  can be found in [1-3]. 

For most applications, the dynamics of the system to be 
optimized are nonlinear. In this case, the main difficulty of 
the ESC technique [4] is the requirement of multiple time 
scales between the dynamics of the system, the frequency of 
excitation and the speed of adaptation. The excitation must 
be an order of magnitude slower than the system dynamics 
to separate the effect of excitation from the dynamics of the 
system. Moreover, the adaptation must be slower than the 
excitation in order to distinguish the effect of excitation from 
the adaptation one. Unfortunately, these multiple separations 
of time scales have the effect of slowing down the conver-
gence. In cases where the optimal operating point is moving 
slowly, ESC will perform correctly but if the system is sub-
mitted to frequent external disturbances, the performance 
achieved will be sub-optimal. In [1], the issue of the ESC 
technique convergence time was addressed and the require-
ment of time scale separation was eliminated. A dynamic 
compensation scheme was proposed providing a guarantee 
of stability, a rapid monitoring of changes of the operating 
point, and a measurement noise rejection. The result was 
limited however to optimization problems for systems with 
linear dynamics. Several other approaches were proposed to 
reduce the effect of time scale separation on the speed of 
convergence, but these approaches are based on specific 
conditions such as a priori knowledge of the objective func-
tion structure [5, 6], a linear time-invariant process [7], a 
system belonging to a class of well-defined non-linear sys-
tems [8] or an unknown linear system [9]. However, when 
real applications are considered, ESC must be applied to non-
linear systems with unknown dynamics. 

External disturbances in many systems are measurable. 
Assuming that these disturbance measurements are available 
to the expert, they can be used to improve the performance of 
ESC [4]. Indeed, the modeling of the relation between the op-
timal operating point of the system and the external disturb-
ances allows a real-time estimation of the location of the sys-
tem optimum for each new measurement of the external dis-
turbances. Based on the estimates provided by this model, it 
is then possible to adjust the ESC parameters in real time in 
order to converge more quickly and more precisely towards 
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the desired optimum. The parameters that have a significant 
effect on the convergence speed and accuracy of ESC include 
the initial conditions of the manipulated variable and the am-
plitude of the excitation signal. The sinusoidal signal is gen-
erally chosen as an excitation signal in the	ESC. In [10] a 
proof that the choice of the shape of the excitation signal has 
a direct effect on the convergence rate of ESC is demonstrat-
ed. The study shows that ESC with a rectangular excitation 
signal is twice as fast as a sinusoidal signal and four times 
faster than a triangular signal. In [11] and [4], the authors in-
directly controlled the initial condition at the ESC integrator, 
using anticipative action to improve the speed of conver-
gence. In this paper, we perform an adaptive control of the 
amplitude of the excitation signal. Note that in [12], the exci-
tation signal amplitude was also adapted but only to improve 
the accuracy of ESC in order to converge to a global maxi-
mum instead of a local one. Our objective on the other hand 
is to improve both accuracy and speed of convergence.  In 
this paper, it is assumed that the objective function to be op-
timized is unimodal. Thus, the proposed approach consists in 
using the optimum estimation to control in real time the am-
plitude of the excitation signal in order to precisely and 
quickly follow the desired optimum operating point. The 
proposed model linking the external disturbance to the opti-
mal operating point is based on a multilayer neural network 
structure. The stability of the proposed approach is demon-
strated. A comparative study of ESC schemes with and with-
out adaptive excitation in terms of accuracy and time conver-
gence to the optimal operating point is also provided theoreti-
cally and experimentally in the case of power optimization of 
a photovoltaic panel that is subject to a measurable external 
disturbance represented in this case by radiation of sunlight. 

The paper is organized as follows. After an introduction, 
Section II defines the optimization problem considered 
whereas Section III presents the classical ESC scheme. In 
Section IV the proposed ESCୟ approach is presented and its 
stability is studied in Section V. A theoretical comparative 
analysis between ESC and ESCୟ is performed in Section VI 
whereas an experimental evaluation of both methods is pro-
vided in Section VII. Finally, conclusions of the paper are 
presented in Section VIII. 

II. OPTIMIZATION PROBLEM FORMULATION

Let us consider a dynamic system described by the following 
equation:

ሶݔ ൌ ݂ሺݔ, ,ݑ ݀௠ሻ     (1) 
where	݀௠ ∈ Թ௛ is the measurable disturbances vector, 
ݔ ∈ Թ௡ is the state vector, ݂:Թ௡ ൈ Թ ൈ Թ௛ → Թ௡ is un-
known and ݑ ∈ Թ is the input such that: 

ݑ ൌ ,ݔሺߙ	 ሻߚ (2) 

with α being a smooth control law parameterized by the sca-
lar	ߚ in closed loop.  

The optimization problem consists in maximizing an ob-
jective function ܬ which describes the performance of the sys-
tem in static mode. Thus the optimization problem is de-
scribed mathematically as follows: 

ሻߚሺܬ	ఉݔܽܯ
.ݏ ሶݔ				.ݐ ൌ ݂ሺݔ, ,ߚ ݀௠ሻ ൌ 0	

(3) 

where  ܬ: Թ → Թ is unknown but can be evaluated from 
available measurements. 

III. EXTREMUM SEEKING CONTROL

ESC is a real-time optimization method that solves the 
problem defined in (3) while assuming that the system dy-
namics ݂	and the objective function ܬ are unknown. The 
method consists in exciting the system by periodic signals 
and observing the output behavior of the system in static 
mode in order to estimate and control the gradient of the ob-
jective function to zero. The ESC structure (see Fig. 1) is de-
fined as follows: 

ߚ ൌ መߚ	 ൅  (4) (ݐ߱)݊݅ݏ	ܽ

መሶߚ ൌ ݇ாௌ஼ ො݃ (5) 
ො݃ሶ ൌ െ߱௟ ො݃ ൅ ߱௟ሺܬ െ  ሻ (6)ݐሺ߱	݊݅ݏ	ሻܽߟ
ሶߟ ൌ െ߱௛ߟ ൅ ߱௛(7) ܬ 

where ܽ ∈ ሾܽ௠௜௡	ܽ௠௔௫ሿ represents the amplitude of the exci-
tation signal which is, in most cases, represented by a sinus-
oidal signal, ߱ is the frequency of the excitation 
nal,	ܽ௠௜௡	and ܽ௠௔௫ are small positive constants with 
ܽ௠௔௫ ൌ ߝ ,௠௜௡ܽߝ ∈ Թ	and	ߝ ൐ 1, ߱௛ is the cutoff frequency 
of the high-pass filter used to eliminate the constant part ߟ of 
  is the  cutoff frequency of the low-pass filter used to	௟߱ ,ܬ
obtain the average value of the correlation between ܬ and the 
excitation signal and ݇ாௌ஼ is the integral controller gain used 
to push the estimated gradient ො݃ to zero. 

Fig. 1. Block diagram of ESC scheme. 

A judicious choice of ESC parameters is essential to en-
sure stability and compromise between accuracy and speed 
of convergence to the optimal operating point. Indeed, if the 
system is subject to large and rapid external disturbances, 
these performance criteria will be degraded in the case of op-
timization of non-linear systems with unknown dynamics as 
previously shown in a microbial fuel cell application [4]. Al-
so in [13], for the same system, the effect of the choice of 
݇ாௌ஼	and ܽ on ESC performance in terms of accuracy and 
speed of convergence is shown. Therefore, adapting the ESC 
parameters, as proposed in this paper, is essential to ensure 
stability and converge quickly and accurately to the optimal 
operating point in the presence of external disturbances. 
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IV. PROPOSED APPROACH: ESC୅ 

A. ܥܵܧ௔ structure 

The amplitude of the ESC excitation signal is among the 
control parameters which have the most important effect on 
the precision and  convergence time of the optimization 
method (when the amplitude decreases, the time of conver-
gence towards the optimum increases and the precision in-
creases around the optimum and vice versa). Thus, as in the 
proposed ESCୟ scheme depicted in Fig. 2, if an estimate of 
the optimal operating point position is provided to the ESC 
loop, the excitation signal amplitude may be adaptively con-
trolled, so that the amplitude becomes smaller when the op-
erating point is near the optimum and larger when it is far 
from it. As a result, the ESCୟ loop converges both precisely 
and rapidly to the desired optimal operating point. 

 
Fig. 2 . Block diagram of the proposed ESCୟ.  

Suppose that there exists a function ݌:Թ௛ → Թ providing 
an estimate 	ߚ∗෢  of the real optimum ߚ∗ using the measure-
ment of the external perturbations vector	݀௠: 

෢∗ߚ ൌ  ݀௠ሻ.     (8)	ሺ݌

Taking into account the estimate ߚ∗෢, one can control the 
amplitude of the excitation signal according to the error 
݁	between 	ߚ∗෢  and ߚመ . Hence, the constant amplitude ܽ in the 
classic ESC will be replaced by variable amplitude	ߜ, whose 
expression is described by the following equations: 

൜
ߜ ൌ ܽ௠௔௫	if		|݁| ൐ 	 ݁௠௔௫
ߜ ൌ ܽ௠௜௡	if		|݁| ൏ 	 ݁௠௔௫

     (9) 

with  ݁ ൌ ෢∗ߚ െ መ , ݁௠௔௫ߚ ∈ Թ being the maximum estimation 
error or switching error value prescribed by the expert with  
݁௠௔௫ → 0 if 	ߚ∗෢ →  .∗ߚ
Thus, equations (4), (5) and (6) of the ESC technique scheme 
are respectively replaced by the following equations: 

ߚ ൌ መߚ	 ൅  ሻ     (10)ݐሺ߱݊݅ݏ	ߜ

መሶߚ ൌ ݇ாௌ஼౗ ො݃      (11) 

ො݃ሶ ൌ െ߱௟ ො݃ ൅ ߱௟ሺܬ െ  ሻ,   (12)ݐሺ߱	݊݅ݏ	ߜሻߟ
with ݇ாௌ஼౗is the ESCୟ  gain. 

B. Modeling	 the	 function	 	݌ using	 a	 Neural	 Network	
model		

Most of the time, as long as real systems are considered, 
the relation between the optimal operating point ߚ∗	and the 

external perturbation ݀௠ is highly non-linear and very diffi-
cult to identify with the laws of physics. In this situation, the 
Neural Networks modeling method is chosen since it requires 
only a limited number of input / output data in order to give a 
good model of the relation between ݀௠	and 	ߚ∗. Neural Net-
works approach is very efficient and powerful in the model-
ing of complex systems [14-16] whereas the use of an empir-
ical model having a fixed structure suffers from a lack of 
flexibility especially in the case where there are several 
measurable disturbances. Thus, the identification of the 
model parameters becomes difficult and the optimum esti-
mate becomes imprecise. In [4],a comparative study has 
been carried out between two anticipative ESC schemes us-
ing respectively a neural network model and a static linear 
model in the anticipation loop. The performance of the two 
approaches was compared through the optimization of the 
power delivered by a microbial fuel cell for which the meas-
urement of the inlet substrate concentration was considered 
as the external perturbation. The study showed that the neu-
ral network model provides a more accurate estimate than 
the linear model and brought the system to its optimum with 
an advance of 20 days on the linear model. In addition, due 
to its capacity of generalization, the neural network model is 
able to provide an accurate approximation of the system be-
havior [17], starting with only a limited set of experimental 
data. 

In the literature, there are several types of neural networks. 
The choice of a neural network generally rests on three char-
acteristics: the architecture (multi-layered or not), the learn-
ing mode (supervised or unsupervised) and the learning algo-
rithm (quasi-Newton, backpropagation, BFGS, etc.). 

Since the input ݀௠ and output 	ߚ∗ measurements are as-
sumed to be available to the expert, the learning mode of the 
neural network will be supervised and a multi-layered per-
ceptron with a hyperbolic tangent  activation function and 
one hidden layer will be used to identify the function	݌. 
Moreover, the backpropagation algorithm [18] will be used 
during the learning phase. 

Once the learning phase is completed, the model which 
represents the function ݌	is described by the following equa-
tion: 

ሺ݀௠ሻ݌ ൌ ෢∗ߚ ൌ ሺ1 െ ݁ି௠ಿಿ∗ௐమ
೅∗థమሻ ሺ1 ൅ ݁ି௠ಿಿ∗ௐమ

೅∗థమሻൗ ,
  (13) 

where: 

߶ଶ ൌ ൤
ݏܾܽ݅
߯ ൨,     (14) 

߯ is the vector of length c with the ith element defined by the 
activation function of each neuron of the hidden layer, i.e., 

߯ሺ݅ሻ ൌ ሺ1 െ ݁ି௠ಿಿటሺ௜ሻሻ ሺ1 ൅ ݁ି௠ಿಿటሺ௜ሻሻ⁄ ,  (15) 
߰ ൌ ଵܹ

்߶ଵ     (16) 

߶ଵ ൌ ൤
ݏܾܽ݅
݀௠

൨,     (17) 

 
and 	 ଵܹ ∈ Թ௕x௖, ଶܹ ∈ Թఒx௤ are respectively the sets of syn-
aptic weights between the neuron input and the hidden layer 
and between the hidden layer and the output neuron fixed af-
ter learning respectively, whereas ݉ேே 	∈ Թ   is the slope of 
the hyperbolic tangent  activation functions ߶ଵ and ߶ଶ , b = 
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݄ ൅ 1 since the number of input neurons is equal to the 
number of measurable disturbances, ݍ is the number of out-
put neurons that is equal to 1 since the NN model estimates a 
single parameter (ߚ∗), ߣ ൌ ܿ ൅ 1 with ܿ being the number of 
neurons in the hidden layer chosen by the expert, bias is a 
constant value chosen by the expert. 

V. STABILITY STUDY OF ESC୅  

In order to lighten the following mathematical analysis of 
the ESCୟ	stability, two small modifications are performed to 
the scheme shown in Fig. 2. Firstly, the amplitude of the si-
nusoidal signal multiplying the output of the high-pass filter 
is equal to 1. Secondly, the low-pass filter is removed. 

Thus, 

൝
መሶߚ ൌ ݇ாௌ஼౗ sinሺ߱ݐሻ ൫ܬ൫ߚ	෡ ൅ δ sinሺ߱ݐሻ൯ െ ൯ߟ

ሶߟ ൌ ߱௛൫ܬ൫ߚ	෡ ൅ δ sinሺ߱ݐሻ൯ െ .൯ߟ
 (18) 

Assuming ܬ admits a local maximum ߚ∗, and ߚ is close to 
it, using a Taylor series approximation we obtain: 

ሻߚሺܬ ≃ ∗ܬ ൅
௃"
∗

ଶ
ሺߚ െ  ሻଶ    (19)∗ߚ

with ܬ∗ ൌ "ܬ ሻ and∗ߚሺܬ
∗
ൌ

డమ௃

డఉమ
ቚ
ఉ∗

. 

Thus for ߚ ൌ መߚ ൅ ߜ  :∗ߚ	ሻ aroundݐሺ߱݊݅ݏ

൞
መሶߚ ൌ ݇ாௌ஼౗ sinሺ߱ݐሻ ൬ܬ

∗ ൅
௃"
∗

ଶ
ሺߚ	෡ ൅ δ sinሺ߱ݐሻ െ ሻଶ∗ߚ െ ൰ߟ

ሶߟ ൌ ߱௛ሺܬ∗ ൅
௃"
∗

ଶ
ሺߚ	෡ ൅ δ sinሺ߱ݐሻ െ ሻଶ∗ߚ െ .ሻߟ

 

 (20) 
From the form of system (20) the averaging method is ap-

plicable (see, for example, Equations. (8.17)-(8.19) in [19]). 
Thus the average system of (20) is described as follows: 

ቐ
መሶ௔௩ߚ ൌ െδ݇ாௌ஼౗

௃"
∗

ଶ
ሺߚ∗ െ ෡	ߚ ௔௩ሻ	

ሶ௔௩ߟ ൌ ߱௛ሺܬ∗ ൅
௃"
∗

ଶ
ሺሺߚ∗ െ ෡	ߚ ௔௩ሻଶ ൅

ஔమ

ଶ
ሻ െ ௔௩ሻߟ

  (21) 

provided that: 
δ݇ாௌ஼౗ܬ

"∗ ≪ ߱	and	߱௛ ≪ ߱ .   (22) 
The equilibrium point of the average system (21) is: 
௔௩ߟ ൌ ∗ܬ ൅ "ܬ

∗
δଶ 4⁄      (23) 

෡	ߚ ௔௩ ൌ  (24)     			∗ߚ
and the Jacobian matrix ܣ  evaluated at this equilibrium 
point ሺߚ	෡ ௔௩,  :௔௩ሻ is defined as followsߟ

ܣ ൌ ቈδ݇ாௌ஼౗ ܬ
"∗ 2⁄ 0

0 െ߱௛
቉    (25) 

with	δ ∈ ሾܽ௠௜௡	ܽ௠௔௫ሿ, ܽ௠௜௡, ܽ௠௔௫ ൐ 0, ݇ாௌ஼౗ ൐ 0,߱௛ ൐ 0	, 
and ܬ"

∗
൏ 0 by definition. Since the eigenvalues of the Jaco-

bian matrix are: 
ଵߣ ൌ δ݇ாௌ஼౗ ܬ

"∗ 2⁄ ൏ 0,     (26) 
ଶߣ ൌ െ߱௛ ൏ 0,      (27) 

The Jacobian matrix at the equilibrium point  ሺߚ	෡ ௔௩,  ௔௩ሻߟ
is Hurwitz. Thus, the average system converges to ߚ∗and is 
asymptotically stable. As	ߚ ൌ ෡	ߚ ൅ δsin	ሺ߱ݐሻ, then the per-
turbed system converges on average to ߚ∗. 

From (9) and (25), the average system can be presented in 
the form of a switching system [20] as, 

ሻݐሶሺݔ ൌ  ሻ     (28)ݐሺݔఙሺ௧ሻܣ

where ߪሺݐሻ: ܴ∗ → ߬ ൌ ሼ1,2ሽ represents the switching law 
and ܣఙሺ௧ሻ ∈ ሼܣଵ,  ଶሽ withܣ

ଵܣ ൌ ቈܽ௠௔௫݇ாௌ஼౗ ܬ
"∗ 2⁄ 0

0 െ߱௛
቉    (29) 

and,	ܣଶ ൌ ቈܽ௠௜௡݇ாௌ஼౗ ܬ
"∗ 2⁄ 0

0 െ߱௛
቉.  (30) 

 The switching law is described by the following system 
of equations: 

ሻݐሺߪ ൌ ቐ
1	݂݅	݁ ൌ ቚߚ	෡ ௔௩ െ ෢∗	ߚ ቚ ൐ 	 ݁௠௔௫	

2	݂݅	݁ ൌ ቚߚ	෡ ௔௩ െ ෢∗	ߚ ቚ ൏ 	 ݁௠௔௫	.
  (31) 

According to (29) and (30) the two sub systems ݔሶ ൌ  ݔଵܣ
and ݔሶ ൌ  are asymptotically stable, but according to ݔଶܣ
[20], it is not sufficient to guarantee the stability of the sys-
tem (28) during the switching from ܣଵto ܣଶ or from ܣଶ to 
-ଵ. Hence, we must study the stability of the switching sysܣ
tem (28). 

From [20], if the two sub systems are linear and asymptot-
ically stable, we only need to demonstrate the existence of a 
common Lyapunov function for the two to ensure the stabil-
ity of the system (28).  

According to [21], a sufficient condition for the existence 
of a common Lyapunov function for the linear sub systems 
ሶݔ ൌ ሶݔ and ݔଵܣ ൌ -ଵ and Aଶ being triangulaܣ is to have ݔଶܣ
ble simultaneously using a non-singular transformation ܶ. 

Theorem [21]: If ܣ௜, ሺ݅ ൌ 1,2, . . . . . .  ሻ are real matricesܯ
that commute pairwise (i.e ܣ௜ܣ௝ ൌ ,݅ ௜ for allܣ௝ܣ ݆) then a 
matrix ܶ exists such that ܶܣ௜ܶିଵ are in triangular form. If A୧ 
are stable matrices, a common Lyapunov function ݒሺݔሻ ൌ
ሶݔ	exists for the system ݔ்ܲݔ ൌ   .ݔ௜ܣ

 
Then, according to (29) and (30): 
ଶܣଵܣ ൌ  ଵ.     (32)ܣଶܣ

Thus,  ܣଵ and ܣଶ are stable, commute pairwise, and the ܶ 
matrix exists. Consequently a common Lyapunov function 
exists and the system (28) is therefore asymptotically stable. 

 
TABLE I 

CHOICE OF THE EXCITATION AMPLITUDE A IN ESC  SCHEME FOR 3 DIFFER-

ENT SITUATIONS 

 Situation 1 Situation 2 Situation 
3

ܽ ܽ௠௜௡ ሺ௔೘೔೙ା௔ౣ౗౮	ሻ

ఓ
ߤ , ∈ ܴ,	

ଵାఌ

ఌ
	൏	ߤ ൏ 1 ൅  	ߝ	

ܽ୫ୟ୶ 

VI. PERFORMANCE ANALYSIS OF ESC AND ESC୅ SCHEMES 

A. Convergence analysis of the ܥܵܧ scheme  

Considering the average model of the closed loop system 
(Fig. 1) [13], the estimated gradient of the performance index 
ො݃  can be approximated as follows: 

ො݃ ⋍
ܽ2

2
 ෠ሻ,     (33)ߚሺ′ܬ

with ܬᇱሺߚመሻ ≡
డ௃

డఉ෡
.  

Consequently, the time derivative of the input		ߚመሶ  is de-
scribed by: 
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መሶߚ ⋍ ሺ݇ாௌ஼ܽଶ 2⁄ ሻܬᇱ൫ߚመ൯.    (34) 
Performing a first-order Taylor series expansion of the de-

rivative ܬ′ሺߚ෠ሻ	 around the optimum ߚ∗: 

መሶߚ ⋍ ܽଶ݇ாௌ஼݉ሺߚመ െ  ሻ,    (35)∗ߚ

with  ݉ ≡
1
ଶ

డమ௃

డఉమ
ቚ
ఉ∗
൏ 0, 

one can provide a linear expression to characterize the evo-
lution of ߚመ: 

ሻݐመሺߚ ⋍ ሺߚ଴ െ ሻ݁௔∗ߚ
మ௞ಶೄ಴௠௧ ൅  (36)   .∗ߚ

Let us define ܶܥܵܧ as the time needed, starting from an 
initial input 0ߚ	for the ESC loop to approach the optimum ߚ∗ 
within a precision of േ5%.  Thus, 

መሺߚ	 ாܶௌ஼ሻ ⋍ ሺߚ଴ െ ሻ݁ܽ∗ߚ
2௠௞ಶೄ಴்ಶೄ಴ ൅   ∗ߚ

   ൌ ∗ߚ േ  (37)  ,∗ߚ0.05

ாܶௌ஼ ⋍ ߁ ሺܽݔܽ݉ߙሻ⁄      (38) 

with ߁ ൌ
݈݊	ሺ|േ0.05ߚ∗|/ห൫0ߚെߚ

∗൯หሻ

݉
 and, ݔܽ݉ߙ ൌ ܥܵܧ݇ ൈ ܽ		being 

the maximum combination between ݇ܥܵܧ and ܽ chosen by the 
expert in order to achieve the best performance in terms of 
precision and time of convergence to the optimum, while re-
specting the stability conditions : 

ܽ݇ாௌ஼
డమ௃

డఉమ
ቚ
ఉ∗
≪ ߱	and	߱௛ ≪ ߱.   (39) 

Moreover, from (38) and (4) if t ≥ ாܶௌ஼ , the ESC control 
input ߚ oscillates around the optimum ߚ∗ with a maximum 
error ܧாௌ஼ that can be described as follows: 

ாௌ஼ܧ ≃ ܽ ൅  (40)    .|∗ߚ|0.05

According to (33), (38) and (40), the convergence time 
depends on ݇ாௌ஼ and ܽ whereas the estimated gradient and 
the maximum error depend only on	ܽ. Consequently, it is 
clear that the amplitude ܽ which is to be chosen by the expert 
has a large influence on the speed of convergence and the 
precision. This choice can be summarized in three situations: 

- Situation 1: the expert wants to reach the maximum of pre-
cision around the optimum. 

- Situation 2: the expert wants to make a compromise be-
tween the minimum time of convergence and maximum pre-
cision around the optimum.  

- Situation 3: the expert wants to reach the optimum as quick 
as possible. 

For each of these 3 situations, the choice of the perturba-
tion signal amplitude is done according to Table I. Note that 
for situation 2, the tuning parameter ߤ provides some flexi-
bility to the user in the compromise to be done between pre-
cision and speed of convergence.   In all cases, kESC is ad-
justed according to the choice of ܽ  such that ݇ாௌ஼ ൌ
ݔܽ݉ߙ ܽ⁄ . 

B. Convergence analysis of the proposed ܥܵܧ௔ . 

Let us define ୉ܶୗେୟ		as the time needed for the ESCୟ 
scheme to converge from ߚ଴	towards the optimum operating 
point ߚ∗ within a precision of		േ5%: 

ாܶௌ஼ୟ ⋍ ݈݊	ሺ| േ ଴ߚ|/|∗ߚ0.05 െ ሻ|∗ߚ ሺߜଶ	݇ாௌ஼ୟ݉ሻ⁄ . 
  (41) 

Considering ߚ௘ ൌ ෢∗ߚ േ ݁௠௔௫	as the value of the system 
input when the switch from ߜ ൌ ܽ௠௔௫	to ߜ ൌ ܽ௠௜௡	occurs, 
and ாܶௌ஼ಿಿ the time needed to converge from ߚ଴ to ߚ௘ , then,  

መ൫ߚ ாܶௌ஼ಿಿ൯ ⋍ ሺߚ଴ െ ሻ݁௔೘ೌೣ∗ߚ
మ ௞ಶೄ಴౗௠்ಶೄ಴	ಿಿ ൅  ∗ߚ

ൌ  ௘    (42)ߚ
and, ாܶௌ஼ಿಿ ⋍ ݈݊	ሺ|ߚ௘ െ ଴ߚ|/|∗ߚ െ ሻ|∗ߚ ሺܽ௠௔௫ଶ ݇ாௌ஼ୟ݉ሻ⁄ .

  (43) 

For t > ாܶௌ஼ಿಿ the input ߚ oscillates around the optimum 
 :  ாௌ஼౗ܧ with a maximum error ∗ߚ

୉ୗେ౗ܧ  ≃ ܽ௠௜௡ ൅  (44)   .|∗ߚ|0.05

Assuming that the Neural Network model ݌ gives a suffi-
ciently accurate estimate of the optimum such that the expert 
can choose ݁௠௔௫ ∈ ሾ0		0.05ߚ∗ሿ, and : 

∗ߚ െ ∗ߚ0.05 ൑ ௘ߚ ൑ ∗ߚ ൅  (45)   ,∗ߚ0.05

the time of convergence of ESCୟ can be quantified as fol-
lows:   

ாܶௌ஼౗ ⋍ ߁ ሺܽ௠௔௫ߙ௠௔௫ሻ⁄ .    (46) 
A performance comparison of ESC and ESCୟ for the three 

situations described in Section VI-A is provided in Table II. 
It can be seen that in the aforementioned situations, ESCa 
converges either more quickly, more precisely or both to the 
optimum than	ESC. 

Note that the variation of the excitation signal from ܽ௠௜௡ 
to ܽ௠௔௫ could be performed as a continuous variation if de-
sired. Doing this, however, the convergence time of the 
ESCୟ  scheme to the optimum is expected to be longer than 
the one obtained when an instantaneous variation of the ex-
citation signal amplitude is used as it is the case in the pre-
sent paper. Moreover, the stability study will be different 
from that proposed in section V. The system would become 
time variant and the stability could not be based on a switch-
ing system as it is the case right now. Instead,  a Lyapunov-
based approach  should be followed to demonstrate stability 
([22]). 

TABLE II 
PERFORMANCE COMPARISON OF ESC AND ESC୅ IN THE THREE SITUA-

TIONS 

 Situation 1 Situation 2 Situation 3

Performance  
൜

ாܶௌ஼ ≫ ாܶௌ஼౗
ாௌ஼ܧ ൌ ாௌ஼౗ܧ

 ൜
ாܶௌ஼ ൐ 	 ாܶௌ஼౗
ாௌ஼ܧ ൐ ாௌ஼౗ܧ	

 ൜
ாܶௌ஼ ൌ ாܶௌ஼౗

ாௌ஼ܧ ≫ ாௌ஼౗ܧ

VII. EXPERIMENTAL STUDY: APPLICATION TO PV SYSTEM 

Several techniques in the literature have been applied spe-
cifically for PV integrated systems: Hybrid MPPT [23], open 
circuit voltage [24], short circuit current [25], predictive con-
trol approaches [26, 27], etc. These techniques rely on the 
PV model for optimization. The non-model based conven-
tional ESC has also already been used to optimize the PV 
system. In [28], a comparative study was carried out be-
tween the methods used for the optimization of a PV system 
model. The study shows that the ESC scheme is more robust 
and efficient than other online optimization methods such as 
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Perturbation and observation method (P&O) with fixed per-
turbation size [29] or variable perturbation size [30]. 

The proposed approach ESCୟ	 aims at developing a real 
time optimization technique that simultaneously insures 
good precision and speed of convergence towards the opti-
mum operating point of a dynamic system subject to external 
disturbances. The approach is not intended specifically for a 
PV application, but can be applied to several other types of 
systems where the model is difficult to describe from phys-
ics laws. It has already been applied in simulations to a mi-
crobial fuel cell (MFC) model which is characterized by 
slower and much more complex dynamics than the one for 
PV systems. In [13], the ESCୟ allowed the MFC system to 
converge towards the optimum with high accuracy and to 
gain days in terms of convergence time compared to the 
conventional	ESC.  

In the present study, the PV system was chosen to high-
light the proposed approach and validate it experimentally 
because of its speed and practicality compared to MFC.  The 
time of convergence towards the optimum of an MFC sys-
tem is in terms of days while the time convergence of PV 
system is in term of seconds. Also, it is more accessible in 
the laboratory than an MFC. So, the comparative study be-
tween ESC and ESCୟ will be established in the case of opti-
mization of the power produced by a photovoltaic system. 
The optimal power produced by a PV is very sensitive to ex-
ternal disturbances, mainly sunlight radiations and tempera-
ture. According to [11], in real operating conditions, the in-
fluence of a temperature disturbance on the PV optimal 
power is negligible compared to the radiation  disturbance. 
Hence, only the radiation is considered here as a measurable 
disturbance. 

 
Fig. 3. Experimental platform. 

 
Fig. 4. Block diagram of the experimental platform. 

A. Description	of	the	experimental	PV	setup		
As shown in Fig. 3 and Fig. 4, the experimental setup 

consists of: 

 A PV module (Labvolt solar panel test bench, model 
8805) permanently fixed in front of a 300 W projector 
acting as a light source; 

 A digital touch screen dimmer (Uber Haus, TSD-1000) 
which allows to control the radiation emitted by the pro-
jector by adjusting its supply voltage ( ௣ܸ) from 5% to 
100% with a step of 5; 

 A small photovoltaic cell (Solarbotics SCC2433B-MSE) 
which feeds a constant load (270 ohm) to evaluate the 
radiation disturbance based on the measurement of its 
output voltage; 

 An analog motorized potentiometer constituted by a DC 
geared motor (Hsiang Neng DC Micro Motor Manufac-
turing Corporation, HN-GH35GMB) mechanically 
linked to an analog 1K potentiometer  (Precision Elec-
tronics Corporation RV4NAYSD102A), playing the 
role of a variable external load (ܴ௘௫) at the output of the 
main PV module;  

 An acquisition board (National Instrument NI PCI-
6024E) which allows the measurement of the voltage at 
the PV module (Vex), at the small photovoltaic cell 
( ௣ܸ௩௖) and at the shunt resistor ܴ௦௛ ൌ 30	ohm (Vsh) used 
to compute the power;  

 A Matlab Simulink software for the implementation of 
the ESC and ESCୟ  schemes (sampling time: ௦ܶ	= 0.01s).  

A PID controller is used to adjust the DC geared motor 
supply voltage ( ௠ܸ) in order to control the load value ܴ௘௫ to 
the load setpoint (ܴ௘௫௦). The PID controller parameters have 
been adjusted following the analog motorized potentiometer 
model identification. This identification was performed us-
ing the Ident function in Matlab. The controller parameters 
have been chosen with the help of the auto-tune function 
provided with the PID Controller block from Simulink. 
The PID controller form is parallel, the filter coefficient is 
0.7611	 and the proportional, integration and derivative 
gains were set respectively to 0.023	ܸ/Ω, 0.00213	ܸ/ሺΩݏሻ 
and 0.0152 ܸs/Ω. 
Considering the PV system described above, the optimiza-
tion problem defined in (3) becomes: 

	ோ೐ೣೞݔܽܯ ௦ܲሺܴ௘௫௦ሻ
.ݏ ሶݔ				.ݐ ൌ ݂ሺݔ, ܴ௘௫௦, ሻܩ ൌ 0	

   (47) 

where the radiation ܩ is the measurable disturbance ݀௠, the 
PV power output in static mode, ௦ܲ , represents the objective 
function ܬ, the state vector ݔ  includes the armature current, 
the supply voltage, the position and the speed of the DC mo-
tor and, ߚ is  the setpoint of the PID loop (ܴ௘௫௦ሻ. 

In order to observe the effect of radiation on the PV opti-
mal power ( ௦ܲ

∗), a variation in ܴ௘௫ from 100 to 1000 ohm 
was performed with a step of 50 ohm for each level of radia-
tion going from 100% to 10% with a step of 10%. 
From Fig. 5 it can be seen that for each level of radiation, the 
optimal power ௦ܲ

∗ changes, and, not surprisingly, the PV 
generates its maximum power when the external load ܴ௘௫ is 
equal to its internal load (ܴ௜௡) (Table III). Thus, the motor-
ized potentiometer will be controlled in order to match the 
internal load of the PV at each level of radiation. 

As the external load is normally imposed to the PV sys-
tem, a DC-DC converter is usually used to perform imped-
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ance matching. Indeed, the duty cycle variation of a DCDC 
converter has a direct effect on the impedance seen by the 
PV source in the case where a fixed load is connected to the 
output of the DCDC converter. However, since the focus of 
our paper is more on the design of a new optimization meth-
od (applicable to other types of systems needing to be opti-
mized in real-time), the experimental setup has been kept 
simple.  

 
Fig. 5.  Static characteristics of PV output power as a function of the 
external load for different radiation or luminance levels %. 
 

The efficiency of both approaches (ESC and ESCୟ) will be 
evaluated using the following efficiency factors used in 
many papers related to the optimization of renewable energy 
sources [31-33]: time of convergence ( ௖ܶ), tracking efficien-
cy ( ௘ܶ௙௙) and tracking accuracy in steady-state ( ௔ܶ௖௖). Note 
that the time of convergence will be evaluated both in terms 
of seconds and in terms of number of dither periods ( ௣ܰ) in 
order to relate the performance to the optimization method 
rather than to the system itself. Hence, if a DCDC converter 
is used, the performance remains the same in terms of num-
ber of periods whereas the time of convergence (in seconds) 
is shorter than the one obtained with an analog potentiometer 
due to the faster dynamics of the system itself. 

B. Performance	 of		 	and	ܥܵܧ 		௔ܥܵܧ under	 the	 radiation	
disturbance	effect	

In order to evaluate the ESC and ESCୟ	 performance under 
the effect of the radiation, a variation of radiation will be 
performed at specific times by operating the digital dimmer 
from 100% to 50%. As shown in Fig. 5, these two levels of 
radiation correspond to two different optimal operating 
points:  ܴ௜௡ଵ ൌ ,݄݉݋	244.4 ௦ܲଵ

∗ ൌ 306,3	ܹ݉ for 100% of 
radiation and ܴ௜௡ଶ ൌ ,	݄݉݋	447.9 ௦ܲଶ

∗ ൌ 141.9	ܹ݉ for 50% 
of radiation. In such a situation, the role of the two optimiza-
tion methods is to converge to the internal load of the PV 
system for each level of radiation by controlling the ܴ௘௫ with 
the PID controller.  

As shown in Section IV, the first step to implement the 
ESCୟ  technique is to model the effect of the external dis-
turbance on the optimal operating point of the system. Ac-
cording to Table III the relation between the radiations gen-
erated by the projector and the PV internal resistance is a 
nonlinear relation. Therefore, as mentioned in Section IV, 
the proposed approach is to use a neural network model. 

 
(a) 

 
(b) 

Fig. 6. Evolution of the system under ESCୟ and ESC in situation 1 for a 
disturbance of radiation level going from 100% to 50% at T= 400 s: 
(a) external load and (b) external power. 

 

 
(a) 

 
(b) 

Fig. 7. Evolution of the system under ESCୟ and ESC in situation 2 for a 
disturbance of radiation level going from 100% to 50% at T= 200 s: 
(a) external load and (b) external power. 

The performance of NN model in terms of estimation ac-
curacy depends directly on the richness of information con-
tained in the dataset used during the training phase [34]. For 
systems such as PV, the rich data collection describing the 
relation between the optimal operating points and external 
disturbance (temperature, irradiation, etc.) can be performed 
by plotting the static power curves as a function of the con-
trol input (duty cycle, external load, etc.). This method indi-
rectly gives a general idea of the effect of external perturba-
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tion on the PV internal load. In such a condition, after the 
learning phase, the NN model offers  very good accuracy in 
estimating the optimal control input of the system [28, 35]. 
 

TABLE III 
 OPTIMAL VALUES OF PV INTERNAL RESISTANCE AND OUTPUT POWER OF 

THE SMALL PV CELL AND NN MODEL OUTPUTS FOR DIFFERENT LUMI-

NANCE LEVELS, I.E. DIFFERENT DIMMER POSITIONS 

Relative posi-
tion of the 

dimmer 

Internal re-
sistance ܴ௜௡ of 

PV (Ω) 

Power of the 
PV cell 

௣ܲ௩௖(mW) 

Internal resistance 
estimated by  

NN (Ω) 
100% 244 30.8 -- 
90% 230 26 235 
80% 260 18.9 274 
70% 300 13.2 -- 
60% 335 9.9 340 
50% 447 6 -- 
40% 550 3.8 522 
30% 695 1.7 -- 
20% 910 0.4 927 
10% 990 0.18 -- 

In this study, the learning database is defined by the 
measurements shown in Table III which correspond to the 
following degrees of radiation: 100%, 70%, 50%, 30% and 
10%. Once the learning phase is completed, the neural net-
work model that describes the relation between ܴ௜௡ and ௣ܲ௩௖ 
is represented by equations (13) to (17) where ݀௠ ൌ ௣ܲ௩௖, 
෢∗ߚ ൌ ܴప௡෢ , ݄ ൌ 1, ܿ ൌ 10 and ܾ݅ܽݏ ൌ 0.5. The power of 
generalization test was performed to verify the model ability 
to estimate the PV internal resistance at degrees of radiations 
which differ from those used during the learning phase (re-
sults shown in Table III, column 4).  

Note that  the internal resistances estimated by NN for 
100%, 70%, 50%, 30% and 10% degrees of irradiation have 
not been included in the fourth column of Table III since as 
these points  were used during the learning phase of the NN 
model,  the corresponding estimation error is negligible. 

(a) 

(b) 

Fig. 8. Evolution of the system under ESCୟ and ESC in situation 3 for a 
disturbance of radiation level from 100% to 50% at T= 200 s : (a) 
evolution of the external load and (b) external power. 

Before the implementation of ESC or	ESCୟ, the control pa-
rameters are adjusted to respect the time scale separation 
condition between the system, the excitation signal and the 
filters. The entire system includes the motorized potentiome-
ter, the PID controller and the PV panel itself. Compared to 
other components of the whole system, the PID controller is 
the slowest element, with an average response time of 
ܶ	௉ூ஽ ൌ  Hence, the parameters of the two methods are .ݏ	1	
selected according to the response time of the PID regulator. 

The NN modeling is performed in two stages. The first 
step consists in training the NN model using the level of ra-
diation (evaluated by measuring the output power of the 
small photovoltaic cell	 ௣ܲ௩௖) as an input and the correspond-
ing internal resistance as the desired output (Table III). The 
second step is the test of NN generalization power. 

Consequently, the ESC and	ESCୟ	are designed as follows: 
the perturbation signal is a sinusoidal wave with frequency 
ܨ ൌ	1 ሺ4 ௉ܶூ஽ሻ⁄ ൌ  the cutoff frequencies of the ;ݖܪ	0.25
high pass and low pass filters are set to		߱௟ ൌ ߱௛ ൌ ߨܨ2 5⁄  = 
0.314 Hz and, the initial external load (at the integrator) is 
fixed to 	ܴ௜௡௜ ൌ 500	 ohm. 

In order to ensure the stability of the ESC and	ESCୟ	loops, 
the combinations a ൈ k୉ୗେ	and δ ൈ k୉ୗେ	ୟ should be chosen 
such as to respect the conditions (39) with β∗ ൌ Rୣ୶∗ . In the 
present case, the stability conditions (39) are met by choosing 
a ൈ k୉ୗେ and δ ൈ k୉ୗେ	ୟ	to be less or equal to α୫ୟ୶ ൌ 0.5. 
Note that this value of α୫ୟ୶ was found by trial and error in 
order to ensure the stability of the closed-loop system. 

As in the theoretical study, ESC scheme will be tested in 
the three situations described in Table I with ܽ୫୧୬ ൌ 25ohm, 
ܽ୫ୟ୶ ൌ 100ohm and μ ൌ 2.5. In the case of	ESCୟ	 the ampli-
tude of the excitation signal ߜ will be switched from the same 
values ܽ୫ୟ୶ to ܽ୫୧୬ according to (9) with	e୫ୟ୶ ൌ 50	ohm ≫

Max ቀR୧୬ሺzሻ െ R෡୧୬ሺzሻቁ		, z൛1,2, … , N୥ൟ,	and	N୥	 being the to-

tal number of points used for the generalization test (shown 
in Table III).  

Since the system to be controlled remains the same, the 
values of high-pass and low-pass filters parameters and of 
the frequency of the excitation signal are identical for both 
ESC and ESCୟ methods. Consequently, the gains ݇ாௌ஼ in ESC 
and ݇ாௌ஼౗ in ESCୟ will be chosen based on the value of α୫ୟ୶ 
in order to guarantee the maximum speed of convergence 
towards the optimum while respecting the stability condition 
(39). Thus, in order to guarantee the fastest possible conver-
gence to the optimum for all values of ܽ (Table I), ݇ாௌ஼ 	ൌ
௠௔௫ߙ	 ܽ⁄  in each situation. In the case of ESCୟ,  since the 
amplitude of the excitation signal ߜ is variable, the gain 
݇ாௌ஼౗ = α୫ୟ୶ ܽ୫ୟ୶⁄  in all three situations in order to guaran-
tee the maximum convergence speed towards the optimal 
operating point while respecting the stability condition (39) 
even when ߜ varies from ܽ௠௔௫ to ܽ௠௜௡. 

Fig. 6, 7, 8 and Table IV give a complete comparison be-
tween ESCୟ and ESC performance in the three situations. In 
situation 1, ESCୟ method converges nearly with the same 
tracking accuracy in steady state as the classical ESC one 
while it converges up to 8.4 times faster (when a 50% radia-
tion disturbance occurs). In Situation 2, ESCୟ approach con-
verges more quickly and accurately than classic ESC loop. 
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Finally, in Situation 3, the ESCୟ methods converges nearly 
within the same time toward the optimum (with a small de-
lay however because ݁௠௔௫ is slightly superior to 0.05ߚ∗ ൌ
0.05ܴ௜௡) than the conventional ESC loop, but it provides a 
higher precision around the optimum.  

Looking at equations (38) and (46), one can see that the 
choice of the amplitude, the initial point of operation and the 
curvature around the optimum will influence the time of 
convergence of both methods. Moreover, from these two 
equations, the theoretical time ratio ாܶௌ஼ ாܶௌ஼௔⁄ 	ൎ ܽ௠௔௫ ܽ⁄  
is equal to 4, 2 and 1 for situations 1, 2 and 3 respectively. In 
practice, from Table IV, the experimental convergence time 
ratios can be computed to be respectively equal to 7.3, 2 and 
1 (when moving from Rini to Rin1) and to 8.4, 1.7 and 1 
(when moving from Rin1 to Rin2). Hence, for situations 2 and 
3, the experimental results are near the theoretical one 
whereas for situation 1, results differ. This can be explained 
by the fact that since the theoretical development provided in 
Section VI is based on a first order Taylor series expansion, 
it is valid around the optimum. However, in the experimental 
study, the system was started far away from its optimum. 
Since in situation 1, the convergence of the ESC method was 
slower, the system remains far from the optimum for a long 
period of time and it may be the reason why the experi-
mental convergence time ratio differs from the theoretical 
one. 

Note that in order to let the ESC	method find enough time 
to converge to the desired optimum, the radiation disturb-
ance was performed at 400 s in situation 1 (Fig. 6) rather 
than at 200s as in situations 2 (Fig. 7) and 3 (Fig. 8). Thus, 
since the parameters of ESCୟ are identical in all three situa-
tions, the results shown for situations 2 and 3 were obtained 
from the same experiment whereas another experiment was 
required for situation 1. As a result, the values of the per-
formance criteria for the  ܥܵܧ௔  method slightly differs in 
situation 1 from the one obtained in situations 2 and 3.  

When applied to a renewable energy source like PV, the 
precision and convergence time towards the optimum of the 
two optimization methods have a significant effect on the 
system performance in terms of energy production. Results 
depicted in Fig. 6 and Table IV show that in the first situa-
tion, the  ESC scheme converges precisely towards the de-

sired optimal operating point in steady state (good tracking 
accuracy) by bringing the external load around a value near 
to the internal resistance of the PV. However, the ESC tech-
nique takes a long time (large number of periods) to con-
verge to the desired optimum if the initial external resistance 
is far from the PV internal resistance or if there is a signifi-
cant variation of radiation. This slow convergence causes a 
decrease of the tracking efficiency which results in a loss of 
power. This can lead to a problem of inaccuracy if the dis-
turbance frequency is high. In Situation 2, we can see from 
Fig. 7 and Table IV that if the designer makes a compromise 
between speed of convergence and accuracy by increasing 
the amplitude of the excitation signal from 25 to 50 ohm and 
adjusting the gain consequently (from 0.02 to 0.01), the con-
vergence time decreases compared to Situation 1, but the 
precision around the optimum decreases as well. This choice 
of parameter values leads to an increase of the tracking effi-
ciency but can cause a loss of power if the curvature of the 
static curve around the optimum is very stiff as it is the case 
when the radiation level is 100%. Finally, in Situation 3 
(Fig. 8 and Table IV) if the expert favors speed over accura-
cy, the ESC loop converges very quickly to the desired opti-
mum operating point, but the large oscillations around the 
internal resistance of the PV system generate a loss of power 
even when the curvature of the power static curve around the 
optimum is small as it is the case when the radiation level is 
50%. Hence, the tracking efficiency is inferior to the one ob-
served in Situation 2. 

Most of the time, the expert designing an ESC scheme 
chooses Situation 2 in order to make a compromise between 
the time of convergence and the precision and obtain the best 
tracking efficiency. However, according to these results, it is 
not possible to ensure the best time of convergence and the 
best precision simultaneously. Hence the ESCୟ parameter 
(excitation amplitude) is controlled in an adaptive manner in 
order to guarantee fast convergence and precision at the 
same time. Then, from Fig. 6, 7, 8 and Table IV with ESCୟ 
the maximum tracking efficiency is guaranteed, therefore the 
PV system produces more power compared to ESC in three 
situations if the PV system is subject to radiation disturb-
ance. 

TABLE IV 
PERFORMANCE EVALUATION OF  ESC AND 	ESC୅ APPROACHES 

VIII. CONCLUSION 

In this study, a modification of the classic ESC scheme 
was proposed in order to adapt the excitation signal ampli-
tude using the power of neural network estimation. Theoreti-
cal and experimental results show that this approach is stable 
and significantly reduces the undesirable effects of the time-
scale separation condition on the performance of the closed 

loop system while increasing the tracking efficiency. This 
method can contribute to achieve higher power performance 
for PVs or other renewable energy sources like microbial 
fuel cells, wind generators or any system which must be op-
timized subject to measurable external disturbances. 

The neural network learning in this study is offline. Thus, 
if a non-measurable disturbance occurs, the accuracy of NN 
estimation may decrease. The objective of our next research 

Optimization 
method 

 ௖ܶ 	from ܴ௜௡௜ 
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ESC  

Situation 1 336.7 214.4 84.17 53.6 97.15 98.93 77.96 
Situation 2 85.76 54.4 21.44 13.6 93.05 96.63 86.15 
Situation 3 43.38 24.5 10.84 6.12 82.59 92.50 84.67 

 
	ESCୟ  

Situation 1 46.18 25.6 11.54 6.4 99.03 99.74 97.51 
Situation 2  43.7 31.3 10.92 7.82 99.44 99.41 93.72 

 Situation 3 43.7 31.3 10.92 7.82 99.44 99.41 93.72 



 

is to replace the offline NN-learning phase by an online NN 
adaptation in	ESCୟ, in order to increase the precision of NN 
estimation by providing a better adaptation of the NN model 
parameters under unmeasurable disturbances. 
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