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Abstract

Immersed boundary methods (IBM) are alternative methods to simulate fluid

flows around complex geometries. The grid generation is fast as it does not need

to conform to the fluid-solid interface. However, special treatments are needed

in the flow equations to properly take into account the wall proximity. The

penalization method is a particular case of the IBM in which the wall boundary

conditions are imposed via continuous forcing terms into the governing equa-

tions. Reynolds Averaged Navier-Stokes (RANS) equations completed with a

turbulence model are still the most common way to model turbulence in engi-

neering applications. However, RANS turbulence model implementation with

penalization into a vortex formulation is not straight forward, in part because of

the variable turbulent viscosity and partly because of the boundary conditions.

This paper extends the penalization technique to turbulent flows. The objective

of this paper is to validate the use of the Spalart-Allmaras turbulence model

in the context of penalization and vortex formulation. Details of the resolution

using a Vortex In Cell (VIC) numerical scheme are given. The proposed scheme

is based on the advection of particles of vorticity and particles of turbulent
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viscosity. A Lagrangian framework is chosen to solve the advection part. The

remaining parts of the system of equations are solved with an Eulerian frame-

work using a Cartesian uniform grid. To avoid fine meshes near the wall, a wall

function compatible with the penalization method and the vortex formulation is

proposed. The formulation and the coding are validated against the well-known

periodic channel flow. Velocity profiles are computed without and with the wall

function. Results agree with analytic law of the wall solutions, showing that

RANS simulations can be conducted with VIC schemes and penalization.

Keywords: Turbulence, SA model, Vortex Formulation, VIC scheme,

Brinkman Penalization, Wall function, IBM

1. Introduction

Immersed boundary methods (IBM) are alternative methods to simulate

fluid flows around complex geometries submitted to arbitrarily large deformation

or motion [1]. The grid generation is fast as it does not need to conform to the

fluid-structure interface. However, a special treatment is needed in the flow5

equations to properly take into account the wall proximity. LESCAPE is an

immersed boundary code in which the wall boundary conditions are imposed

via continuous forcing terms added to the equations of conservation. To take

into account wall boundary conditions, LESCAPE uses a porous media approach

called the Brinkman penalization [2]. The discretization is done using a Vortex10

In Cell (VIC) scheme [3]. This penalization technique is extended, in this paper,

to turbulent flows. LESCAPE code uses level set functions to localize solids and

track motions [4, 5, 6]. The velocity-vorticity formulation of the incompressible

Navier-Stokes equations are solved on a uniform Cartesian grid [5].

The objectives of this paper are to formulate and validate the Spalart-15

Allmaras turbulence [7] model using a vortex formulation in the framework of

penalization methods. In this context, the Spalart-Allmaras turbulence model

has been implemented into LESCAPE code to allow flow simulations at high

Reynolds numbers. Although extensible to 3D, the developments are presented
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for 2D flows simulations. The model implementation follows the methodology20

associated to a VIC scheme [3, 8]. A time splitting algorithm is used to solve

the system of equations and a penalty term is added to each equation to enforce

boundary conditions on the solid [9]. The global strategy used by LESCAPE

is similar to the work performed by Lee [8] except in the treatment of the tur-

bulence. In this work, we propose to solve the RANS equations and use in25

addition the Spalart-Allmaras turbulence model for closure. In this sense, we

remove high frequencies linked to the turbulence in our solution. In Lee’s work

[8] the VIC scheme is directly used as a filter making a kind of LES simulations

as discussed by Cottet [3]. The plan of this article is as follows: first, the specific

vortex formulation of the Spalart-Allmaras turbulence model used is presented.30

Then, the numerical discretization of the equations, using a VIC scheme, is de-

tailed. In a third part, to avoid excessive fine meshes, a penalized wall function

is proposed and details on the implementation are given. Finally, the periodic

channel flows is used to validate the model and the implementation technique.

2. Penalized RANS-Vortex formulation35

2.1. Physical and mathematical model

We consider an incompressible turbulent flow. The governing equations,

mass and momentum conservations, are

∇ · u = 0 (1)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+∇ ·Π (2)

where ρ is the fluid density, u the mean velocity vector and p the pressure. The

viscous stress tensor, Π, is (µ+µt)
[
∇u + (∇u)T

]
for incompressible flows. The40

symbols µ and µt are respectively the laminar and turbulent dynamic viscosity.

The turbulent viscosity µt = νtρ in this equation is computed from the

Spalart-Allmaras turbulence model. As there exist several forms of the model,

the equation used in this work is detailed below [7]. The one equation model is:

∂ν̃

∂t
+ (u · ∇)ν̃ = P −D +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]

(3)

3



where the production and wall destruction are:45

P = cb1 (1− ft2) S̃ν̃ ; D =
[
cw1fw −

cb1
κ2
ft2

]( ν̃
d

)2

. (4)

The turbulent viscosity is computed from

µt = ρν̃fv1 .

where the value of fv1 is given by

fv1 =
χ3

χ3 + c3v1
and χ =

ν̃

ν
.

To avoid negative values of the modified vorticity S̃ in the production term [7],

we define S̄ such that S̄ =
ν̃

κ2d2
fv2. Then, S̃ is computed by the following

method50

S̃ = Ω + S̄ if S̄ ≥ −c2Ω

S̃ = Ω +
Ω
(
c22Ω + c3S̄

)
(c3 − 2c2) Ω− S̄

if S̄ < −c2Ω

where c2 = 0.7, c3 = 0.9, and Ω is the magnitude of the vorticity.

The distance from the wall is d, and

fv2 = 1− χ

1 + χfv1
, fw = g

[
1 + c6w3

g6 + c6w3

]1/6
,

g = r + cw2

(
r6 − r

)
, r = min

(
ν̃

S̃κ2d2
, 10

)
,

ft2 = ct3 exp
(
−ct4χ2

)
The constants are: cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41, cw2 = 0.3,

cw3 = 2 cv1 = 7.1, ct3 = 1.2, ct4 = 0.5 cw1 = cb1/κ
2 + (1 + cb2)/σ.55

In a vortex formulation, the computed variable is the flow vorticity defined

by

ω = ∇∧ u =


∂uz
∂y
− ∂uy

∂z
∂ux
∂z
− ∂uz

∂x
∂uy
∂x
− ∂ux

∂y

 .
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In 2D, only ωz remains and ω is a scalar. In this case, after the application

of the curl operator to the momentum equations, the elongation term (ω · ∇)u60

vanishes and the equation to solve is the following

ρ
∂ω

∂t
+ ρ(u · ∇)ω = (µ+ µt)∆ω + 2

∂(µ+ µt)

∂x

∂ω

∂x
+ 2

∂(µ+ µt)

∂y

∂ω

∂y

+
∂2(µ+ µt)

∂x2

(
∂uy
∂x

+
∂ux
∂y

)
− ∂2(µ+ µt)

∂y2

(
∂uy
∂x

+
∂ux
∂y

)
+ 2

∂2(µ+ µt)

∂y∂x

(
∂uy
∂y
− ∂ux

∂x

)
(5)

The variable turbulent viscosity introduces additional terms in the vorticity

equation. The relative importance of each term is discussed briefly in [10].

After some algebra, using the incompressibility relation (1) and the definition

of ω = ωz, equation (5) can be rewritten as follows65

∂ω

∂t
+ (u · ∇)ω = (ν + νt)∆ω + ω∆(ν + νt) + Sω

+ 2

[
∂(ν + νt)

∂x

∂ω

∂x
+
∂(ν + νt)

∂y

∂ω

∂y

]
. (6)

with Sω defined by

Sω = 2

[(
∂ux
∂y

∂2(ν + νt)

∂x2
− ∂uy

∂x

∂2(ν + νt)

∂y2

)
+
∂2(ν + νt)

∂y∂x

(
∂uy
∂y
− ∂ux

∂x

)]
(7)

We define by νeff the effective viscosity, ν+νt and the final system of equations

to solve in LESCAPE becomes:

∂ω

∂t
+ (u · ∇)ω = νeff∆ω + ω∆νeff + 2

[
∂νeff
∂x

∂ω

∂x
+
∂νeff
∂y

∂ω

∂y

]
+ Sω

∂ν̃

∂t
+ (u · ∇)ν̃ = P −D +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]
. (8)

2.2. Immersed boundary method via penalization

The solid body, si, inside the domain is localized via a level set function,70

Φ(si), which in our case is the signed distance function d (negative inside the

solid, positive outside). The level 0 of the signed distance function represents

the fluid-solid interface. We define by H(Φsi) the Heaviside function applied
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to Φsi (or characteristic function of si) which equals one inside the solid and

0 outside. To impose the rigid motion of our solid, if usi is the solid velocity75

vector, we should impose the following conditions in the solid: u = usi and

ν̃ = 0. The extension of the Brinkman penalization to our system of equations

is then the following:

∂ω

∂t
+ (u · ∇)ω = νeff∆ω + ω∆νeff + 2

[
∂νeff
∂x

∂ω

∂x
+
∂νeff
∂y

∂ω

∂y

]
+ Sω

+ λ∇∧ [H(Φ(si)) (usi − u)] (9)

∂ν̃

∂t
+ (u · ∇)ν̃ = P −D +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]

+ λH(Φ(si)) (0− ν̃) . (10)

The forcing terms appear in bold, and λ � 1 is the penalty parameter. In

Brinkman et al. [2], λ =
ν

Ksi
, where Ksi is the permeability of the solid.80

3. Numerical scheme details

LESCAPE is formalized on regular Cartesian grids. The VIC scheme con-

sists in using a viscous splitting algorithm in which the advective parts of the

equations are solved in a Lagrangian framework while the other parts of the

equations are solved on the grid with an Eulerian approach.85

-Advection:

∂ω

∂t
+ (u · ∇)ω = 0.

∂ν̃

∂t
+ (u · ∇)ν̃ = 0.

-Source terms and diffusion:

∂ω

∂t
= νeff∆ω + ω∆νeff + 2

[
∂νeff
∂x

∂ω

∂x
+
∂νeff
∂y

∂ω

∂y

]
+ Sω.

∂ν̃

∂t
= P −D +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]
.

-Penalization:

∂ω

∂t
= λ∇× (H (Φsi) (usi − u)) .

∂ν̃

∂t
= λH(Φ(si)) (0− ν̃) .
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-Advection:

For the advective parts, in the region of the domain where the vorticity is above a

threshold, the vorticity and (ν̃− ν̃∞) are modeled by discrete particles localized

at grid points. ν̃∞ is related to the turbulent viscosity at free stream. The

particles, containing the discrete vorticity and (ν̃−ν̃∞) are then convected with a90

fourth order Runge-Kutta time-stepping scheme. The third order interpolation

kernel M ′4 [11] is used to interpolate the vorticity and the rate of change of

turbulent viscosity back on the grid. Both vorticity and turbulent viscosity

are transported by the same particle, reducing the computational cost, and the

same interpolation kernel can be used.95

To impose periodic boundary conditions, the particles that get out of the

computational domain on one side are reinjected on the other side. Because of

the stencil of the M ′4 interpolation kernel, a band of three virtual nodes must

be added on both sides of the computational domain. A periodic computational

domain that extends in x direction from xstart to xend is illustrated on the figure100

1. The computational domain is discretized in x direction by n nodes spaced by

dx. The nodes n−2 to n are duplicated on the left side and the nodes 1 to 3 are

duplicated on the right side to impose periodicity in x direction. These virtual

regions are illustrated with dashed lines. The content of a particle between

node 1 and node 2, illustrated by a black dot on the left, will be distributed105

on 16 nodes, illustrated by circles. If the particle is located between xend and

xend + dx, as the particle between node n and 1 on the right, the content of the

particle is distributed on the 16 nearest nodes, including virtual nodes 1 and 2.

Finally, if a particle is located at xp such that xp > xend + dx or xp < xstart,

then the particle is relocated according to the following rules110

xp = (xp − (xend + dx)) + xstart if xp > (xend + dx) (11)

xp = xend − (xstart − xp) + dx if xp < (xstart) (12)

-Source terms and diffusion:

A first order Euler implicit scheme is used for the time derivative. Second order
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1 nn 1(n-2) 33 (n-2)

xstart xend

Figure 1: Periodic boundary conditions in x direction for the advection part

finite differences are used for spatial derivatives. A linearization of the source

terms in equation (9) is proposed to prevent too much constraint on the time

step.115

ωn+1 − ωn

∆t
= νneff∆ωn+1 + ωn+1∆νneff + 2

[
∂νneff
∂x

∂ωn+1

∂x
+
∂νneff
∂y

∂ωn+1

∂y

]
+ Snω .

Snω = 2

[(
∂unx
∂y

∂2νneff
∂x2

−
∂uny
∂x

∂2νneff
∂y2

)
+
∂2νneff
∂y∂x

(
∂uny
∂y
− ∂unx

∂x

)]
. (13)

where ωn is the value at the previous time step, and ωn+1 is the value at

the actual time step. The discretized equations are solved using an Alternate

Direction Implicit (ADI) method [12]. The ADI method does not have the time

step stability limitation of the explicit method and has a tridiagonal matrix

structure that can be solved efficiently with the Tridiagonal Matrix Algorithm120

(TDMA).

The same strategy is used for the turbulent source terms with the following

linearization:

ν̃n+1 − ν̃n

∆t
= Spν̃

n+1 + Sc

+
1

σ

[
∂ (ν + ν̃n)

∂xj

(
∂ν̃n+1

∂xj

)
+ (ν + ν̃n)

∂

∂xj

∂ν̃n+1

∂xj
+ cb2

∂ν̃n

∂xi

∂ν̃n+1

∂xi

]
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with

Sp = −2

d

[
cw1fw −

cb1
κ2
ft2

]( ν̃n
d

)
Sc = cb1 (1− ft2) S̃ν̃n +

[
cw1fw −

cb1
κ2
ft2

]( ν̃n
d

)2

where ν̃n is the value at the previous time step, and ν̃n+1 is the value at the125

actual time step. An ADI method is also used to solve the turbulent equation.

-Penalization:

An implicit Euler time discretization is used to approximate un+1 and ν̃n+1 in

the penalty source terms to avoid time step contraints due to a large penalty

parameter. Details related to the implicit treatment of the penalty term can be130

found in [6]. The vorticity field at tn+1 is then evaluated on the grid by taking

the curl of the velocity near the penalized area.

4. Wall function

The numerical wall function follows an idea proposed by [13], further ex-

tended by [14] and used with the Spalart-Allmaras turbulent model [15]. Con-135

sider a Cartesian grid with a fluid region and a penalized solid region as shown

in figure 2. The solid region, outlined in light gray, does not follow the Cartesian

grid. For the test cases presented in this paper, the solid velocity is zero. The

velocity vector U is defined at each node located at grid line intersection. A

local coordinate system aligned with the wall normal n is defined at each node140

located nearer than a normal distance δ away from the solid. On the figure,

the local coordinate system (n, s) is defined at node A. Node A is located at a

distance yn < δ from the surface. The local coordinate system is rotated at an

angle φ from the Cartesian coordinate system.

The velocity vector U is decomposed either in component (us, un) or (ux, uy),145

such that

ux = uscosφ− unsinφ (14)

uy = ussinφ+ uncosφ (15)

9



n

y

x



yn


o

AB

C D

U()

U(yn)

s

fluid region

Figure 2: Cartesian grid and local coordinate system

The velocity U(yn) imposed at the node A is obtained from a wall function

model. The wall function links the tangential velocity to the normal distance.

For known velocities at nodes o and at the fluid-solid interface, the velocity at

the node A is computed with the following assumptions:150

• The normal velocity component un is zero.

• The velocity varies linearly in x and y direction around the node o.

4.1. Wall function mathematical model

For a node A located at a distance yn from the wall, the location of the node

o in the Cartesian coordinate system is obtained by155

xo = xA − (δ − yn)sinφ (16)

yo = yA + (δ − yn)cosφ (17)

Then, the velocity at (xo, yo) is approximated by bilinear interpolations

based on the cartesian velocities UA, UB , UC , and UD at nodes A, B, C, and D.

10



ux,o = (1− f)(1− g)ux,B + f(1− g)ux,A + fgux,D + (1− f)gux,C (18)

uy,o = (1− f)(1− g)uy,B + f(1− g)uy,A + fguy,D + (1− f)guy,C (19)

where

f = (x0 − xB)/(xA − xB) (20)

g = (y0 − yB)/(yC − yB) (21)

The tangential velocity component, needed for the wall function, is obtained

from the Cartesian velocity components160

us,o = ux,ocosφ+ uy,0sinφ (22)

U(δ) = us,o (23)

The wall model is of the form [13]

us
uτ

=
1

κ
ln(1 + κy+) + c(1− e−y

+/d+ − y+

d+
e−by

+

) (24)

b =
1

2

(
d+κ

c
+

1

d+

)
(25)

c =
1

κ
ln

(
E

κ

)
(26)

y+ =
uτy

ν
(27)

uτ =

√
τ

ρ
(28)

where κ, E and d+ assume the values of 0.4187, 9.793 and 11 respectively. This

model is valid even for y+ values below 10. For y+ ≤ 1, the RANS solution

should be identical to the one obtained with Spalart-Allmaras turbulent model

without wall function. The uτ value is obtained from us = us,o in equation165

(24) and δ values. Once uτ is known, the tangential velocity component can
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be computed at any point along the normal direction. At the node A, the

tangential velocity is

y+A =
uτyn
ν

(29)

U(yn) =

(
1

κ
ln(1 + κy+A) + c(1− e−y

+
A/d+ −

y+A
d+

e−by
+
A )

)
uτ (30)

and the normal velocity is 0.

4.2. Numerical method170

The normal distance from the wall is obtained from the level set function.

The nw near-wall nodes are identified as the nodes for which the level set values

are above 0 but below the threshold value δ = 2×dy. For every near-wall nodes

Ai, the gradient of the level set gives the normal direction.

n = ∇Φ(si)/|∇Φ(si)| (31)

Then, from the normal direction, the corresponding node position (xo, yo)i is175

found from equations (16) and (17).

The four nodes around (xo, yo)i are found from the horizontal and verti-

cal distances between nodes, dx and dy. The four nodes around (xo, yo)i are

obtained with integer divisions.

iB = iC = int

(
(xo − xini)

dx

)
(32)

jB = jA = int

(
(yo − yini)

dy

)
(33)

The value of uτ is obtained iteratively from equation (24) using a Newton-180

Raphson method. The real valued function h is

12



κ∗ = κ
δ

ν
(34)

b∗ = b
δ

ν
(35)

h(uτ ) =
us
uτ
− 1

κ
ln(1 + κ∗uτ )− c

(
1− e−

δ

νd+
uτ − δ

νd+
uτe
−b∗uτ

)
(36)

The derivative of the function h is

h′ =
dh

duτ
= −us/u2τ −

κ∗

κ

(
1

1 + κ∗uτ

)
(37)

−c δ

νd+

(
e−

δ

νd+
uτ − e−b

∗uτ + b∗uτe
−b∗uτ

)
At t = 0, the initial shear velocity value uτ,0 for the iterative process is

obtained by using a linear velocity profile approximation

uτ,0 =

√
νus
δ

. (38)

Starting from the initial value, the shear velocity approximation is iteratively185

improved

uτ,i = uτ,i−1 − h/h′ . (39)

Usually, within less than 10 iterations, the residual |uτ,i−uτ,i−1|/uτ,i falls below

10−6.

With the uτ value and the wall distance yn, the wall model equation (24) is

used to compute the tangential velocity at node A. This velocity, once projected190

onto the Cartesian directions, becomes the penalized velocity at node A. Instead

of imposing the velocity only inside the solid, the velocity is also imposed on

nodes close enough to the wall.

5. Results

A periodic channel flow is selected to validate the methodology. The corre-195

sponding problem setup is depicted in the figure 3. In our computations, the
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Figure 3: Channel setup

Y+

U
+

10
0

10
1

10
2

10
30

5

10

15

20

25

LESCAPE with wall law

LESCAPE without wall law

f(x)=x

loglaw

Kalitzin

Allmaras

Y+

U
+

10
0

10
1

10
2

10
30

5

10

15

20

25

30

LESCAPE with wall law

LESCAPE without wall law

f(x)=x

loglaw

Kalitzin

Allmaras

Figure 4: Comparison between LESCAPE and theoretical log law, Left Reτ = 590,

Right Reτ = 4200

height of the channel is set to h = 2 m and the length is set to L = 1 m. On

the left and right boundaries, periodic boundary conditions are imposed. The

no-slip top/bottom walls are imposed via penalization, 10 nodes are penalized

inside the wall with a zero velocity, consequently the computational domain cor-200

responds to [0 ; 1] × [−10 dy ; 2 + 10 dy]. Numerical simulations corresponding

to Reτ =
ρuτh/2

µ
= 590 and Reτ = 4200 are presented in figure 4. LESCAPE

numerical results are in very good agreement with the theoretical log law and

with two wall functions from literature: the Kalitzin model [13] described in

this paper and used into LESCAPE and the Allmaras one from [15].205

For Reτ = 590 the numerical parameters are set to µ = 0.0017 kg/ms,

14



ρ = 1 kg/m3, with a mean velocity umean = 18.45 m/s and a corresponding

Reynolds numbers Remean =
ρumeanh

µ
= 21 705. The mass flow rate inside

the channel is imposed with the help of the stream function while the Poisson

equation is solved: a differential of humean is imposed between the top and210

bottom boundary conditions, ensuring the imposition of the proper mass flow

rate through the channel. Without the wall function, the size of the mesh is set

to dx = dy = 5.e − 3 and the time step is fixed to dt = 5.e − 3. With the wall

function activated, the mesh is coarser dx = 4.e− 2, dy = 8.e− 2, and the time

step is still dt = 5.e− 3.215

The results obtained with LESCAPE are compared to DNS results [16].

The velocity with wall function is closer to the DNS results than without wall

function figures 5c and d. The vorticity distribution is well predicted by the

simulation without wall function, figure 5b. With the wall function, as expected,

the coarse mesh does not allow the vorticity to reach the appropriate maximum220

value, figures 5a and b. However, the wall function computes the proper shear

velocity uτ = 1 as it should be for the imposed mean velocity and viscosity. If

dx = dy = 5.e − 3 is used with the wall function described by equation (24),

the results are identical to those without wall function, although not shown

here. Without the wall function, the SA turbulence model underestimates the225

maximum of the velocity inside the channel, figure 5c. This observation is

not specific to LESCAPE, since a similar solution is observed using SA with

OpenFOAM, figure 5d. The OpenFOAM case setup made available on Github

by [17] is used to further investigate the SA model velocity prediction. The

available case setup is modified to use the same mean velocity and viscosity as230

in the LESCAPE simulation. The OpenFOAM distance from the first node to

the wall is y+ = 0.26. The velocity predicted in the center of the channel by

OpenFOAM is nearly identical to the one of LESCAPE without wall function,

as seen on figure 5d.

To complete the study and the verification of the numerical scheme, a nu-235

merical order study is performed on this test case at Reτ = 590. Four different

meshes from dx = dy = 2.e − 2 to dx = dy = 2.5e − 3 have been used to
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Figure 5: Comparison between LESCAPE with and without wall function Reτ =

590; a) vorticity; b) zoom on vorticity; c) velocity profile compared to DNS results

d) velocity profile compared to DNS and OpenFoam results [16]

Figure 6: Order study for a channel flow at Reτ = 590 without wall law
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perform the study. The reference solution has been obtained on a fifth mesh

with dx = dy = 1.125e − 3. No wall law has been used for this study and the

same time step dt = 1.e − 4 has been selected for all simulations. Figure 6240

shows the evolution of the L2 norm of the error on the velocity u. The L2 norm

evolution with mesh size is compared to the second order law. As expected, by

construction, our numerical scheme is second order.

For Reτ = 4200 the numerical parameters are set to µ = 2.4e − 4 kg/ms,

ρ = 1 kg/m3, with a mean velocity umean = 22.94 m/s and a corresponding245

Reynolds number Remean = 191 167. Without the wall function, the size of the

mesh is set to dx = dy = 5.e − 4 and the time step is fixed to dt = 1.e − 4.

With the wall function activated, the mesh is coarser dx = dy = 4.e − 2 and

the time step is set to dt = 5.e − 3. The velocity results agree to DNS results

[18], as presented in figure 7a. The vorticity distribution is well predicted by250

the simulation without wall function. With the wall function, as previously,

the coarse mesh does not allow the vorticity to reach the appropriate maximum

value. However, the wall function computes the appropriate shear velocity, still

uτ = 1 for this case. If dx = dy = 5.e − 4 is used with the wall function, the

results are identical to those without wall function, although not shown here.255

Finally, the wall function should be able to handle the case when the mesh

is not aligned with the wall boundary. This is verified by dividing the com-

putational domain in 44 intervals in the y direction, starting at y = −0.5 and

ending at y = 2.5. This way, the level set 0 (dashed lines) that indicates the

wall location is not aligned with the grid (solid lines), as shown on the figure 8.260

The resulting velocity profile for Reτ = 590 computed on this unaligned grid is

compared, on the figure 9, with the one previously obtained (left part of figure

4) using a grid aligned with the wall. Both solutions are obtained using the wall

function. The two solutions are almost identical, although the first point is not

located at the same position. The DNS solution is shown for reference.265

To check the extension of the methodology to any orientation of the wall

with respect to the Cartesian grid, the flow through a channel bump has been

performed. Figure 10a shows a sketch of the simulated geometry, a channel
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with a curved lower wall referred to as bump, along with the 6 stations where

comparisons with DNS results from Mollicone et al. [19] are performed. In270

Figure 10a, the penalization zone in the top and bottom appears colored, the

black solid line represents the wall of the channel (iso-line 0 of the level set

function). The channel dimensions are (Lx × Ly) = (26× 2) and the the bump

shape is defined by y = −0.15(x− 4)2 + 0.5. The flow is from left to right and

periodic boundary conditions are imposed in the streamwise direction. No slip275
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a) b)

Figure 10: a) Sketch of the channel bump out of scale for clarity purpose. The

penalization zone is in blue, the top and bottom channel walls correspond to the

iso-line 0: the solid black line in this figure, dashed lines correspond to the 1D

cut stations where comparison with DNS results are performed. b) Turbulent

viscosity contours µt and streamlines for the channel bump flow.

boundary conditions are imposed at the top and bottom walls. Compared to

the bump width, the channel length is sufficient to allow a stabilization of the

flow downstream and then to recover the typical turbulent channel flow behavior

before re-entering the domain upstream due to periodicity. The bulk Reynolds

number based on half the channel height is Reb = 2500. Three different meshes280

have been used to perform the simulation dx = dy = 2.e − 2 referred as 100

in Figure 11 (100 points inside the physical channel, we recall that for all our

simulations in this paper 10 points are added on the top and bottom to define

the penalization zone); dx = dy = 1.e−2 referred as 200; and dx = dy = 5.e−3

referred as 400. The time step is set to dt = 1.e− 3 for all simulations, and the285

wall law has been used for the three simulations. Figure 10b shows the turbulent

viscosity contours along with some streamlines of the flow close to the bump.

Figure 11 presents the comparison between LESCAPE results and DNS results

from Mollicone et al. [19]. The velocity results agree to DNS results [19] at each

station, Figure 11. Mesh independence on the results is observed starting from290

a mesh spacing of dx = dy = 1.e − 2 (200 points inside the physical channel),
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Figure 11. As expected, the discrepancy between LESCAPE results and DNS

results increases in the separation zone, since turbulence models and wall law

are not suitable to handle perfectly this part of the flow [20]. Nevertheless, the

curvature of the wall is correctly taken into account by the proposed method,295

and LESCAPE solution agrees with literature results.

6. Conclusions

The use of Spalart-Allmaras model with the penalized incompressible RANS

equations has been successfully validated. The turbulence model has been used

with the RANS equation recast as a vorticity transport equation. The space300

variation of the turbulent viscosity creates additional terms in the vorticity

equation. These terms are obtained by taking the curl of the RANS equation

with the turbulent shear stress expressed as a turbulent viscosity times the

mean velocity derivatives. A VIC scheme is used to solve the resulting system

of equations. Both the vorticity and the turbulent viscosity are transported by305

the same particle using the convective time step. A wall function is used near the

wall to avoid fine meshes near the wall. The wall function is imposed through

penalization of the near wall nodes. The model implementation is validated

against periodic channel flow at various Reynolds numbers. The velocity and

vorticity distribution into the channel agree well with log law relations and DNS310

results. Future work will consist in taking into account moving walls and derive

a methodology to compute aerodynamic forces exerted on a solid.
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